JPH06216079A - Processing method and device by radical reaction - Google Patents

Processing method and device by radical reaction

Info

Publication number
JPH06216079A
JPH06216079A JP4242240A JP24224092A JPH06216079A JP H06216079 A JPH06216079 A JP H06216079A JP 4242240 A JP4242240 A JP 4242240A JP 24224092 A JP24224092 A JP 24224092A JP H06216079 A JPH06216079 A JP H06216079A
Authority
JP
Japan
Prior art keywords
electrode
shape
processing
workpiece
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4242240A
Other languages
Japanese (ja)
Inventor
Yuzo Mori
勇蔵 森
Norio Shibata
則夫 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4242240A priority Critical patent/JPH06216079A/en
Publication of JPH06216079A publication Critical patent/JPH06216079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable a work to be automatically processed by a method wherein an electrode is formed into the shape opposite to that of a processed face of the work, and the electrode and the work are made to approach each other as close as a movement previously set basing on the shapes of the electrode and the processed surface of the work which is not processed yet. CONSTITUTION:A processing electrode 2 is worked into a shape correspondent to the targeted shape of the processed face of a work 5. The processing electrode 2 is of a board (blade), a pin, or a wire electrode. The dimension of the electrode 2 in the direction of Z to an XY plane is optionally set, whereby the electrode 2 is formed into the shape (reversed shape) corresponding to the targeted shape of the work 5. A power supply 3 is provided to supply a voltage to the processing electrode 2. The applied voltage is set corresponding to the work 5. When the work 5 is formed of conductor or semiconductor, a DC voltage is applied to the processing electrode 2, and the work 5 is grounded. On the other hand, when a work is formed of semiconductor or insulator, a reaction chamber 1 is grounded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ラジカル(遊離基)反
応を利用した加工方法およびそれに使用する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing method utilizing a radical (free radical) reaction and an apparatus used therefor.

【0002】[0002]

【従来の技術】被加工物を加工する際に、加工作業によ
ってこの被加工物内部にクラック等の欠陥や熱的変質層
が形成されると、加工された表面に脆性破壊が生じる恐
れがあり信頼性が低下する原因となる。そのため、加工
された被加工物にさらにラッピング処理を施して前記欠
陥や熱的変質層を除去する必要があるが、このラッピン
グ加工自体が欠陥や熱的変質層を形成させるという問題
があった。この問題を解決するために、被加工物内部に
欠陥や熱的変質層を形成させずに加工する方法としてラ
ジカル反応を用いた無歪精密加工方法が提案されている
(特開平1-125829号公報)。
2. Description of the Related Art When processing a work piece, if a defect such as a crack or a thermally deteriorated layer is formed inside the work piece by a working operation, brittle fracture may occur on the worked surface. This causes a decrease in reliability. Therefore, it is necessary to further subject the processed object to lapping treatment to remove the defects and the thermally deteriorated layer, but the lapping process itself has a problem of forming defects and thermally deteriorated layers. In order to solve this problem, a strain-free precision processing method using a radical reaction has been proposed as a processing method without forming a defect or a thermally deteriorated layer inside the workpiece (Japanese Patent Laid-Open No. 1-125829). Gazette).

【0003】この加工方法は、被加工物を反応ガスを含
む気体雰囲気中に配置し、この被加工物の加工面近傍で
前記反応ガス分子を励起させてラジカルを発生させ、こ
のラジカルと被加工物の構成原子(または分子)とをラ
ジカル反応させて、低温で気化しうる化合物を被加工物
表面上に生成する。そして、この化合物を気化させて前
記加工面上から除去することでこの面上に原子または分
子レベルの空所を順次形成して最終的に被加工物に対し
切断、穿孔、切削、研磨等の加工を行うものである。
In this processing method, a work piece is placed in a gas atmosphere containing a reaction gas, the reaction gas molecules are excited near the work surface of the work piece to generate radicals, and the radicals and the work piece are processed. By radically reacting with the constituent atoms (or molecules) of the object, a compound that can be vaporized at low temperature is generated on the surface of the object to be processed. Then, by vaporizing this compound and removing it from the processing surface, cavities at the atomic or molecular level are sequentially formed on this surface, and finally cutting, perforating, cutting, polishing, etc. for the workpiece. It is for processing.

【0004】このようなラジカル反応を用いた加工法
は、前記欠陥や熱的変質層を形成させないため、前述の
ようなラッピング処理が不要となる。また、原子(また
は分子)レベルで加工が進行するので加工面の形状粗さ
を小さくできる。この加工法は、被加工物の材料の制約
を受け難く、シリコン単結晶等の半導体もしくは導体ま
たはガラスやセラミックス等の絶縁体に対して適用され
ていた。
In the processing method using such a radical reaction, since the above-mentioned defects and the thermally deteriorated layer are not formed, the above-mentioned lapping treatment is unnecessary. Further, since the processing progresses at the atomic (or molecular) level, the shape roughness of the processed surface can be reduced. This processing method is not easily restricted by the material of the workpiece, and has been applied to semiconductors such as silicon single crystals or conductors or insulators such as glass and ceramics.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記ラジカ
ル反応を用いた加工法によって複数の被加工物を加工す
る場合、この加工を自動化した方が加工効率が上がる。
そのための手段として、ラジカル反応を用いた加工法に
数値制御を組み合わせて自動化する方法が考えられる。
この場合、被加工物の加工前の形状と目的とする形状の
それぞれの座標データで表し、このデータから求まる座
標差に応じて加工時間を制御することで加工を自動制御
できる。しかも、被加工物に対する形状誤差が0.01μm
程度とすることが可能である。しかし、数値制御を行う
ための数値制御装置は、XYZ方向の座標軸の制御を必
要とするため構成が複雑になる。また、加工形状が複雑
になるとより細かい制御をしなければならず、加工に比
較的時間がかかる。また、コンピュータ等の制御機構を
必要とするので装置が高価になってしまう。
By the way, when a plurality of workpieces are machined by the machining method using the radical reaction, the machining efficiency is improved by automating the machining.
As a means for that, a method of combining a processing method using a radical reaction with numerical control and automating can be considered.
In this case, it is possible to automatically control the machining by representing the shape of the work piece by the coordinate data of each of the shape before machining and the target shape, and controlling the machining time according to the coordinate difference obtained from this data. Moreover, the shape error with respect to the work piece is 0.01 μm
It can be a degree. However, the numerical control device for performing the numerical control requires complicated control of the coordinate axes in the XYZ directions, which complicates the configuration. Further, if the processed shape becomes complicated, finer control must be performed, and the processing takes a relatively long time. Further, since the control mechanism such as a computer is required, the device becomes expensive.

【0006】本発明は、このような問題点を解決するこ
とを目的とする。
An object of the present invention is to solve such a problem.

【0007】[0007]

【課題を解決するための手段】上記目的のために、本発
明では、反応ガスを含む雰囲気気体中に配置された電極
に電圧を印加して前記反応ガスに基づくラジカルを発生
させ、該ラジカルと被加工物の構成原子または構成分子
とのラジカル反応によって生成された生成物質を気化さ
せて除去することにより加工を行うラジカル反応を用い
た加工法において、前記電極の形状を「前記被加工物の
加工面の目的とする形状」の反転形状に基づいて形成
し、前記電極と被加工物とが、「前記電極の形状と前記
加工面の加工前の形状に基づいて設定した移動量」分だ
け接近するように、該電極と被加工物との相対位置を一
方向から変位させることで、前記電極の形状に対応した
形状が前記加工面に形成されるようにした。また、その
ために、反応ガスを含む雰囲気気体を導入するための反
応容器、該反応用容器内に設置され、「被加工物の加工
面の目的とする形状」の反転形状に基づく形状を有する
電極、該電極に電圧を印加する電源、および前記電極と
被加工物とが、「前記電極の形状と前記加工面の加工前
の形状に基づいて設定した移動量」分だけ接近するよう
に、該電極と被加工物との相対位置を一方向から変位さ
せる移動手段とでラジカル反応を用いた加工装置を構成
した。
To achieve the above object, in the present invention, a voltage is applied to an electrode arranged in an atmosphere gas containing a reaction gas to generate a radical based on the reaction gas, In a processing method using a radical reaction, in which a product generated by a radical reaction with a constituent atom or a constituent molecule of a workpiece is vaporized and removed to perform processing, a shape of the electrode is changed to "the shape of the workpiece. Formed based on the inverted shape of "the target shape of the machined surface", and the electrode and the work piece are "amount of movement set based on the shape of the electrode and the shape of the machined surface before machining". By displacing the relative position of the electrode and the workpiece from one direction so as to approach each other, a shape corresponding to the shape of the electrode is formed on the processed surface. Therefore, for that purpose, a reaction container for introducing an atmospheric gas containing a reaction gas, an electrode installed in the reaction container and having a shape based on an inverted shape of "the target shape of the processed surface of the workpiece" , A power source for applying a voltage to the electrode, and the electrode and the work piece so that they are close to each other by "a movement amount set based on the shape of the electrode and the shape of the processed surface before processing". A processing device using a radical reaction is constituted by a moving means for displacing the relative position of the electrode and the workpiece from one direction.

【0008】[0008]

【作用】本発明は、「被加工物の加工面が目的とする形
状(以下、目的形状という)」と電極の形状とを対応さ
せることで、制御すべき座標軸の数を減らしたものであ
る。一般に、XYZの3つの座標軸で表される前記目的
形状を得るための加工では、これら3つの軸を制御する
必要がある。そこで、本発明では、ラジカル反応を発生
させるための電極の形状を前記加工面の目的形状を反転
させた形状(以下、反転形状という)に形成し、この電
極形状に沿ってラジカル反応による被加工物の除去作用
を発生させるようにした。ラジカル反応による除去作用
は、電極と被加工物との間隔がある距離(これを加工ギ
ャップという)まで近づいた時に発生する。また、除去
作用が最も効率よく行われる時の電極と被加工物との間
隔(理想ギャップという)は、前記加工ギャップよりも
短い距離である。そのため、電極と被加工物とを両者の
間隔が前記加工ギャップ内となる位置(例えば、前記理
想ギャップとなる位置)に固定して加工を行った場合、
加工が進行して被加工物が除去されていくと電極と被加
工物との間隔は次第に広くなる。そして、この間隔が前
記加工ギャップと等しくなるまで広がると、被加工物に
対する除去作用は停止してそれ以上は加工が進まなくな
る。従って、本発明においては、加工時に前記反転形状
を有する電極に被加工物を所定量接近させることで、こ
の被加工物の加工面を自動的に前記目的形状に形成する
ことができる。つまり、電極の形状を反転形状とするこ
とで、前記制御すべき3つの座標軸のうちの2つの座標
軸(例えばXY軸)に対する制御を省略でき、前記電極
と被加工物との間隔を設定する1つの軸だけを制御すれ
ば済む。電極と被加工物とを接近させる速度は、ラジカ
ル反応による加工速度よりも遅くなるように設定する。
電極と被加工物との接近により、これら両者の形状によ
る互いに対応する位置同士の間隔が前記加工ギャップに
等しくなった箇所から、順次ラジカル反応による除去作
用が始まり加工が行われる。前記所定量分だけ接近させ
た後は、電極と被加工物との位置を固定する。この時点
で両者の間隔が加工ギャップよりも広ければ除去作用
(加工)は自動的に停止し、被加工物の加工面は目的形
状に形成される。一方、加工ギャップ内であれば加工は
続行するが、さらに加工が進行すると加工面は前記除去
作用によって電極に対して後退していくため電極と加工
面との間隔が次第に広くなる。そして、この間隔が前記
加工ギャップよりも広くなるとそれ以上は加工が進まな
くなり、被加工物の加工面は目的形状に形成される。実
際の加工では、前記加工面の目的形状と電極の形状とを
等しくしても、加工時のプラズマの密度が均一でない等
のラジカル反応の状態によって加工面がこの目的形状通
りに形成されない場合がある。そこで、電極の形状を設
定する際は予めある加工条件(実際の加工条件と等しい
方が望ましい)を設定し、この条件下での前記電極形状
と目的形状との相関関係を求める。そして、この相関関
係に基づいて加工面に対する電極の形状を設定すればよ
い。以下、本発明を実施例に基づいて詳細に説明する
が、本発明はこれに限定されるものではない。
According to the present invention, the number of coordinate axes to be controlled is reduced by associating the "shape of the processed surface of the workpiece to be processed (hereinafter referred to as the target shape)" with the shape of the electrode. . Generally, in the processing for obtaining the target shape represented by the three XYZ coordinate axes, it is necessary to control these three axes. Therefore, in the present invention, the shape of the electrode for generating the radical reaction is formed in a shape that is the inverse of the target shape of the processing surface (hereinafter referred to as the inverted shape), and the object to be processed by the radical reaction is formed along this electrode shape. It is designed to generate a removal effect of the substance. The removing action by the radical reaction occurs when a distance between the electrode and the workpiece is close to a certain distance (this is called a machining gap). Further, the distance (referred to as an ideal gap) between the electrode and the workpiece when the removing action is most efficiently performed is a distance shorter than the processing gap. Therefore, when processing is performed with the electrode and the workpiece fixed at a position where the distance between them is within the processing gap (for example, the position where the ideal gap is obtained),
As the machining progresses and the workpiece is removed, the distance between the electrode and the workpiece gradually becomes wider. Then, when this interval is widened to be equal to the machining gap, the removing action on the workpiece is stopped and the machining cannot proceed any further. Therefore, in the present invention, when the workpiece having a predetermined shape is brought closer to the electrode having the inverted shape during machining, the machined surface of the workpiece can be automatically formed into the target shape. That is, by inverting the shape of the electrode, control of two coordinate axes (for example, XY axes) of the three coordinate axes to be controlled can be omitted, and the distance between the electrode and the workpiece is set 1 Only one axis needs to be controlled. The speed at which the electrode and the workpiece are brought close to each other is set to be slower than the processing speed by the radical reaction.
Due to the proximity of the electrode and the workpiece, the removal action by the radical reaction is sequentially started from the position where the intervals between the corresponding positions due to the shapes of the two become equal to the processing gap, and the processing is performed. After approaching by the predetermined amount, the positions of the electrode and the workpiece are fixed. At this point, if the gap between the two is wider than the machining gap, the removing action (machining) is automatically stopped, and the machined surface of the workpiece is formed into the target shape. On the other hand, if the processing is continued within the processing gap, the processing surface further recedes with respect to the electrode due to the removing action as the processing further progresses, so that the distance between the electrode and the processing surface becomes gradually wider. When the distance becomes wider than the processing gap, the processing does not proceed any further, and the processed surface of the workpiece is formed into the target shape. In actual machining, even if the target shape of the machined surface and the shape of the electrode are the same, the machined surface may not be formed according to the target shape due to radical reaction conditions such as non-uniform plasma density during machining. is there. Therefore, when setting the shape of the electrode, a certain processing condition (which is preferably equal to the actual processing condition) is set in advance, and the correlation between the electrode shape and the target shape under this condition is obtained. Then, the shape of the electrode with respect to the processed surface may be set based on this correlation. Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto.

【0009】[0009]

【実施例】図1は、本発明の一実施例を示す加工装置の
概略構成図である。本実施例の加工装置は、加工用電極
2、被加工物5を載置する移動手段4、これら加工用電
極2と移動手段4とを収納する反応容器1、および電源
3とを有している。反応容器1は、ラジカル反応を発生
させる際に使用する反応ガスおよび不活性ガスを含む気
体雰囲気を高圧力(約1気圧以上)で密閉または流動さ
せ得るように構成される。本実施例では、反応ガス供給
機構(図示せず)を設けて被加工物5の加工面近傍に10
リットル/minの流速で前記反応ガスが供給されるように
した。反応ガスは、被加工物5の材料および所望の加工
速度に応じて設定する。本実施例では、被加工物5の材
料を合成石英(石英ガラス)とし反応ガスにはSF6 (6
フッ化イオウ)を使用した。反応ガスとしてはSF6 の他
に、F2(フッ素)等のフッ素系ガスや Cl2(塩素)、CC
l4(四塩化炭素)等の塩素系ガスを使用することができ
るが、前記合成石英に対してはSF6 が適している。不活
性ガスにはHe(ヘリウム)を用いたが、Ar等の他の不活
性ガスを使用してもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic block diagram of a processing apparatus showing an embodiment of the present invention. The processing apparatus of the present embodiment has a processing electrode 2, a moving means 4 on which a workpiece 5 is placed, a reaction container 1 accommodating the processing electrode 2 and the moving means 4, and a power source 3. There is. The reaction container 1 is configured so that a gas atmosphere containing a reaction gas and an inert gas used when generating a radical reaction can be sealed or flowed at a high pressure (about 1 atm or more). In the present embodiment, a reaction gas supply mechanism (not shown) is provided so that a 10
The reaction gas was supplied at a flow rate of liter / min. The reaction gas is set according to the material of the workpiece 5 and the desired processing speed. In this embodiment, the material of the workpiece 5 is synthetic quartz (quartz glass) and the reaction gas is SF6 (6).
Sulfur fluoride) was used. As reaction gas, in addition to SF6, fluorine-based gas such as F2 (fluorine), Cl2 (chlorine), CC
A chlorine-based gas such as l4 (carbon tetrachloride) can be used, but SF6 is suitable for the synthetic quartz. Although He (helium) is used as the inert gas, other inert gas such as Ar may be used.

【0010】加工用電極2は、被加工物5の加工面の目
的形状と対応した形状に設定されており、図2にその形
状の概略平面の例を示す。図に示すように、加工用電極
2は板(ブレード)、ピンまたはワイヤー状の電極2a
からなり、これら電極2aのXY平面に対するZ方向の
寸法を適宜設定することで、被加工物5の目的形状に対
応させた形状(反転形状)を有するように構成されてい
る。この加工用電極は交換できるように構成しておき、
被加工物5の目的形状に応じた形状を有する加工用電極
を適宜選択して交換するようにすることも可能である。
The processing electrode 2 is set in a shape corresponding to the target shape of the processing surface of the workpiece 5, and FIG. 2 shows an example of a schematic plane of the shape. As shown in the figure, the processing electrode 2 is a plate (blade), pin or wire electrode 2a.
It is configured to have a shape (inverted shape) corresponding to the target shape of the workpiece 5 by appropriately setting the dimension of these electrodes 2a in the Z direction with respect to the XY plane. This processing electrode is configured so that it can be replaced,
It is also possible to appropriately select and replace a processing electrode having a shape corresponding to the target shape of the workpiece 5.

【0011】電源3は、加工用電極2に電圧を印加する
ためのものである。印加する電圧は、被加工物5に応じ
て設定する。被加工物5が導体または半導体の場合は、
加工用電極2に直流電圧を印加して被加工物5を接地す
る。一方、被加工物5が半導体または絶縁体の場合は、
加工用電極2に高周波(RF)電圧を印加して反応容器
1を接地する。印加する電圧の値は、前記雰囲気気体か
ら反応ガスに基づくラジカルが適当な規模で発生するよ
うに設定する。過度に電圧値を高くすると、高エネルギ
ーの荷電粒子が発生して被加工物5に損傷を与える恐れ
があるので好ましくない。本実施例では、電源3に高周
波電源を用い、被加工物5の加工面付近に100 〜1000W
程度の電力(プラズマ)が発生するように加工用電極2
に電圧を印加する。
The power source 3 is for applying a voltage to the processing electrode 2. The applied voltage is set according to the workpiece 5. If the workpiece 5 is a conductor or semiconductor,
A DC voltage is applied to the processing electrode 2 to ground the workpiece 5. On the other hand, when the workpiece 5 is a semiconductor or an insulator,
A high frequency (RF) voltage is applied to the processing electrode 2 to ground the reaction vessel 1. The value of the applied voltage is set so that radicals based on the reaction gas are generated from the atmosphere gas at an appropriate scale. If the voltage value is excessively increased, charged particles of high energy may be generated and damage the work piece 5, which is not preferable. In this embodiment, a high frequency power source is used as the power source 3, and 100 to 1000 W is provided near the processing surface of the workpiece 5.
Processing electrode 2 so that a certain amount of power (plasma) is generated
Voltage is applied to.

【0012】移動手段4は、被加工物5を載置するステ
ージ4aを有し、このステージ4aをZ方向へ移動させ
る送り機構とθ回転させる回転機構とを備えている(共
に図示せず)。また、移動手段4は、あらかじめ被加工
物5の加工面の加工前の形状と加工用電極2の形状に応
じてZ方向への移動量を設定し、加工時は自動的にこの
設定された移動量を被加工物5に与えるように制御す
る。ここで、移動量の設定方法の一例を説明する。
The moving means 4 has a stage 4a on which the workpiece 5 is placed, and is provided with a feed mechanism for moving the stage 4a in the Z direction and a rotating mechanism for rotating it by θ (both not shown). . Further, the moving means 4 sets a moving amount in the Z direction in advance according to the shape of the processing surface of the workpiece 5 before processing and the shape of the processing electrode 2, and this setting is automatically set at the time of processing. The amount of movement is controlled so as to be given to the workpiece 5. Here, an example of a method of setting the movement amount will be described.

【0013】まず、図3に示すように被加工物5の加工
面の加工前の形状と目的形状とを測定し、得られた結果
をそれぞれg(x)、f(x)で表す。なお、これらf
(x)、g(x)は、基準となる平面(図中XY方向)
からの高さ(Z方向)の値を示す。そして、図3(a)
に示すように、この基準面を一致させた状態で前記加工
面の加工前の形状f(x)と目的形状g(x)から両者
の形状差を求め、最大サグ(Sag )量Zmax を設定す
る。このZmax は、加工用電極2と被加工物5とが接し
た位置から目的形状が得られるまでの距離に相当する。
加工時にラジカル反応を発生させる際は、加工用電極2
と被加工物5との間隔を前記加工ギャップ以内にすると
共に、これら加工用電極2と被加工物5とが接触しない
ようにする必要がある。従って、加工用電極2と被加工
物5との間隔が前記加工ギャップと一致してラジカル反
応による加工が開始された位置から、移動手段4によっ
て被加工物5を前記Zmax 分移動させるようにすれば、
前記接触をさけて目的形状を得ることができる。
First, as shown in FIG. 3, the shape of the processed surface of the workpiece 5 before processing and the target shape are measured, and the obtained results are represented by g (x) and f (x), respectively. Note that these f
(X) and g (x) are reference planes (XY directions in the figure)
The height (Z direction) value from is shown. And FIG. 3 (a)
As shown in Fig. 7, the difference between the two shapes is obtained from the shape f (x) before processing and the target shape g (x) of the processing surface in a state where the reference surfaces are matched, and the maximum sag amount Smax is set. To do. This Zmax corresponds to the distance from the position where the machining electrode 2 and the workpiece 5 are in contact with each other until the target shape is obtained.
When generating a radical reaction during processing, the processing electrode 2
It is necessary to keep the distance between the work piece 5 and the work piece 5 within the work gap and prevent the work electrode 2 and the work piece 5 from coming into contact with each other. Therefore, the workpiece 5 should be moved by the moving means 4 by the amount Zmax from the position where the gap between the machining electrode 2 and the workpiece 5 coincides with the machining gap and the machining by the radical reaction is started. If
The target shape can be obtained by avoiding the contact.

【0014】一方、加工装置においては、ステージ4へ
の被加工物5の取り付け作業がし易いように加工用電極
2とステージ4との間はある程度の余裕空間を設けてお
くことが望ましい。よって、前記Z方向への移動量は、
前記Zmax 、加工用電極2と被加工物5との間隔および
前記余裕空間の総和(Zmax +α)とすればよい。この
場合、加工用電極2と被加工物5との間隔は、前記加工
ギャップとしてもよいし、効率よく加工が進行する理想
ギャップとしてもよい。移動手段4を自動送りする際の
Z方向への座標制御は、装置内に固定された加工用電極
2の固定位置と前記移動量に基づいて行われる。
On the other hand, in the processing apparatus, it is desirable to provide a certain amount of extra space between the processing electrode 2 and the stage 4 so that the work of attaching the workpiece 5 to the stage 4 can be easily carried out. Therefore, the amount of movement in the Z direction is
Zmax, the distance between the machining electrode 2 and the workpiece 5, and the sum of the margin space (Zmax + α) may be used. In this case, the gap between the machining electrode 2 and the workpiece 5 may be the machining gap or an ideal gap that allows the machining to proceed efficiently. The coordinate control in the Z direction when the moving means 4 is automatically fed is performed based on the fixed position of the machining electrode 2 fixed in the apparatus and the movement amount.

【0015】以下に、本実施例による加工過程を説明す
る。まず、移動手段4のステージ4aに被加工物5を載
置し、反応容器1内を真空に排気する。次に、容器1内
に反応ガスとしてSF6 を、不活性ガスとしてHeを導入し
てこの容器1内の内圧がほぼ1気圧となるようにし、電
源3によって加工用電極2に電圧を印加する。これによ
り、加工用電極2と被加工物5との間に不活性ガスHeに
よるプラズマが生成される。そして、このプラズマと反
応ガスSF6 との反応(衝突)により、反応ガスのラジカ
ルが生成される。なお、本実施例の加工装置ではプラズ
マとラジカルとが同一領域で生成されるように構成した
が、先にプラズマを生成してこのプラズマを被加工物5
の近くに送り、そこで反応ガスと衝突させてラジカルを
生成するように構成してもよい。加工中は、前記反応ガ
ス供給機構により被加工物5の加工面近傍に10リットル
/minの流速で反応ガスSF6 を供給する。また、不活性ガ
スHeも同様に供給し、常にプラズマを生成してラジカル
が生成されるようにする。
The processing process according to this embodiment will be described below. First, the workpiece 5 is placed on the stage 4a of the moving means 4, and the inside of the reaction container 1 is evacuated to a vacuum. Next, SF6 as a reaction gas and He as an inert gas are introduced into the container 1 so that the internal pressure in the container 1 becomes approximately 1 atm, and a voltage is applied to the processing electrode 2 by the power supply 3. As a result, plasma of the inert gas He is generated between the processing electrode 2 and the workpiece 5. Then, the reaction (collision) between the plasma and the reaction gas SF6 produces radicals of the reaction gas. In the processing apparatus of this embodiment, plasma and radicals are generated in the same region. However, plasma is first generated and this plasma is applied to the workpiece 5.
It may be configured so as to generate a radical by causing the radical to be generated by causing the radical to be generated in the vicinity of, and colliding with the reaction gas. During processing, the reaction gas supply mechanism causes 10 liters near the processing surface of the workpiece 5.
The reaction gas SF6 is supplied at a flow rate of / min. Further, the inert gas He is also supplied in the same manner so that plasma is constantly generated so that radicals are generated.

【0016】このようにラジカルが生成される状態で、
移動手段4によってステージ4aをθ方向に回転させな
がら加工用電極2に向けて前記(Zmax +α)だけ移動
させる(図3(b)参照)。ステージ4aが加工用電極
2に接近して両者の間隔が前記加工ギャップと等しくな
ると被加工物5の構成原子(または分子)とラジカルと
が反応し、これによって化合物(シリコンフッ化物)が
生成される。この化合物はプラズマの温度の影響を受け
て気化されるため、被加工物5の加工面には徐々に空所
が形成されていく。なお、本実施例の加工条件(反応ガ
スの種類、ガス圧、印加電圧など)においては、加工ギ
ャップは約 600μm、また理想ギャップは約 200μmと
なる。ステージ4aの移動速度は、加工速度よりも遅く
なるように設定して被加工物5と加工用電極2とが接触
しないようにする。
In such a state where radicals are generated,
While moving the stage 4a in the θ direction by the moving means 4, the stage 4a is moved toward the machining electrode 2 by (Zmax + α) (see FIG. 3B). When the stage 4a approaches the machining electrode 2 and the distance between the two becomes equal to the machining gap, the constituent atoms (or molecules) of the workpiece 5 react with radicals, whereby a compound (silicon fluoride) is generated. It Since this compound is vaporized under the influence of the temperature of the plasma, a void is gradually formed on the processed surface of the workpiece 5. Under the processing conditions (type of reaction gas, gas pressure, applied voltage, etc.) of this embodiment, the processing gap is about 600 μm, and the ideal gap is about 200 μm. The moving speed of the stage 4a is set to be slower than the processing speed so that the workpiece 5 and the processing electrode 2 do not come into contact with each other.

【0017】移動手段4は、設定された移動速度で被加
工物5をZ方向に所定量移動させた後その移動を停止
し、被加工物5に回転運動のみを与える(図3(c)参
照)。この時、加工用電極2と被加工物5との間隔が前
記加工ギャップ内であれば、被加工物5の加工面に対す
る加工が続行するが、さらに加工が進行してこの間隔が
加工ギャップよりも広くなると自動的に加工の進行が止
まる。これにより、被加工物5の加工面が目的形状に形
成される(図3(d)参照)。
The moving means 4 moves the work piece 5 in the Z direction by a predetermined amount at the set moving speed, then stops the movement, and gives only the rotary motion to the work piece 5 (FIG. 3 (c)). reference). At this time, if the distance between the machining electrode 2 and the workpiece 5 is within the machining gap, the machining of the machining surface of the workpiece 5 continues, but as the machining progresses further, this distance becomes smaller than the machining gap. If the width becomes wider, the processing will stop automatically. As a result, the processed surface of the workpiece 5 is formed into the target shape (see FIG. 3D).

【0018】本実施例においては、前記最大サグ量Zma
x が小さいほど加工精度が向上し、最終的には0.1 μm
以上の形状精度で加工できる。通常、数値制御による加
工では被加工物が大きくなると加工精度を確保するため
に装置の剛性を高める必要があるが、本実施例ではZ軸
の駆動だけで加工を行うためその必要はない。
In this embodiment, the maximum sag amount Zma is
The smaller x is, the higher the machining accuracy is, and finally 0.1 μm.
It can be processed with the above shape accuracy. Normally, in machining by numerical control, it is necessary to increase the rigidity of the apparatus in order to secure machining accuracy when the workpiece becomes large, but this is not necessary in this embodiment because machining is performed only by driving the Z axis.

【0019】なお、加工条件によって加工速度および被
加工物5の移動速度とが求まるため、移動手段4の作動
開始時から所定時間後(移動手段4の移動が停止して被
加工物5に対する加工の進行が停止した時間)に反応ガ
ス、不活性ガスの供給および電圧の印加を自動的に停止
するように構成することも可能である。また、加工速度
は加工用電極2の形状(つまり、電極2aの形状)にも
依存するため、この電極2aの形状を適切に設定して加
工速度を速くし、これにより加工効率を向上させること
が望ましい。そのための代表的な電極の形状の例を図2
に示す。図2では加工用電極2を構成する電極2aの平
面方向(XY方向)の形状を示しており、高さ方向の形
状(図1のZ方向)は前述のように被加工物5の目的形
状に合わせて設定する。
Since the processing speed and the moving speed of the workpiece 5 are determined according to the processing conditions, a predetermined time has elapsed after the start of the operation of the moving means 4 (when the moving means 4 stops moving and the workpiece 5 is processed). It is also possible to automatically stop the supply of the reaction gas and the inert gas and the application of the voltage at the time when the progress of (1) is stopped). Further, since the processing speed also depends on the shape of the processing electrode 2 (that is, the shape of the electrode 2a), the shape of the electrode 2a is appropriately set to increase the processing speed, thereby improving the processing efficiency. Is desirable. An example of a typical electrode shape for that purpose is shown in FIG.
Shown in. FIG. 2 shows the shape of the electrode 2a constituting the processing electrode 2 in the plane direction (XY direction), and the shape in the height direction (Z direction in FIG. 1) is the target shape of the workpiece 5 as described above. Set according to.

【0020】[0020]

【発明の効果】本発明では、ラジカル反応を用いた加工
に使用する電極の形状を被加工物の目的形状に対応させ
て加工するため、数値制御装置のような複雑な制御およ
び構成を必要とせずに自動加工が可能となる。また、従
来よりも高精度(形状精度が0.1 μm以上)で加工でき
る。さらに、加工工程が簡略化されて加工時間が短くな
るので加工コストを低減できる。さらにまた、加工精度
を上げるために加工装置の剛性を高くする必要ないた
め、大型の被加工物(直径 500 mm 程度までのガラス
等)に対しても対応できる。
According to the present invention, since the shape of the electrode used for processing using the radical reaction is processed in accordance with the target shape of the work piece, complicated control and configuration such as a numerical controller is required. Without this, automatic processing is possible. In addition, it can be processed with higher accuracy (shape accuracy of 0.1 μm or more) than before. Further, since the processing process is simplified and the processing time is shortened, the processing cost can be reduced. Furthermore, since it is not necessary to increase the rigidity of the processing equipment in order to increase the processing accuracy, it is possible to handle large workpieces (such as glass with a diameter of up to 500 mm).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す加工装置の概略構成図
である。
FIG. 1 is a schematic configuration diagram of a processing apparatus showing an embodiment of the present invention.

【図2】加工用電極を構成する電極の形状の例を示す概
略平面図であり、図2(a)はブレードを放射状に配置
したもの、図2(b)は各ブレードを平行に配置したも
の、図2(c)はブレードおよびワイヤーを碁盤目状に
配置したもの、図2(d)はピンを碁盤目状に配置した
もの、図2(e)はブレードおよびワイヤーを風車状に
配置したもの、図2(f)はブレードおよびワイヤーを
巻き貝状に配置したものである。
FIG. 2 is a schematic plan view showing an example of the shape of an electrode constituting a processing electrode, FIG. 2 (a) shows blades arranged radially, and FIG. 2 (b) shows blades arranged in parallel. Fig. 2 (c) shows blades and wires arranged in a grid pattern, Fig. 2 (d) shows pins arranged in a grid pattern, and Fig. 2 (e) shows blades and wires arranged in a windmill pattern. FIG. 2 (f) shows a blade and a wire arranged in a snail shape.

【図3】本発明の加工過程を説明するための概略図であ
る。
FIG. 3 is a schematic view for explaining a processing process of the present invention.

【符号の説明】[Explanation of symbols]

1 反応容器 2 加工用電極 3 電源 4 移動手段4a ステージ 5 被加工物 DESCRIPTION OF SYMBOLS 1 Reaction container 2 Processing electrode 3 Power supply 4 Moving means 4a Stage 5 Workpiece

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反応ガスを含む雰囲気気体中に配置され
た電極に電圧を印加して前記反応ガスに基づくラジカル
を発生させ、 該ラジカルと被加工物の構成原子または構成分子とのラ
ジカル反応によって生成された生成物質を気化させて除
去することにより加工を行うラジカル反応を用いた加工
法において、 前記電極の形状を「前記被加工物の加工面の目的とする
形状」の反転形状に基づいて形成し、 前記電極と被加工物とが、「前記電極の形状と前記加工
面の加工前の形状に基づいて設定した移動量」分だけ接
近するように、該電極と被加工物との相対位置を一方向
から変位させることで、前記電極の形状に対応した形状
を前記加工面に形成することを特徴するラジカル反応を
用いた加工法。
1. A voltage is applied to an electrode arranged in an atmosphere gas containing a reaction gas to generate a radical based on the reaction gas, and the radical reacts with a constituent atom or a constituent molecule of a workpiece. In a processing method using a radical reaction that performs processing by vaporizing and removing the generated product, the shape of the electrode is based on an inverted shape of "the target shape of the processed surface of the workpiece". The electrode and the work piece are formed relative to each other so that the electrode and the work piece are close to each other by “a movement amount set based on the shape of the electrode and the shape of the work surface before processing”. A processing method using a radical reaction characterized by forming a shape corresponding to the shape of the electrode on the processing surface by displacing the position from one direction.
【請求項2】 反応ガスを含む雰囲気気体を導入するた
めの反応容器、 該反応用容器内に設置され、「被加工物の加工面の目的
とする形状」の反転形状に基づく形状を有する電極、 該電極に電圧を印加する電源、および前記電極と被加工
物とが、「前記電極の形状と前記加工面の加工前の形状
に基づいて設定した移動量」分だけ接近するように、該
電極と被加工物との相対位置を一方向から変位させる移
動手段を有することを特徴とするラジカル反応を用いた
加工装置。
2. A reaction vessel for introducing an atmospheric gas containing a reaction gas, an electrode installed in the reaction vessel, the electrode having a shape based on an inverted shape of “a target shape of a processed surface of a workpiece”. , A power source for applying a voltage to the electrode, and the electrode and the workpiece are arranged so as to approach each other by "a movement amount set based on the shape of the electrode and the shape of the processed surface before processing". A processing apparatus using a radical reaction, comprising a moving means for displacing a relative position between an electrode and a workpiece from one direction.
JP4242240A 1992-09-10 1992-09-10 Processing method and device by radical reaction Pending JPH06216079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4242240A JPH06216079A (en) 1992-09-10 1992-09-10 Processing method and device by radical reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4242240A JPH06216079A (en) 1992-09-10 1992-09-10 Processing method and device by radical reaction

Publications (1)

Publication Number Publication Date
JPH06216079A true JPH06216079A (en) 1994-08-05

Family

ID=17086328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4242240A Pending JPH06216079A (en) 1992-09-10 1992-09-10 Processing method and device by radical reaction

Country Status (1)

Country Link
JP (1) JPH06216079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014630A (en) * 2002-06-04 2004-01-15 Ulvac Japan Ltd Atmospheric pressure plasma processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014630A (en) * 2002-06-04 2004-01-15 Ulvac Japan Ltd Atmospheric pressure plasma processing system

Similar Documents

Publication Publication Date Title
EP0781618B1 (en) Highly efficient processing method based on high density radical reaction and using rotary electrode, apparatus therefor and rotating electrode used therefor
JP2001244240A (en) Method of manufacturing semiconductor wafer
US6379490B1 (en) System for improving the total thickness variation of a wafer
JPH06216079A (en) Processing method and device by radical reaction
JP3305425B2 (en) Plasma processing method
JP2010141194A (en) Plasma processing apparatus and plasma processing method
JP2962583B2 (en) Strain-free precision numerical control processing method and apparatus by radical reaction
JP3597105B2 (en) Plasma processing apparatus and plasma processing method
JP2002043298A (en) Method for manufacturing semiconductor device and semiconductor device
WO2007116522A1 (en) Method of removing diamond coating
JP6749104B2 (en) Numerically controlled plasma processing method and apparatus
JP2008068266A (en) Wafer machining method and apparatus
JP6985758B2 (en) Plasma processing equipment
JP5463542B2 (en) Processing method and processing apparatus
US20240112955A1 (en) Manufacturing method of chips
JP2592191Y2 (en) Precision processing equipment by radical reaction
US20240058898A1 (en) Wafer processing method
KR100749056B1 (en) Atmospheric pressure plasma equipment
JPH0970669A (en) Shape creating method and device therefor
JPH09115692A (en) Shape generating device
JPH07166375A (en) Electrode for plasma cvm polishing and processing
JP2000058512A (en) Device and method for plasma treatment
JPH10256205A (en) Planarizing machine method for semiconductor wafer by plasma light etching
JP2014177673A (en) Method of local plasma processing with use of pulse width modulation power control, and apparatus therefor
JP2003124187A (en) Surface finishing method and device thereof