JPH06216149A - Manufacture for mos-type transistor - Google Patents

Manufacture for mos-type transistor

Info

Publication number
JPH06216149A
JPH06216149A JP632893A JP632893A JPH06216149A JP H06216149 A JPH06216149 A JP H06216149A JP 632893 A JP632893 A JP 632893A JP 632893 A JP632893 A JP 632893A JP H06216149 A JPH06216149 A JP H06216149A
Authority
JP
Japan
Prior art keywords
gate
atoms
drain
forming
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP632893A
Other languages
Japanese (ja)
Inventor
Takashi Yagi
孝志 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP632893A priority Critical patent/JPH06216149A/en
Publication of JPH06216149A publication Critical patent/JPH06216149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make the manufacturing method easy and to facilitate the control of the lateral expansion of an impurity layer by implanting impurity atoms for forming a drain and a source after the formation of a gate, thereafter, etching the sidewall of the gate, and thereafter implanting impurity atoms for forming an impurity layer having the low concentration. CONSTITUTION:After the formation of a gate 23, impurity atoms for forming a drain 2 and a source 2 are implanted. Then, the sidewall of the gate 23 is etched. Thereafter, impurity atoms for forming an impurity layer 15 having the low concentration are implanted. For example, after an oxide film 4 is formed on an N-type silicon substrate, the gate 23 is formed in the larger size. Then, with the gate 23 as the mask, the P-type impurity atoms of about 10<15> atoms/cm<2> are implanted with the energy of about 70-100keV, and the source 1 and the drain 2 are formed. Then, the gate sidewall undergoes isotropic etching. Thereafter, with a reduced gate 3 as a mask, the P-type impurity atoms of about 10<14>atoms/cm<2> are implanted with the energy of about 50keV, and the impurity layer 15 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ゲート,ドレイン,
ソース構造を有したMOS型トランジスタの特にドレイ
ン近傍の電界強度緩和を目的とした構造のMOS型トラ
ンジスタの製造方法に関するものである。
This invention relates to a gate, a drain,
The present invention relates to a method for manufacturing a MOS transistor having a source structure, particularly a MOS transistor having a structure intended to relax the electric field strength near the drain.

【0002】[0002]

【従来の技術】従来のMOS型トランジスタ構造の概略
断面図を図3に示す。1はソース、2はドレイン、3は
ゲート、4は酸化膜を示し、通常ソース1,ドレイン2
は約1015atoms/cm2 のP型、あるいはN型不
純物原子を約70〜100KeVのエネルギーでゲート
3をマスクに打ち込むことで形成し、ゲート3は300
0〜6000オングストロームのポリシリコンや高融点
金属等で、酸化膜4は100〜300オングストローム
の酸化シリコン膜で形成される。ゲート3の横方向の長
さ、すなわちチャンネル長lは通常数ミクロンである
が、微細化により長さlが短くなっていくと、ドレイン
2とソース1間に加わっている電圧に耐えられなくな
り、いわゆるパンチスルー現象ににより耐圧不足を発生
させる。この現象を図4に示している。図4において横
軸はチャンネル長l、縦軸はドレイン2とソース1間に
加えられている最高の電圧値(BVDS)を表し、通常B
DS値が低下するl値は1ミクロン以下である。
2. Description of the Related Art FIG. 3 is a schematic sectional view of a conventional MOS transistor structure. 1 is a source, 2 is a drain, 3 is a gate, and 4 is an oxide film.
Is formed by implanting a gate 3 into a mask with a P-type or N-type impurity atom of about 10 15 atoms / cm 2 at an energy of about 70 to 100 KeV.
The oxide film 4 is made of polysilicon having a thickness of 0 to 6000 angstroms, a refractory metal or the like, and the silicon oxide film having a thickness of 100 to 300 angstroms. The lateral length of the gate 3, that is, the channel length l is usually several microns, but as the length l becomes shorter due to miniaturization, it becomes impossible to withstand the voltage applied between the drain 2 and the source 1. Due to the so-called punch-through phenomenon, insufficient withstand voltage occurs. This phenomenon is shown in FIG. In FIG. 4, the horizontal axis represents the channel length 1 and the vertical axis represents the maximum voltage value (BV DS ) applied between the drain 2 and the source 1, which is usually B.
The l value at which the V DS value decreases is 1 micron or less.

【0003】微細加工によるMOS型トランジスタの縮
小化によるBVDS値低下を防ぐ方法は、現在2種類存在
する。第1の方法を図5に示す。図5において図3と同
符号は同じ物を表し説明を省略する。ゲート13の長さ
1 を図3におけるゲート3の長さlより若干大きく
し、ソース1やドレイン2とは異なる拡散係数の大きい
不純物原子を注入した不純物層5を有する点が異なる。
Currently, there are two types of methods for preventing a decrease in BV DS value due to miniaturization of a MOS transistor by microfabrication. The first method is shown in FIG. In FIG. 5, the same symbols as those in FIG. The difference is that the length l 1 of the gate 13 is made slightly larger than the length l of the gate 3 in FIG. 3, and the impurity layer 5 having a large diffusion coefficient, different from the source 1 and the drain 2, is implanted.

【0004】NチャンネルMOS型トランジスタに関し
て説明すると、例えばソース1,ドレイン2形成には、
ゲート13をマスクに1015atoms/cm2 のAs
(ヒ素)原子を70KeVのエネルギーで打ち込むのに
対して、不純物層5形成には、同じゲート13をマスク
に1014atoms/cm2 のP(リン)原子を40K
eVのエネルギーで打ち込む。すなわち不純物層5の形
成にはソース1,ドレイン2形成に比べて不純物原子の
量を減らし、かつ拡散係数の大きい原子を用いる。この
方法を使ったMOS型トランジスタはD.D.D(Do
uble Diffused Drain)トランジス
タと呼ばれ、濃度の薄い層は横方向にも拡散し、図3と
同程度のチャンネル長lを形成するが、ドレイン2近傍
の電界強度が緩和されるため、BVDS値低下が防がれ
る。
Explaining the N-channel MOS type transistor, for example, to form the source 1 and the drain 2,
Using the gate 13 as a mask, As of 10 15 atoms / cm 2
(Arsenic) atoms are implanted with an energy of 70 KeV, while 10 14 atoms / cm 2 of P (phosphorus) atoms are deposited to 40 K with the same gate 13 as a mask to form the impurity layer 5.
Drive with eV energy. That is, in forming the impurity layer 5, the amount of impurity atoms is reduced as compared with the formation of the source 1 and the drain 2, and atoms having a large diffusion coefficient are used. The MOS type transistor using this method is a D.I. D. D (Do
uble Diffused Drain) called transistors, the thin layer of concentration diffuses laterally, forms a channel length l substantially equal to that of FIG. 3, the electric field strength of the drain 2 vicinity is relaxed, BV DS value The drop is prevented.

【0005】次に第2の方法を図6に示す。図6におい
て図3と同符号は同じ物を表し説明を省略する。6は、
サイドウォールと呼ばれ酸化物で形成される。ゲート3
を例えば図3と同じ寸法に形成後、不純物層15形成用
の原子を打ち込む。原子は拡散係数の小さいものでよ
い。
Next, the second method is shown in FIG. In FIG. 6, the same symbols as those in FIG. 3 represent the same items, and the description thereof will be omitted. 6 is
It is called a sidewall and is made of oxide. Gate 3
Are formed to have the same dimensions as in FIG. 3, for example, and then atoms for forming the impurity layer 15 are implanted. Atoms may have a small diffusion coefficient.

【0006】次にサイドウォール6を形成後、ソース
1,ドレイン2形成用の原子を打ち込む。これらの打ち
込み量、打ち込みエネルギーは、前述の第1方法に準ず
る。この方法を使ったMOS型トランジスタは、L.
D.D.(Lightly Doped Drain)
トランジスタと呼ばれ、前述の第1方法と同じ原理でB
DS値低下が防がれる。
Next, after forming the side wall 6, atoms for forming the source 1 and the drain 2 are implanted. These implantation amount and implantation energy are in accordance with the above-mentioned first method. The MOS type transistor using this method is described in
D. D. (Lightly Doped Drain)
It is called a transistor and has the same principle as the first method described above.
It is possible to prevent the V DS value from decreasing.

【0007】[0007]

【発明が解決しようとする課題】第1の方法D.D.
D.トランジスタは、第2の方法L.D.D.トランジ
スタと比較して製造工程数が少なく製法が容易という長
所がある反面、不純物層5の横広がり長が拡散係数に依
存するため、加熱コントロールが困難という短所があ
る。第2の方法L.D.D.トランジスタは、第1の方
法D.D.D.トランジスタと比較して、不純物層5の
横広がり長はサイドウォール6の長さに依存するため、
コントロールが容易という長所がある反面、製造工程数
が多く製法が複雑になるという問題がある。
The first method D. D.
D. The transistor is the second method L.L. D. D. Compared with a transistor, the number of manufacturing steps is small and the manufacturing method is easy, but on the other hand, since the lateral spread length of the impurity layer 5 depends on the diffusion coefficient, there is a disadvantage that heating control is difficult. Second method L. D. D. The transistor is the same as the first method D.I. D. D. As compared with the transistor, the lateral spread length of the impurity layer 5 depends on the length of the sidewall 6,
Although it has the advantage of being easy to control, it has the problem that the number of manufacturing steps is large and the manufacturing method is complicated.

【0008】[0008]

【課題を解決するための手段】本発明は、上記製法が複
雑になるという問題点に鑑み提案されたもので、ゲー
ト,ドレイン,ソース構造を有するMOS型トランジス
タの製造方法において、ゲート形成後にドレイン,ソー
ス形成用の不純物原子を注入し、その後ゲート側壁をエ
ッチングし、その後濃度の薄い不純物層を形成すること
を特徴とするものである。
The present invention has been proposed in view of the problem that the above manufacturing method is complicated. In the method of manufacturing a MOS transistor having a gate, drain and source structure, the drain is formed after the gate is formed. The impurity atoms for forming the source are implanted, the side wall of the gate is then etched, and then an impurity layer having a low concentration is formed.

【0009】[0009]

【作用】本発明によれば、製法が簡単で不純物層の横広
がりのコントロールが容易なトランジスタの製造を実現
できる。
According to the present invention, it is possible to realize the manufacture of a transistor whose manufacturing method is simple and whose lateral spread of the impurity layer can be easily controlled.

【0010】[0010]

【実施例】以下に本発明の実施例を図1により説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to FIG.

【0011】図1において図3と同符号は同じ物を表し
説明を省略する。工程順としてN型(あるいはP型)シ
リコン基板に、先ず酸化膜4を形成後、ゲート23を形
成する。ゲート23は最終的に必要な寸法よりゲート長
も厚みも大きめに作っておく(図1−)。そのゲート
23をマスクに約1015atoms/cm2 のP型(あ
るいはN型)不純物原子を約70〜100KeVのエネ
ルギーで打ち込みソース1,ドレイン2を形成する(図
1−)。
In FIG. 1, the same symbols as those in FIG. 3 represent the same items, and their explanations are omitted. As an order of steps, an oxide film 4 is first formed on an N-type (or P-type) silicon substrate, and then a gate 23 is formed. The gate 23 is made to have a gate length and a thickness that are larger than the finally required dimensions (FIG. 1-). Using the gate 23 as a mask, P-type (or N-type) impurity atoms of about 10 15 atoms / cm 2 are implanted at an energy of about 70 to 100 KeV to form a source 1 and a drain 2 (FIG. 1-).

【0012】次にゲート側壁を等方性エッチング(図1
−)にした後に小さくなったゲート3をマスクに約1
14atoms/cm2 の前述原子を約50KeVのエ
ネルギーで打ち込み不純物層15を形成する(図1−
)。ここで用いる不純物原子は、拡散係数の大きいも
のとすることもできる。
Next, the gate sidewall is isotropically etched (see FIG. 1).
The gate 3 which has become smaller after setting to −) is used as a mask for about 1
The aforementioned atoms of 0 14 atoms / cm 2 are implanted with an energy of about 50 KeV to form the impurity layer 15 (FIG. 1-
). The impurity atoms used here may have a large diffusion coefficient.

【0013】[0013]

【実施例2】図2は本発明の第2実施例である。図2に
おいて図3と同符号は同じ物を表し説明を省略する。第
1実施例との相違点はゲート側壁のエッチング方法にあ
る。第2実施例では所望の寸法よりゲート長を大きく形
成した(図2−)ゲート33をマスクにソース1,ド
レイン2を形成後(図2−)ゲート33に所望の寸法
にレジスト7を塗布した後(図2−)、RIE(Re
active IonEtching)等で異方性エッ
チングを実施し、所望の寸法にゲート33の側壁をエッ
チングして、ゲート3とする(図2−)。その後ゲー
トをマスクに濃度の薄い不純物層15を形成する。
Second Embodiment FIG. 2 shows a second embodiment of the present invention. In FIG. 2, the same symbols as those in FIG. The difference from the first embodiment lies in the method of etching the gate sidewall. In the second embodiment, the gate length is formed to be larger than a desired size (FIG. 2-) After forming the source 1 and the drain 2 using the gate 33 as a mask (FIG. 2-), the resist 7 is applied to the gate 33 in a desired size. After (Fig. 2-), RIE (Re
Anisotropic etching is carried out by means of active Ion Etching) or the like, and the side wall of the gate 33 is etched to a desired size to form the gate 3 (FIG. 2). After that, the impurity layer 15 having a low concentration is formed using the gate as a mask.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば不
純物層5の横広がり長はゲート3の長さで決まるため、
コントロールが容易であり、かつ製法が容易なトランジ
スタを実現できる。
As described above, according to the present invention, the lateral spread length of the impurity layer 5 is determined by the length of the gate 3.
A transistor that is easy to control and easy to manufacture can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例の概略断面図。FIG. 1 is a schematic sectional view of a first embodiment of the present invention.

【図2】 本発明の第2実施例の概略断面図。FIG. 2 is a schematic sectional view of a second embodiment of the present invention.

【図3】 従来のMOS型トランジスタ構造の概略断面
図。
FIG. 3 is a schematic cross-sectional view of a conventional MOS transistor structure.

【図4】 チャンネル長lとBVDS値との関係図。FIG. 4 is a relationship diagram between channel length 1 and BV DS value.

【図5】 従来のBVDS値低下防止型の第1例の概略断
面図。
FIG. 5 is a schematic sectional view of a first example of a conventional BV DS value reduction prevention type.

【図6】 従来のBVDS値低下防止型の第2例の概略断
面図。
FIG. 6 is a schematic cross-sectional view of a second example of a conventional BV DS value reduction prevention type.

【符号の説明】[Explanation of symbols]

1 ソース 2 ドレイン 3,23,33 ゲート 4 酸化膜 7 レジスト 15 濃度の薄い不純物層 1 Source 2 Drain 3, 23, 33 Gate 4 Oxide film 7 Resist 15 Impurity layer with low concentration

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ゲート,ドレイン,ソース構造を有するM
OS型トランジスタの製造方法において、ゲート形成後
にドレイン,ソース形成用の不純物原子を注入し、その
後ゲート側壁をエッチングした後に濃度の薄い不純物層
形成用不純物原子を注入することを特徴とするMOS型
トランジスタの製造方法。
1. An M having a gate, a drain and a source structure.
In a method for manufacturing an OS transistor, a MOS transistor characterized by injecting impurity atoms for forming a drain and a source after forming a gate and then etching a side wall of the gate and then injecting impurity atoms for forming an impurity layer having a low concentration. Manufacturing method.
【請求項2】前記ゲート側壁をエッチングする方法が、
等方性エッチングである請求項1に記載のMOS型トラ
ンジスタの製造方法。
2. A method of etching the gate sidewall comprises:
The method for manufacturing a MOS transistor according to claim 1, wherein isotropic etching is performed.
【請求項3】前記ゲート側壁をエッチングする方法が所
望のマスクを形成した後の異方性エッチングであること
を特徴とする請求項1に記載のMOS型トランジスタの
製造方法。
3. The method of manufacturing a MOS transistor according to claim 1, wherein the method of etching the gate sidewall is anisotropic etching after forming a desired mask.
JP632893A 1993-01-19 1993-01-19 Manufacture for mos-type transistor Pending JPH06216149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP632893A JPH06216149A (en) 1993-01-19 1993-01-19 Manufacture for mos-type transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP632893A JPH06216149A (en) 1993-01-19 1993-01-19 Manufacture for mos-type transistor

Publications (1)

Publication Number Publication Date
JPH06216149A true JPH06216149A (en) 1994-08-05

Family

ID=11635303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP632893A Pending JPH06216149A (en) 1993-01-19 1993-01-19 Manufacture for mos-type transistor

Country Status (1)

Country Link
JP (1) JPH06216149A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371646B2 (en) * 2004-09-03 2008-05-13 Yamaha Corporation Manufacture of insulated gate type field effect transistor
KR101025741B1 (en) * 2008-09-02 2011-04-04 주식회사 하이닉스반도체 Method for forming active pillar of vertical channel transistor
CN113327845A (en) * 2020-02-28 2021-08-31 上海先进半导体制造有限公司 Transistor and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371646B2 (en) * 2004-09-03 2008-05-13 Yamaha Corporation Manufacture of insulated gate type field effect transistor
KR101025741B1 (en) * 2008-09-02 2011-04-04 주식회사 하이닉스반도체 Method for forming active pillar of vertical channel transistor
US8158529B2 (en) 2008-09-02 2012-04-17 Hynix Semiconductor Inc. Method for forming active pillar of vertical channel transistor
CN113327845A (en) * 2020-02-28 2021-08-31 上海先进半导体制造有限公司 Transistor and manufacturing method thereof
CN113327845B (en) * 2020-02-28 2024-02-13 上海积塔半导体有限公司 Transistor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3050717B2 (en) Method for manufacturing semiconductor device
US6661061B1 (en) Integrated circuit with differing gate oxide thickness
US7563663B2 (en) Method of manufacturing semiconductor device with offset sidewall structure
US20040014292A1 (en) Sub-micron MOS transistor
JPH03248433A (en) Manufacture of semiconductor device
JPS59138379A (en) Manufacture of semiconductor device
JPH06326308A (en) Preparation of minimum scale transistor
JP2009152580A (en) Semiconductor device and its manufacturing method
JP2001298188A (en) Semiconductor element and forming method thereof
US7122862B2 (en) Reduction of channel hot carrier effects in transistor devices
US20040207024A1 (en) Semiconductor device with an STI structure which is capable of suppressing inverse narrow channel effect, and method of manufacturing the same
JP2004508717A (en) Method and device for reducing gate induced drain leakage (GIDL) current in thin gate oxide MOSFETs
JPH06216149A (en) Manufacture for mos-type transistor
JPH05267331A (en) Manufacture of mos semiconductor device
JP2002270846A (en) Manufacturing method of semiconductor device
US20090221118A1 (en) High Voltage Semiconductor Devices
JPH09116151A (en) Asymmetrical type transistor and its manufacture
KR0146525B1 (en) Method for manufacturing thin film transistor
JPH05206454A (en) Manufacture of mis-type semiconductor device
JPS62293773A (en) Manufacture of semiconductor device
JPH1050994A (en) Fabrication of semiconductor device
JPS63185064A (en) Manufacture of semiconductor device
JPS6199376A (en) Manufacture of semiconductor device
JP3371172B2 (en) Method for manufacturing semiconductor device
JP3127078B2 (en) Field effect transistor and method of manufacturing the same