JPH0621537Y2 - Booster for oxygen production - Google Patents

Booster for oxygen production

Info

Publication number
JPH0621537Y2
JPH0621537Y2 JP6687788U JP6687788U JPH0621537Y2 JP H0621537 Y2 JPH0621537 Y2 JP H0621537Y2 JP 6687788 U JP6687788 U JP 6687788U JP 6687788 U JP6687788 U JP 6687788U JP H0621537 Y2 JPH0621537 Y2 JP H0621537Y2
Authority
JP
Japan
Prior art keywords
tank
pressure
oxygen
gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6687788U
Other languages
Japanese (ja)
Other versions
JPH01170424U (en
Inventor
末隆 江里口
▲かく▼ 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Tekki Corp
Original Assignee
Sanwa Tekki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Tekki Corp filed Critical Sanwa Tekki Corp
Priority to JP6687788U priority Critical patent/JPH0621537Y2/en
Publication of JPH01170424U publication Critical patent/JPH01170424U/ja
Application granted granted Critical
Publication of JPH0621537Y2 publication Critical patent/JPH0621537Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は吸着性物質の圧力差による吸着作用を利用した
分離法であるPSA法によって空気から分離した酸素ガ
スを、所定値以上の濃度を維持しながら高圧タンクに圧
送する昇圧装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has a concentration of oxygen gas separated from air by a PSA method, which is a separation method utilizing an adsorption action due to a pressure difference of an adsorptive substance, at a concentration higher than a predetermined value. The present invention relates to a pressure increasing device that pressure-feeds a high-pressure tank while maintaining it.

[従来技術と問題点] ゼオライト等多孔質吸着性物質を充填した吸着塔Aによ
って、ブロワBの送入空気から酸素ガスを分離し、レシ
ーバタンクRに貯える装置は公知である。第2図の如く
レシーバタンクRに圧縮機Cを接続し、高圧化した酸素
ガスを高圧タンクTに蓄積することも行われている。
[Prior Art and Problems] An apparatus for separating oxygen gas from the air fed into a blower B and storing it in a receiver tank R by an adsorption tower A filled with a porous adsorbent such as zeolite is known. As shown in FIG. 2, a compressor C is connected to the receiver tank R so that the high-pressure oxygen gas is stored in the high-pressure tank T.

しかし以上の装置では圧縮機Cの駆動によりレシーバタ
ンクR内のガス圧は次第に低下し、吸着塔内で十分に吸
着工程を経ていないガスまでが、強制吸出しされる可能
性がある。一方PSA法による空気分離装置の欠点とし
て起動時の濃度の低下あるいは昼夜、夏冬の気温の変化
による生産量及び濃度の変動が問題となっており、この
欠点をカバーすることが出来る昇圧装置の開発が望まれ
ていた。
However, in the above apparatus, the gas pressure in the receiver tank R is gradually reduced by driving the compressor C, and even the gas that has not sufficiently undergone the adsorption process in the adsorption tower may be forced out. On the other hand, as a drawback of the air separation device by the PSA method, there is a problem of a decrease in concentration at the time of start-up or a fluctuation in production amount and concentration due to a change in temperature in daytime, summer and winter, and a pressure booster capable of covering this defect. Development was desired.

[問題点解決の手段] たんなるガス溜めであったレシーバタンクRの後に調整
タンクMを設け、このタンクの圧力変化及び濃度変化に
よって圧縮機Cの駆動停止を自動的に制御できるように
する。即ちタンクMの圧力が所定下限または濃度が所定
以下に達したとき圧縮機が自動停止し、所定上限または
所定濃度に達したとき起動するようにする。これにより
レシーバタンクRから無理な吸気を行わないようにす
る。又PSA装置からの生産ガスの流量及び濃度の変動
を調整タンクMでコントロールする事により、高圧タン
クT内に所定濃度のガスを蓄圧できる。
[Means for Solving Problems] An adjustment tank M is provided after the receiver tank R, which was only a gas reservoir, and the drive stop of the compressor C can be automatically controlled by the pressure change and the concentration change of this tank. That is, the compressor is automatically stopped when the pressure in the tank M reaches a predetermined lower limit or the concentration reaches a predetermined level or less, and is started when the pressure reaches a predetermined upper limit or the concentration. This prevents excessive intake of air from the receiver tank R. Further, by controlling the fluctuation of the flow rate and concentration of the production gas from the PSA device with the adjusting tank M, the gas of a predetermined concentration can be accumulated in the high pressure tank T.

[実施例] 第1図について説明する。ブロワB、吸着塔A、レシー
バタンクRから構成する酸素製造装置Sおよび調整タン
クM、ガス圧縮機C、高圧タンクTがこの順に管で接続
されている。調整タンクには酸素濃度計Nと圧力スイッ
チPとが附設され、タンク内ガスを大気中へ放出或は閉
塞可能な電磁弁V1も設けてある。また圧縮機には起動
時に過大負荷をかけないためにバイパス電磁弁V2及び
高圧タンクTへの通路には逆止弁V3がある。
[Example] FIG. 1 will be described. An oxygen production apparatus S composed of a blower B, an adsorption tower A and a receiver tank R, an adjustment tank M, a gas compressor C and a high pressure tank T are connected in this order by pipes. An oxygen concentration meter N and a pressure switch P are attached to the adjustment tank, and a solenoid valve V1 that can release or close the gas in the tank to the atmosphere is also provided. Further, a check valve V3 is provided in the passage to the bypass solenoid valve V2 and the high pressure tank T so that the compressor is not overloaded at the time of startup.

ブロワBにより送られる空気は、吸着塔Aにおいて、酸
素ガスが分離濃縮され、レシーバタンクRに蓄蔵された
後タンクMへ送りこまれるが、酸素濃度計Nが所定濃度
(93%前後)に達するまでは電磁弁V1が開放され、
ガスは外界へ放出される。
The air sent by the blower B is sent to the tank M after the oxygen gas is separated and concentrated in the adsorption tower A and stored in the receiver tank R, but the oxygen concentration meter N reaches a predetermined concentration (around 93%). Solenoid valve V1 is opened until
The gas is released to the outside world.

レシーバタンクRからの酸素ガスが所定濃度に達したと
き電磁弁V1を閉鎖する。タンクM内のガス圧は次第に
上昇し、所定の上限(0.5気圧前後)に達したとき圧
縮機Cが起動する。圧縮機の起動時にバイパス電磁弁V
2は開き、数秒後に閉じ高圧タンクTへ昇圧送気を開始
する。これにより調整タンクMの圧力は次第に低下する
が、それが所定下限(0.1気圧前後)まできたとき、
圧縮機Cは停止し、バイパス電磁弁V2は開となる。再
びタンクMの圧力は上昇しはじめ、ついには圧縮機Cを
起動するに至る。以上の作動の反復によってタンクTの
圧力は増大し、所定値(9気圧前後)に達したとき、圧
縮機Cは停止し、バイパス電磁弁V2も開となる。この
時必要に応じ酸素製造装置Sを停止することができる。
これらの圧力制御中においてもタンクMの酸素濃度は検
知され、所定濃度以下のときは圧縮機Cは停止し電磁弁
V1が開く。
When the oxygen gas from the receiver tank R reaches a predetermined concentration, the solenoid valve V1 is closed. The gas pressure in the tank M gradually rises, and the compressor C is started when it reaches a predetermined upper limit (around 0.5 atm). Bypass solenoid valve V when starting the compressor
2 opens and closes after a few seconds to start boosting air supply to the high-pressure tank T. As a result, the pressure in the adjusting tank M gradually decreases, but when it reaches a predetermined lower limit (around 0.1 atm),
The compressor C is stopped and the bypass solenoid valve V2 is opened. The pressure of the tank M starts to rise again, and finally the compressor C is started. By repeating the above operation, the pressure in the tank T increases, and when it reaches a predetermined value (around 9 atmospheres), the compressor C is stopped and the bypass solenoid valve V2 is also opened. At this time, the oxygen production apparatus S can be stopped if necessary.
The oxygen concentration in the tank M is detected even during these pressure controls. When the oxygen concentration is below the predetermined concentration, the compressor C is stopped and the solenoid valve V1 is opened.

圧縮機CをタンクMの圧力の上限下限及びタンクM内の
酸素ガス濃度によって駆動或は停止させ、高圧タンクの
圧力上限でも停止させるようすることは、電気的に制御
が容易である。一方バイパス電磁弁V2及び逆止弁V3
の併用によって圧縮機の起動時の過負荷を低減し消費電
力を小さくしている。
It is easy to electrically control that the compressor C is driven or stopped depending on the upper and lower limits of the pressure of the tank M and the oxygen gas concentration in the tank M, and is stopped at the upper limit of the pressure of the high pressure tank. On the other hand, the bypass solenoid valve V2 and the check valve V3
The combined use of the two reduces the overload at the time of starting the compressor and reduces the power consumption.

[効果] 以上の如く本考案では調整タンクMの圧力及び酸素ガス
濃度と圧縮機Cの駆動とを有機的に関連させたため、レ
シーバタンクRの過度の吸引が行われず、調整タンク内
酸素ガスはほぼ一定値以上の濃度に維持して昇圧するこ
とができる。従って高圧タンクT内ガスも所要濃度のも
のとなる。
[Effect] As described above, in the present invention, the pressure and oxygen gas concentration in the adjustment tank M and the drive of the compressor C are organically related, so that the receiver tank R is not excessively sucked, and the oxygen gas in the adjustment tank is It is possible to increase the pressure while maintaining the concentration at a substantially constant value or higher. Therefore, the gas in the high-pressure tank T also has the required concentration.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の各装置の配置図、第2図は従来のもの
の配置図である。 B……ブロワ、A……吸着塔、M……調整タンク、C…
…圧縮機、T……高圧タンク、N……酸素濃度計、R…
…レシーバタンク。
FIG. 1 is a layout view of each device of the present invention, and FIG. 2 is a layout view of a conventional device. B ... Blower, A ... Adsorption tower, M ... Adjustment tank, C ...
... Compressor, T ... High pressure tank, N ... Oxygen concentration meter, R ...
… Receiver tank.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】吸着性物質を充填しブロワによる送入空気
から酸素ガスを分離送出可能な吸着塔と、その空気から
分離された酸素ガスを貯えるレシーバタンクとからなる
酸素製造装置に連設され、酸素濃度計と上限と下限を設
定できる圧力スイッチが附設されレシーバタンクからの
酸素濃度が一定値をこえた後の酸素ガスを蓄積する調整
タンクと、気体圧縮機と、圧力スイッチが附設された高
圧タンクとをこの順に管で接続して成る酸素製造用昇圧
装置。
1. An oxygen production apparatus comprising an adsorption tower which is filled with an adsorptive substance and is capable of separating and delivering oxygen gas from air fed by a blower, and a receiver tank which stores the oxygen gas separated from the air. , An oxygen concentration meter and a pressure switch that can set the upper and lower limits are attached, an adjustment tank that stores oxygen gas after the oxygen concentration from the receiver tank exceeds a certain value, a gas compressor, and a pressure switch are attached. A pressure booster for oxygen production that is connected to a high-pressure tank by pipes in this order.
JP6687788U 1988-05-23 1988-05-23 Booster for oxygen production Expired - Lifetime JPH0621537Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6687788U JPH0621537Y2 (en) 1988-05-23 1988-05-23 Booster for oxygen production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6687788U JPH0621537Y2 (en) 1988-05-23 1988-05-23 Booster for oxygen production

Publications (2)

Publication Number Publication Date
JPH01170424U JPH01170424U (en) 1989-12-01
JPH0621537Y2 true JPH0621537Y2 (en) 1994-06-08

Family

ID=31292265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6687788U Expired - Lifetime JPH0621537Y2 (en) 1988-05-23 1988-05-23 Booster for oxygen production

Country Status (1)

Country Link
JP (1) JPH0621537Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107407272A (en) * 2015-02-04 2017-11-28 株式会社日立产机系统 Gas boost compression set and gas compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075840A1 (en) * 2013-11-25 2015-05-28 ギガフォトン株式会社 Gas purification system and laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107407272A (en) * 2015-02-04 2017-11-28 株式会社日立产机系统 Gas boost compression set and gas compressor

Also Published As

Publication number Publication date
JPH01170424U (en) 1989-12-01

Similar Documents

Publication Publication Date Title
US4576614A (en) Process and apparatus for separation of a gaseous mixture
US4973339A (en) Pressure swing absorption process and system for gas separation
US4222750A (en) Oxygen enrichment system for medical use
US6383256B1 (en) Molecular sieve type gas separation apparatus
EP0932439B1 (en) Closed-loop feedback control for oxygen concentrator
EP2065067B1 (en) Oxygen concentrator
US8602004B2 (en) Fuel vapor processing apparatus
US3399510A (en) Process and apparatus for dehydrating compressed gas
US3192686A (en) Dehydrator method
JPS6022965B2 (en) Method and device for increasing a given gas ratio in a gaseous mixture
JP4965769B2 (en) Gas generation system with multi-rate filling function
JPH0687937B2 (en) Oxygen enriched air system
TW200930446A (en) Oxygen concentrator
US4197096A (en) Fluid supply system including a pressure-swing adsorption plant
JPH0621537Y2 (en) Booster for oxygen production
CN102712859B (en) Combustible gas enrichment device
US4844059A (en) Method and apparatus for enriching respiratory gas with oxygen and delivering it to a patient
EP0344917B1 (en) Apparatus for the separation of gas mixtures
JPH0226611A (en) Method and apparatus for separating gas mixture
CN103508422B (en) Membrane-separation oxygen supply method and system capable of providing oxygen enrichment with stable purity or stable flow
FI76003C (en) FOERSTAERKNINGSFOERFARANDE OCH -ANORDNING FOER GAS.
JPS61187916A (en) Controlling method of on-off valve in oxygen condensing apparatus
CA2242999C (en) Ozone producing apparatus
JPH0693967B2 (en) Nitrogen gas separation method
EP0447029A1 (en) Enhanced primary component output from adsorptive separation