JPH0621500A - Solar cell module - Google Patents

Solar cell module

Info

Publication number
JPH0621500A
JPH0621500A JP4194788A JP19478892A JPH0621500A JP H0621500 A JPH0621500 A JP H0621500A JP 4194788 A JP4194788 A JP 4194788A JP 19478892 A JP19478892 A JP 19478892A JP H0621500 A JPH0621500 A JP H0621500A
Authority
JP
Japan
Prior art keywords
solar cell
rectangular
substrate
units
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4194788A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
浩史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4194788A priority Critical patent/JPH0621500A/en
Publication of JPH0621500A publication Critical patent/JPH0621500A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a solar cell module in which insulation of adjacent rectangular units of a solar cell element is obtained without necessity of insulating end faces of the units of the element when the elements each formed on conductive substrate are electrically connected in series in the module, the fabrication work is simplified and the number of steps can be reduced. CONSTITUTION:A solar cell module has a plurality of rectangular units 4 of an amorphous silicon solar cell using a conductive substrate disposed on a flat platelike base 1, and comprises a plurality of protrusions 2 each having a space for containing ends of the units, having insulation at least on a front surface and provided continuously or intermittently linearly in such a manner that the ends of the units are inserted into the spaces of the protrusions 2 and supported.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は屋外に設置して使用され
る太陽電池モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell module installed and used outdoors.

【0002】[0002]

【従来の技術】近年、深刻なエネルギー問題が叫ばれる
なか、太陽エネルギーは、化石エネルギーのように枯渇
せず、しかも大気汚染や炭酸ガス発生等のないエネルギ
ーとして、即ち環境を破壊しないクリーンエネルギーの
ひとつとして注目を集めている。
2. Description of the Related Art In recent years, as serious energy problems have been exclaimed, solar energy does not deplete like fossil energy and does not cause air pollution or carbon dioxide gas, that is, clean energy that does not destroy the environment. It is attracting attention as one.

【0003】なかでも太陽電池発電は将来火力、原子力
あるいはヂーゼル発電といった在来の発電方式に代わる
代替エネルギー源として期待されている。
Above all, solar cell power generation is expected as an alternative energy source to replace conventional power generation methods such as thermal power, nuclear power, or diesel power generation in the future.

【0004】この太陽電池を構成する半導体層の材質は
様々なものがあるが、特にシリコンを用いたものが多数
市販されている。これらは大別して単結晶シリコン、多
結晶シリコンを用いた結晶系シリコン太陽電池と非晶質
(アモルファス)シリコン太陽電池に分けられる。
There are various materials for the semiconductor layers that make up this solar cell, and in particular, many materials using silicon are commercially available. These are roughly classified into crystalline silicon solar cells using single crystal silicon and polycrystalline silicon, and amorphous silicon solar cells.

【0005】結晶系シリコン太陽電池は、光(太陽光)
エネルギーを電気エネルギーに変換する性能を表わす変
換効率が非晶質シリコン太陽電池に比して高いが、反
面、素子自体が応力に弱く割れ易いため、強固な封止構
造や強固なフレームを必要とする。さらに単位電力量当
りのコストが現状では高いという問題がある。
Crystalline silicon solar cells use light (sunlight)
The conversion efficiency, which represents the ability to convert energy into electric energy, is higher than that of amorphous silicon solar cells, but on the other hand, the element itself is weak against stress and easily cracks, so a strong sealing structure and a strong frame are required. To do. Further, there is a problem that the cost per unit amount of electric power is high at present.

【0006】一方、非晶質シリコン太陽電池は現在のと
ころ変換効率が結晶系シリコン太陽電池より低いもの
の、光吸収性が高く比較的厚さの薄い薄膜の堆積によっ
て太陽電池を形成可能であることや、アモルファスの性
質を生かし、基板としてガラスやステンレススチールさ
らにポリイミド系シート等様々な材料が選択できるこ
と、さらには大面積化が容易であること等の特徴があ
る。製造コストも結晶系に比して低くできる可能性があ
ると言われており、将来、一般家庭のレベルから大規模
な発電所レベルまで広範囲に渡り普及すると予想されて
いる。
On the other hand, although amorphous silicon solar cells have lower conversion efficiency than crystalline silicon solar cells at present, solar cells can be formed by depositing a thin film having high light absorption and relatively thin thickness. Moreover, it is characterized in that various materials such as glass, stainless steel, and polyimide sheet can be selected as the substrate by utilizing the amorphous property, and that the area can be easily increased. It is said that the manufacturing cost may be lower than that of the crystal system, and it is expected to spread widely in the future from general household level to large-scale power plant level.

【0007】現在市販されている太陽電池モジュール
は、電卓等の部品として用いられるものを除くと、大別
してその外形が10cm角程度の比較的小型のものとそ
れ以上の大型のものに分けられる。
Except for those used as parts for calculators, the solar cell modules currently on the market are roughly classified into relatively small ones having an outer shape of about 10 cm square and larger ones having a larger size.

【0008】小型のものは屋外、室内用のものがある
が、大型のものは主として屋外での使用が目的であり、
地上あるいは建築物の屋根や壁面に設置して使用される
ことが多い。
The small ones are for outdoor and indoor use, while the large ones are mainly intended for outdoor use.
It is often used on the ground or on the roof or wall of a building.

【0009】ところで、太陽電池モジュール内では、出
力電圧を所望の値にするために太陽電池素子の単位の電
気的な直列接続が行われる。これらの電気的接続の方法
は、透明絶縁性基板を用いる場合と導電性基板を用いる
場合で異なり、大きくは次の2つに分けられる。透明絶
縁性基板を用いる場合、上記の基板にシリコン半導体薄
膜を堆積する過程で、例えばレーザー・スクライビング
と言われる手法を用いて素子を分離すると同時に、素子
間の直列接続が行われる場合が多い。一方、導電性基板
を用いる場合、導電性基板自体を陽極又は陰極として用
いていることが多い為、素子を電気的に直列接続するに
は、太陽電池素子を導電性基板と共に一旦切断し、例え
ば金属配線を用いて隣接する太陽電池素子の陽電極と陰
電極を電気的に接続するのが通例である。
By the way, in the solar cell module, the units of the solar cell elements are electrically connected in series in order to set the output voltage to a desired value. These electrical connection methods differ depending on whether a transparent insulating substrate is used or a conductive substrate, and can be roughly divided into the following two. When a transparent insulating substrate is used, in the process of depositing a silicon semiconductor thin film on the substrate, the elements are often separated by using a method called laser scribing, and the elements are connected in series in many cases. On the other hand, when a conductive substrate is used, the conductive substrate itself is often used as an anode or a cathode. Therefore, in order to electrically connect the elements in series, the solar cell element is once cut together with the conductive substrate. It is customary to electrically connect the positive electrode and the negative electrode of the adjacent solar cell elements by using metal wiring.

【0010】[0010]

【発明が解決しようとする課題】特に導電性基板を用い
た太陽電池素子を電気的に直列接続する場合、更なる要
求がでてくる。即ち、モジュール一枚当たりの受光面積
を可能な限り広く確保するためには、隣接する太陽電池
素子の矩形単位の導電性基板間の絶縁性を確保しなが
ら、隣接する太陽電池素子の矩形単位の相対する端面の
間隔を可能な限り狭くしなければならないという要求で
ある。この要求に対して、各々の矩形単位の相対する端
面及びその付近に絶縁性樹脂を塗布したり、絶縁性のテ
ープを貼ることによって絶縁処理する等の解決策が考え
られる。
Further demands are made especially when the solar cell elements using a conductive substrate are electrically connected in series. That is, in order to secure the light receiving area per module as wide as possible, while ensuring the insulation between the conductive substrates of the rectangular unit of the adjacent solar cell element, the rectangular unit of the adjacent solar cell element The requirement is that the spacing between the facing end faces should be as small as possible. In order to meet this requirement, solutions such as applying an insulating resin to the opposing end faces of each rectangular unit and the vicinity thereof or applying an insulating tape to perform an insulating treatment can be considered.

【0011】しかしながら、上述の方法は、作業工程が
煩雑となり、さらに、太陽電池モジュールの構成上、1
モジュールごとに全ての矩形単位の相対する端面の片面
または両面の数の絶縁処理が必要となり、多くの時間を
必要とするという生産上の問題がある。
However, the above-mentioned method complicates the working process, and further, due to the structure of the solar cell module,
There is a production problem that it is necessary to insulate as many as one side or both sides of opposite end faces of all rectangular units for each module, which requires a lot of time.

【0012】本発明は、上述した現状に鑑み、導電性基
板を用いた太陽電池素子を太陽電池モジュール内部で電
気的に直列接続するときに、太陽電池素子の個々の矩形
単位の端面を絶縁処理する必要がなく、しかも隣接する
該矩形単位の絶縁性を確保し、作業を簡略化するととも
に工程数を減少させることを可能にした太陽電池モジュ
ールを提供することを目的とする。
In view of the above-mentioned present situation, the present invention provides an insulating treatment for the end faces of individual rectangular units of solar cell elements when the solar cell elements using a conductive substrate are electrically connected in series inside the solar cell module. It is an object of the present invention to provide a solar cell module that does not need to be provided, and that the insulation of adjacent rectangular units can be secured, the work can be simplified, and the number of steps can be reduced.

【0013】[0013]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の太陽電池モジュールは、導電性基板を用
いた非晶質シリコン太陽電池の矩形単位を、平板状基体
上に複数個配置してなる太陽電池モジュールにおいて、
該平板状基体に、前記矩形単位の端部を収納する空間を
有し、少なくとも表面が絶縁性である複数の突起が連続
または断続した線状に設けられ、前記矩形単位の端部が
前記突起の収納空間に挿入され、支持されていることを
特徴とする。
In order to achieve the above object, the solar cell module of the present invention comprises a plurality of rectangular units of an amorphous silicon solar cell using a conductive substrate on a flat substrate. In the arranged solar cell module,
The flat substrate has a space for accommodating the end portion of the rectangular unit, and a plurality of projections having at least an insulating surface are provided in a continuous or intermittent linear form, and the end portion of the rectangular unit is the projection. It is inserted into the storage space of and is supported.

【0014】[0014]

【作用】導電性基板を用いた非晶質シリコン太陽電池の
矩形単位を、平板状基体の上に、複数個配置してなる太
陽電池モジュールにおいて、隣接する該矩形単位の端面
が位置する該平板状基体の部分に、前記矩形単位の端部
を収納する空間を有し、少なくとも表面が絶縁性である
複数の突起が連続または断続した線状に設けられている
ため、矩形単位間の間隔を小さくしても個々の導電性基
板間の絶縁性が確保され、また、矩形単位を直列接続す
る接続用配線と該矩形単位の端面との短絡を防止するこ
とが可能となる。しかも、突起の形成及び絶縁処理が基
体ごとにできるため、個々の該矩形単位の端部の絶縁処
理が不要となり、作業の簡略化と作業工程数の減少が可
能となる。
In a solar cell module in which a plurality of rectangular units of an amorphous silicon solar cell using a conductive substrate are arranged on a flat substrate, the flat plate in which end faces of adjacent rectangular units are located The space of the rectangular base has a space for accommodating the end of the rectangular unit, and at least the plurality of protrusions having an insulating surface are provided in a continuous or intermittent linear shape, so that the interval between the rectangular units is reduced. Even if it is made small, the insulation between the individual conductive substrates can be ensured, and it becomes possible to prevent a short circuit between the connection wiring for connecting the rectangular units in series and the end face of the rectangular unit. Moreover, since the protrusions can be formed and the insulating process can be performed for each base, the insulating process of the end portion of each of the rectangular units is not required, and the work can be simplified and the number of work steps can be reduced.

【0015】以下に、本発明の構成例について図1を参
照して詳細に説明する。
A configuration example of the present invention will be described below in detail with reference to FIG.

【0016】但し、本発明は、以下に示す太陽電池素子
の製法、構造、外形、工程あるいは手順に限られるもの
ではないことは言うまでもない。
However, it goes without saying that the present invention is not limited to the following manufacturing method, structure, outer shape, process or procedure of a solar cell element.

【0017】本発明に用いる太陽電池素子の矩形単位4
としては、例えばステンレススチール基板上に非晶質シ
リコン薄膜をRFグロー放電法を用いて基板側からn,
i,p,n,i,pの順に堆積し、更に透明電極として
酸化インジウムを真空蒸着した後、矩形に切断する。
Rectangular unit 4 of the solar cell element used in the present invention
For example, an amorphous silicon thin film is formed on a stainless steel substrate from the substrate side by using the RF glow discharge method.
i, p, n, i, p are deposited in this order, indium oxide is further vacuum-deposited as a transparent electrode, and then cut into a rectangle.

【0018】これらの矩形単位の寸法は、太陽電池モジ
ュールの設計によって選ばれるが、例えば縦100m
m、横300mm程度である。次に、これらの矩形単位
の短辺に平行で直線状の集電電極5を、市販の銀ペース
ト等を用い、予め用意したスクリーン版によってスクリ
ーン印刷する。集電電極は、例えば幅0.3mm程度
で、隣接する集電電極との間隔は6.0mm程度であ
る。さらにバスバー6として、例えば、表面を錫メッキ
された幅3.0mm程度の銅製テープを用い、矩形単位
の長辺の端部からテープの中心線が3.0mm程度とな
る位置に置き、集電電極との接点で集電電極に用いたも
のと同様の銀ペーストを用いて、集電電極5に接着す
る。
The dimensions of these rectangular units are selected depending on the design of the solar cell module, and for example, 100 m in length.
m, width 300 mm. Next, the linear collector electrodes 5 parallel to the short sides of these rectangular units are screen-printed with a screen plate prepared in advance using a commercially available silver paste or the like. The current collecting electrode has a width of, for example, about 0.3 mm, and the distance between the current collecting electrode and an adjacent current collecting electrode is about 6.0 mm. Further, as the bus bar 6, for example, a tin-plated copper tape with a width of about 3.0 mm is used, and the tape is placed at a position where the center line of the tape is about 3.0 mm from the end of the long side of the rectangular unit, and the current is collected. The same silver paste as that used for the collecting electrode at the contact point with the electrode is used to adhere to the collecting electrode 5.

【0019】次に、これらの矩形単位を支持する平板状
基体1について説明する。平板状基板の外寸法は、例え
ば縦1500mm、横320mmのものが用いられる。
基体の材質は、絶縁性もしくは、導電性いずれでも良
い。絶縁性の材料としては、例えば、硬質の絶縁性樹脂
が用いられ、また導電性の材料を用いる場合は、基体の
外表面を絶縁性の樹脂等で絶縁処理して用いる。導電性
材料としては、十分な耐応力強度及び絶縁性を有し、か
つ、本発明の突起の一体成形または、別部品としての本
発明の突起の設置が容易である材質であること、さらに
矩形単位の電気的直列接続の際に用いられる導電性ペー
ストの熱処理、真空ラミネート時の熱によって変形・分
解を生じない材質であれば、いずれの材質でも良いが、
特に鉄、ステンレススチール、亜鉛メッキ鋼板等が望ま
しい。この平板状基体1には、次に説明する突起を形成
または設置し、太陽電池素子の矩形単位4を整列、設置
する。
Next, the flat plate-shaped substrate 1 which supports these rectangular units will be described. The outer dimensions of the flat plate-shaped substrate are, for example, 1500 mm in length and 320 mm in width.
The material of the substrate may be either insulating or conductive. As the insulating material, for example, a hard insulating resin is used, and when a conductive material is used, the outer surface of the base is used after being insulated with an insulating resin or the like. As the conductive material, a material that has sufficient stress resistance and insulation properties and that is easy to integrally mold the protrusion of the present invention or to install the protrusion of the present invention as a separate component, and further to have a rectangular shape Any material may be used as long as it is a material that is not deformed or decomposed by heat treatment of the conductive paste used for electrical series connection of the units or heat during vacuum lamination,
In particular, iron, stainless steel, galvanized steel plate, etc. are preferable. Protrusions, which will be described below, are formed or installed on the flat substrate 1, and the rectangular units 4 of the solar cell elements are aligned and installed.

【0020】次に上述の平板状基体1上の複数の突起2
について説明する。これらの突起2は、基体平板状の外
表面の矩形単位4を設置する接触面のうち、隣合う2つ
の矩形単位の相対する長辺の間に配置する。設置方法は
基体1との一体成形でも、突起2のみ別部品として基体
1に設置しても良い。
Next, a plurality of protrusions 2 on the flat plate-shaped substrate 1 described above.
Will be described. These protrusions 2 are arranged between the opposing long sides of two adjacent rectangular units on the contact surface on which the rectangular unit 4 on the outer surface of the base plate is placed. The installation method may be integral molding with the base 1, or the projection 2 may be installed on the base 1 as a separate component.

【0021】いずれの場合にも平板状基体1及び突起2
の総ての外表面が絶縁性を有していることが必要であ
る。突起2の形状は、矩形単位4の長辺の全長にわたる
連続又は断続的な直線状であり、例えば図3または6に
示されるように、複数の矩形単位を長辺を相対するよう
に整列させたときに、各々の矩形単位の長端部のいずれ
か一方を挿入することが可能なスリット状の部分(以
下、端部挿入部分8と表記する)を備えた形状とする。
但し、これらの端部挿入部分8は、図2、4及び5に示
したように、矩形単位4を整列させるときにどれも向か
い合うことなく一方向に整列するように設置または形成
する。
In any case, the flat substrate 1 and the protrusions 2
It is necessary that all outer surfaces of the insulating material have insulating properties. The shape of the protrusion 2 is a continuous or intermittent linear shape extending over the entire length of the long side of the rectangular unit 4. For example, as shown in FIG. 3 or 6, a plurality of rectangular units are arranged so that their long sides face each other. In this case, the shape is provided with a slit-shaped portion (hereinafter, referred to as an end insertion portion 8) into which any one of the long ends of each rectangular unit can be inserted.
However, these end insertion portions 8 are installed or formed so as to be aligned in one direction without facing each other when aligning the rectangular units 4, as shown in FIGS. 2, 4 and 5.

【0022】また、これらの突起2が断続的に形成され
る場合は、矩形単位4の長端部のうち端部挿入部分8に
挿入されない部分を突起のない部分の形状に合わせて切
りか欠くことによって、矩形単位の挿入されていない部
分と隣の矩形単位との間隔が大きくなり、隣接する導電
性基板間のより確実な絶縁が実現されるが、必ずしも切
り欠く必要は無い。
When the projections 2 are formed intermittently, the long end of the rectangular unit 4 which is not inserted into the end insertion portion 8 is cut or cut in accordance with the shape of the projection-free portion. As a result, the distance between the portion in which the rectangular unit is not inserted and the adjacent rectangular unit is increased, and more reliable insulation between the adjacent conductive substrates is realized, but it is not always necessary to cut out.

【0023】一方、突起の端部挿入部分と反対側では、
図3のようにたとえば矩形単位4の短辺方向に傾斜して
いることが望ましい。これは、隣接する矩形単位4の一
方の導電性基板と他方のバスバー6を、導電性短絡材3
として例えば導電性のテープ3を用いて電気的に接続す
る場合に、導電性テープが曲げ応力を受けても断線しに
くいという効果がある。但し端部挿入部分8の反対側の
形状はこれに限るものではない。
On the other hand, on the side opposite to the end insertion portion of the protrusion,
As shown in FIG. 3, it is desirable to incline in the short side direction of the rectangular unit 4, for example. This is because the conductive substrate of one of the adjacent rectangular units 4 and the bus bar 6 of the other are connected to the conductive short-circuiting material 3.
As an example, when electrically connecting using the conductive tape 3, there is an effect that the conductive tape is not easily broken even if it receives bending stress. However, the shape on the opposite side of the end insertion portion 8 is not limited to this.

【0024】また、これらの突起2が基体lと一体成形
される場合の一例として、図5に示すように、基体1の
うち突起2を必要とする部分付近に例えば「コ」の字型
の切り込みを入れ、その部分を矩形単位を設置する側に
曲げる方法があげられる。但し基体lの材質が導電性物
質の場合は、突起2を形成後、前述のように基体1及び
突起2の総ての外表面を絶縁性の樹脂等を塗布して図6
のように絶縁処理する必要がある。
Further, as an example of the case where these protrusions 2 are integrally molded with the base 1, as shown in FIG. 5, for example, a "U" shape is provided in the vicinity of the portion of the base 1 where the protrusion 2 is required. There is a method of making a notch and bending the part to the side where the rectangular unit is installed. However, when the material of the substrate 1 is a conductive substance, after forming the protrusions 2, all outer surfaces of the substrate 1 and the protrusions 2 are coated with an insulating resin or the like as shown in FIG.
It is necessary to insulate like.

【0025】次に上述のようにして用意した太陽電池素
子の矩形単位4と突起2を備えた基体1及び導電性テー
プ3を用いて、矩形単位4の電気的直列接続を行う手順
を説明する。まず基体1の突起2上に基体1の短手方向
に平行に導電性テープ3を貼りつける。その際、導電性
テープ3が突起の端部挿入部分よりも約2mmはみ出
し、一方端部挿入部分8の反対側は、この後設置する矩
形単位4の端部の裏側に約5.0mm重なるように貼り
つける。次に、導電性テープの端部挿入部分8と反対側
に貼られた部分に銀ペースト7を塗布し、次に、予め用
意した矩形単位4のバスバー6を備えた端部を突起2の
端部挿入部分8に挿入する。さらに、端部挿入部分8側
にはみ出している導電性テープ3をその下側に位置する
矩形単位4のバスバー6上に貼りつける。最後に銀ペー
スト7を用いて、上記のバスバー6上の導電性テープ3
とバスバー6を短絡する。この手順を、矩形単位4全部
について繰り返す。
Next, a procedure for electrically connecting the rectangular units 4 in series by using the rectangular unit 4 of the solar cell element prepared as described above, the substrate 1 having the protrusions 2 and the conductive tape 3 will be described. . First, the conductive tape 3 is attached on the protrusions 2 of the substrate 1 in parallel with the lateral direction of the substrate 1. At that time, the conductive tape 3 protrudes about 2 mm from the end insertion portion of the projection, and the opposite side of the end insertion portion 8 overlaps the back side of the end of the rectangular unit 4 to be installed later by about 5.0 mm. Paste it on. Next, the silver paste 7 is applied to a portion of the conductive tape which is attached to the side opposite to the end insertion portion 8, and then the end portion provided with the bus bar 6 of the rectangular unit 4 prepared in advance is attached to the end of the protrusion 2. It is inserted into the part insertion portion 8. Further, the conductive tape 3 protruding to the end insertion portion 8 side is attached onto the bus bar 6 of the rectangular unit 4 located therebelow. Finally, the silver paste 7 is used to form the conductive tape 3 on the bus bar 6 described above.
And short-circuit the bus bar 6. This procedure is repeated for all the rectangular units 4.

【0026】続いて、これらを市販のオーブン内で約1
00℃で1時間熱処理し、銀ペースト7を硬化させた
後、例えば不図示の表面保護材、裏面保護材、接着材等
を用いて真空封止法により、太陽電池素子の矩形単位4
及び基体1を封止する。
Subsequently, these are placed in a commercially available oven for about 1 hour.
After the silver paste 7 is hardened by heat treatment at 00 ° C. for 1 hour, a rectangular unit 4 of the solar cell element is formed by a vacuum sealing method using, for example, a surface protection material, a back surface protection material, and an adhesive material (not shown).
And the base 1 is sealed.

【0027】表面保護樹脂及び裏面保護材として、例え
ば各々予め表面をプラズマ処理された厚さ100μm程
度のシート状のフッ素樹脂フイルム、両側からアルミニ
ウムでラミネート処理された厚さ100μm程度のフッ
素樹脂を、表面側及び裏面側の接着材として、例えばシ
ート状のEVA(エチレン−ビニルアセテートコポリ
ー)を用いて、市販のオーブン内で、約100℃で真空
ラミネート加工して一枚の太陽電池モジュールとする。
As the front surface protective resin and the rear surface protective material, for example, a sheet-like fluororesin film having a thickness of about 100 μm, whose surface is preliminarily subjected to plasma treatment, or a fluororesin having a thickness of about 100 μm, which is laminated with aluminum from both sides, Sheet-shaped EVA (ethylene-vinyl acetate copoly), for example, is used as the adhesive on the front surface side and the back surface side, and vacuum laminated at about 100 ° C. in a commercially available oven to form one solar cell module. .

【0028】[0028]

【実施例】以下に実施例を挙げて本発明をより詳細に説
明するが、本発明がこれら実施例により限定されないこ
とは言うまでもない。
The present invention will be described in more detail with reference to the following examples, but it goes without saying that the present invention is not limited to these examples.

【0029】(実施例1)本実施例に用いた太陽電池素
子は、以下のようにして作製した。
Example 1 The solar cell element used in this example was manufactured as follows.

【0030】厚さ8MILのステンレススチール基板上
に非晶質シリコン薄膜をRFグロー放電法を用いて基板
側からn,i,p,n,i,pの順に堆積し、続いて透
明電極として酸化インジウムを真空蒸着した。次に、銀
ペーストを用いスクリーン印刷によって、0.3mm幅
の集電電極を6mm間隔で設けた。さらに、表面を錫メ
ッキした幅3mmの銅製テープを基板長端部からテープ
の中心線が3mmとなる位置に貼りバスバーを形成し、
更に銀ペーストを用いて、バスバーと集電電極を短絡
し、縦100mm、横300mmの太陽電池の矩形単位
を130枚作製した。
An amorphous silicon thin film was deposited on a stainless steel substrate having a thickness of 8 MIL in the order of n, i, p, n, i, p from the substrate side by using an RF glow discharge method, and then oxidized as a transparent electrode. Indium was vacuum deposited. Next, a silver paste was screen-printed to provide 0.3 mm wide collector electrodes at 6 mm intervals. Further, a copper tape having a width of 3 mm, the surface of which is tin-plated, is attached from the long end of the substrate to a position where the center line of the tape is 3 mm to form a bus bar,
Further, a silver paste was used to short-circuit the bus bar and the collecting electrode, and 130 rectangular units of 100 mm long and 300 mm wide solar cell rectangular units were produced.

【0031】図2は、本実施例で用いた平板状基体1及
び突起2の概念図である。本実施例で用いた基体の外寸
法は、縦1500mm、横320mm、厚さ4.0mm
であり、材質は、ABS樹脂とした。
FIG. 2 is a conceptual diagram of the flat plate-shaped substrate 1 and the protrusions 2 used in this embodiment. The outer dimensions of the substrate used in this example are 1500 mm in length, 320 mm in width, and 4.0 mm in thickness.
The material was ABS resin.

【0032】突起2は、基体1の外表面の矩形単位を設
置する接触面のうち、矩形単位の相対する長辺の間に位
置するように平板状基体1と一体で成形した。突起の形
状は、矩形単位の長辺の全長にわたり連続した直線状で
あり、図3に示すように、複数の矩形単位を長辺を相対
するように整列させたときに、各々の矩形単位の長端部
のいずれか一方を挿入するためのスリット状の空間の高
さ0.5mm、幅0.5mmの端部挿入部分8を備えた
形状とした。但しこれらの端部挿入部分8は矩形単位を
整列させるときにどれも向かい合うことなく一方向に整
列するように形成した。
The protrusions 2 are formed integrally with the flat plate-shaped substrate 1 so as to be located between the long sides of the rectangular units on the contact surface on which the rectangular units are placed on the outer surface of the substrate 1. The shape of the protrusion is a linear shape that is continuous over the entire length of the long side of the rectangular unit, and when a plurality of rectangular units are aligned so that their long sides face each other as shown in FIG. The slit-shaped space for inserting either one of the long ends has a height of 0.5 mm and a width of 0.5 mm. However, these end insertion portions 8 were formed so as to be aligned in one direction without facing each other when aligning the rectangular units.

【0033】一方、突起の端部挿入部分8と反対側は、
矩形単位4の短辺に平行な方向に約60度傾斜させた。
これは、前述したように隣接する矩形単位の一方の導電
性基板と他方のバスバーを、導電性のテープを用いて電
気的に接続する場合に、導電性テープが曲げ応力を受け
た場合にも断線を生じさせない為である。
On the other hand, on the side opposite to the end insertion portion 8 of the protrusion,
The rectangular unit 4 was tilted about 60 degrees in a direction parallel to the short side.
This is true even when the conductive tape is subjected to bending stress when electrically connecting the conductive board on the other side of the rectangular unit and the bus bar on the other side using the conductive tape as described above. This is to prevent disconnection.

【0034】平板状基体1への太陽電池素子の矩形単位
の設置は、以下の通りに行った。用意した太陽電池素子
の矩形単位と突起2を備えた基体1及び片面のみに粘着
性のある導電性テープを用いて、矩形単位の電気的直列
接続を行った。まず、突起2に、基体lの短手方向に平
行に導電性テープを粘着性を備えた面を突起側にして貼
りつけた。その際、導電性テープが突起2の端部挿入部
分8よりも約2mmはみ出し、一方端部挿入部分8の反
対側は、この後設置する矩形単位の端部の裏側に約5.
0mm重なるように貼りつけた。
The rectangular unit of the solar cell element was installed on the flat substrate 1 as follows. The rectangular unit of the prepared solar cell element, the substrate 1 provided with the protrusion 2 and the conductive tape having adhesiveness on only one surface were used to electrically connect the rectangular units in series. First, a conductive tape was attached to the protrusion 2 in parallel with the lateral direction of the substrate 1 with the adhesive surface of the conductive tape on the protrusion side. At that time, the conductive tape protrudes about 2 mm from the end insertion portion 8 of the protrusion 2, and the opposite side of the end insertion portion 8 is about 5. 5 mm behind the end of the rectangular unit to be installed thereafter.
It was attached so that it overlaps with 0 mm.

【0035】次に、端部挿入部分8と反対側に貼られた
部分の導電性テープの表面に銀ペーストを塗布し、矩形
単位のバスバーを設けた長端部側を端部挿入部分8に挿
入し、矩形単位4が基体1の表面に密着するように置い
た。さらに、端部挿入部分8側にはみ出している導電性
テープをその下側に位置する矩形単位のバスバー上に貼
りつけた。最後に銀ペーストを用いて、導電性テープと
バスバーを短絡した。この手順を、矩形単位13枚全部
について繰り返した。但し13枚の両瑞の矩形単位のう
ち一方の導電性基板はそのままにしておいた。
Next, a silver paste is applied to the surface of the conductive tape on the side opposite to the end insertion portion 8, and the long end side provided with the bus bar in a rectangular unit is set to the end insertion portion 8. The rectangular unit 4 was inserted and placed so as to be in close contact with the surface of the substrate 1. Further, the conductive tape protruding to the end insertion portion 8 side was attached to the rectangular unit bus bar located below the conductive tape. Finally, the silver paste was used to short-circuit the conductive tape and the bus bar. This procedure was repeated for all 13 rectangular units. However, the conductive substrate of one of the 13 rectangular units of Ryuzu was left as it was.

【0036】これらを市販のオーブン内で約100℃で
1時間熱処理し、銀ペースト7を硬化させた。
These were heat-treated in a commercially available oven at about 100 ° C. for 1 hour to cure the silver paste 7.

【0037】次に、直列接続された太陽電池素子の矩形
単位及び平板状基体1を表面保護材、裏面保護材、接着
材を用いて真空封止した。表面保護樹脂及び裏面保護材
として、各々予め表面をプラズマ処理された厚さ100
μmのシート状のフッ素樹脂フィルム(DUPONT社
商品名:テドラー)及び両側からアルミニウムでラミネ
一ト処理された厚さ100μmフッ素樹脂(DUPON
T社商品名:白色テドラー)を用いた。また、表面側及
び裏面側の接着材として縦1500mm、横320mm
の長方形に整形したシート状のEVAを用いて、市販の
オーブン内で、約100℃で真空ラミネート加工して1
枚の太陽電池パネル1とした。
Next, the rectangular unit of the solar cell elements and the flat plate-shaped substrate 1 connected in series were vacuum-sealed by using a surface protection material, a back surface protection material, and an adhesive material. The surface protection resin and the back surface protection material each have a thickness of 100, the surface of which has been plasma treated in advance.
Fluorine resin film (trade name: DUPONT, manufactured by DUPONT) having a thickness of 100 μm, and fluorinated resin having a thickness of 100 μm, which has been laminated with aluminum from both sides
T company's trade name: white Tedlar) was used. Also, as the adhesive on the front side and the back side, length 1500 mm, width 320 mm
Using EVA in the shape of a sheet shaped into a rectangle, vacuum laminate at about 100 ° C in a commercially available oven.
A solar cell panel 1 was prepared.

【0038】最後に基体の長手方向の端部の裏面及び表
面に、それぞれ導電性基板及びバスバー部分に通じる穴
を開け、それぞれマイナス端子、プラス端子として取り
出した。出力ケーブルとしては、断面積1.25mm
2、長さ50cmの銅製のケーブルを用い、プラス、マ
イナスの各出力端子に半田付けし、シリコンゴムを用い
て半田部分を絶縁防水した。出力ケーブルのもう一方の
端には出力接続部材としてプラスには雄型、マイナス側
には雌型の100V、15Aの2Pの防水コネクタを取
り付けた。以上で本実施例の太陽電池モジュールが完成
した。上述の太陽電池モジュールを10個作製した。
Finally, holes were formed in the back surface and the front surface of the end portion in the longitudinal direction of the base body, respectively, which lead to the conductive substrate and the bus bar portion, and were taken out as a minus terminal and a plus terminal, respectively. The output cable has a cross-sectional area of 1.25 mm
2. A copper cable with a length of 50 cm was used to solder to each of the plus and minus output terminals, and the solder portion was insulated and waterproofed using silicon rubber. At the other end of the output cable, a male male connector for the plus and a female female connector of 100V, 15A 2P were attached to the negative side as an output connecting member. Thus, the solar cell module of this example is completed. Ten solar cell modules described above were produced.

【0039】以上とは別に、従来例として、図7に示し
たように、基体10としてABS樹脂製で本発明の突起
のない平板を用い、個々の矩形単位4め長端部の絶縁処
理をポリエステル製のテープ11で行った後、本実施例
と同様の導電性テープ3を用いて隣接する矩形単位4の
一方の導電性基板と他方のバスバー6を電気的に直列接
続させた後、ラミネート加工した太陽電池モジュールを
10個作製し、本発明の太陽電池モジュールとの作業工
程数の比較を行った。
In addition to the above, as a conventional example, as shown in FIG. 7, a flat plate made of ABS resin and having no protrusion according to the present invention is used as the substrate 10, and the insulation treatment of the long end of each rectangular unit 4 is performed. After the tape 11 made of polyester is used, one conductive substrate of the adjacent rectangular units 4 and the bus bar 6 of the other are electrically connected in series by using the same conductive tape 3 as in this embodiment, and then laminated. Ten processed solar cell modules were produced and the number of working steps was compared with that of the solar cell module of the present invention.

【0040】作製した総ての太陽電池モジュールの電気
性能を市販の擬似太陽光発生装置(SPIRE社製商品
名250A)で、各々測定し、個々の太陽電池の電流・
電圧曲線から、矩形単位間の絶縁不良による出力の著し
い低下の有無を調べた。その結果、本実施例の太陽電池
モジュールでは、著しい出力の低下は観測されなかっ
た。
The electrical performances of all the solar cell modules produced were measured by a commercially available pseudo-sunlight generator (trade name 250A manufactured by SPIRE), and the current of each solar cell was measured.
From the voltage curve, it was examined whether or not there was a significant decrease in output due to insulation failure between rectangular units. As a result, in the solar cell module of this example, no remarkable decrease in output was observed.

【0041】以上の結果より、本実施例の太陽電池モジ
ュールは、矩形単位を長端部が相対するように整列させ
て直列接続する場合、従来のように、個々の矩形単位の
長端部を絶縁処理する工程を必要とせず、平板状基体と
突起を一体成形することによって、矩形単位の長端部を
確実に絶縁することが可能であり、作業工程を減少させ
るという本発明の目的が達成されることが確認された。
From the above results, in the solar cell module of this embodiment, when the rectangular units are aligned so that the long ends face each other and are connected in series, the long ends of the individual rectangular units are connected as in the conventional case. By integrally molding the plate-shaped substrate and the protrusion without requiring a step of insulation treatment, it is possible to reliably insulate the long end of the rectangular unit, and the object of the present invention to reduce the number of working steps is achieved. It was confirmed to be done.

【0042】(実施例2)本実施例に用いた太陽電池素
子は、実施例1と同様のものを用い、これらの太陽電池
素子の矩形単位を130枚用意した。
(Example 2) As the solar cell element used in this example, the same solar cell element as in Example 1 was used, and 130 rectangular units of these solar cell elements were prepared.

【0043】次に、これらの矩形単位を支持する平板状
基体1について説明する。本実施例では、外形及び突起
の断面形状は、実施例1と同様だが、突起は、図4に示
すように、矩形単位の長辺の全長に連続したものでな
く、矩形単位の長辺方向に1.0cmの長さで、1.0
cmの間隔をおいて成形されている点で実施例1と異な
る。平板状基体1の材質は、ABS樹脂とした。また、
この平板状基体1と突起2は、実施例1と同様に一体成
形によって作製した。端部挿入部分8の寸法は実施例1
と同様にした。
Next, the flat plate-shaped substrate 1 that supports these rectangular units will be described. In this embodiment, the outer shape and the cross-sectional shape of the protrusion are the same as those in the first embodiment, but the protrusion is not continuous to the entire length of the long side of the rectangular unit as shown in FIG. With a length of 1.0 cm, 1.0
It differs from Example 1 in that it is formed with an interval of cm. The material of the flat substrate 1 was ABS resin. Also,
The flat plate-shaped substrate 1 and the protrusions 2 were produced by integral molding as in Example 1. The dimensions of the end insertion portion 8 are the same as those in the first embodiment.
Same as.

【0044】次に上述のようにして用意した太陽電池素
子の矩形単位と平板状基体及び片面のみに粘着性のある
導電性テープを用いて、矩形単位の電気的直列接続を行
った。
Next, the rectangular units of the solar cell element prepared as described above, the flat substrate and the conductive tape having an adhesive property on only one side were used to electrically connect the rectangular units in series.

【0045】まず平板状基体1の突起2上に平板状基体
1の短手方向に平行に導電性テープを貼りつけた。但
し、実施例1と異なり本実施例の突起2は、断続的に配
置している為、導電性テープは、予め1.0cmの長さ
に切断したものを用意し、突起2の存在する部分のみ
に、実施例1と同様の手順で貼りつけた。次に、端部挿
入部分8と反対側の導電性テープの表面に銀ペーストを
塗布し、続いて実施例1と同様の手順で、矩形単位の長
端部にバスバーを備えた側を端部挿入部分8に挿入し、
その後平板状基体1の表面に矩形単位が密着するように
置いた。さらに、端部挿入部分8側にはみ出している導
電性テープをその下側に位置する矩形単位のバスバー上
に貼りつけた。最後に銀ペーストを用いて、上記のバス
バー上に位置する導電性テープとバスバーを短絡した。
この手順を、矩形単位13枚全部について繰り返した。
但し13枚の両端の矩形単位のうち一方の導電性基板は
そのままにしておいた。
First, a conductive tape was attached onto the protrusions 2 of the flat plate-shaped substrate 1 in parallel with the lateral direction of the flat plate-shaped substrate 1. However, unlike the first embodiment, since the protrusions 2 of this embodiment are arranged intermittently, the conductive tape is prepared by cutting into a length of 1.0 cm in advance, and the portion where the protrusions 2 are present is prepared. The same procedure as in Example 1 was applied to only the above. Next, silver paste is applied to the surface of the conductive tape on the side opposite to the end insertion portion 8, and then, in the same procedure as in Example 1, the side having the bus bar at the long end of the rectangular unit is the end. Insert into the insertion part 8,
Then, the rectangular unit was placed on the surface of the flat substrate 1 so that the rectangular unit was in close contact with the surface. Further, the conductive tape protruding to the end insertion portion 8 side was attached to the rectangular unit bus bar located below the conductive tape. Finally, a silver paste was used to short-circuit the conductive tape located on the bus bar and the bus bar.
This procedure was repeated for all 13 rectangular units.
However, one of the 13 rectangular units at both ends was left as it was as a conductive substrate.

【0046】これらを市販のオーブン内で約100℃で
1時間熱処理し、銀ペーストを硬化させた。
These were heat-treated in a commercially available oven at about 100 ° C. for 1 hour to cure the silver paste.

【0047】次に、直列接続された太陽電池素子の矩形
単位及び平板状基体lを表面保護材、裏面保護材、接着
材を用いて真空封止した。表面保護樹脂及び裏面保護材
質、表面側及び裏面側の接着材の材質及び寸法は実施例
1と同様にし、市販のオーブン内で、約100℃で真空
ラミネート加工して一枚の太陽電池モジュールとした。
Next, the rectangular units of the solar cell elements connected in series and the plate-shaped substrate 1 were vacuum-sealed by using a front surface protective material, a rear surface protective material, and an adhesive material. The surface protection resin and the back surface protection material, and the materials and dimensions of the front and back side adhesives were the same as in Example 1, and vacuum laminated at about 100 ° C. in a commercially available oven to obtain one solar cell module. did.

【0048】最後に平板状基体1の長手方向の端部の裏
面及び表面に、それぞれ導電性基板及びバスバー部分に
通じる穴を開け、それぞれマイナス端子、プラス端子と
して取り出した。出力ケーブルとしては、断面積1.2
5mm2、長さ50cmの銅製のケーブルを用い、プラ
ス、マイナスの各出力端子に半田付けし、シリコンゴム
を用いて半田部分を絶縁防水した。出力ケーブルのもう
一方の端には出力接続部材としてプラス側には雄型、マ
イナス側には雌型の100V、15Aの2Pの防水コネ
クタを取り付けた。以上で本実施例の太陽電池モジュー
ルが完成した。
Finally, holes were formed in the back surface and the front surface of the end portion of the plate-shaped substrate 1 in the longitudinal direction, respectively, which lead to the conductive substrate and the bus bar portion, and were taken out as a minus terminal and a plus terminal, respectively. The output cable has a cross-sectional area of 1.2.
A copper cable of 5 mm 2 and a length of 50 cm was used for soldering to each of the plus and minus output terminals, and the solder portion was insulated and waterproofed with silicon rubber. At the other end of the output cable, a male type 100V, 15A 2P waterproof connector was attached to the positive side and an female type 2P waterproof connector to the negative side as an output connecting member. Thus, the solar cell module of this example is completed.

【0049】上述の太陽電池モジュールを10個作製し
た。これとは別に、実施例1で作製した従来例としての
太陽電池モジュールと本発明の太陽電池モジュールとの
作業工程数の比較を行った。
Ten solar cell modules described above were produced. Separately, the number of working steps of the solar cell module as a conventional example manufactured in Example 1 and the solar cell module of the present invention was compared.

【0050】目視検査の結果、隣接する矩形単位の長端
部の間の部分で本発明の突起が存在しない部分には、接
着剤であるEVAが十分に充填されていることが総ての
モジュールについて確認できた。
As a result of visual inspection, it was found that all the modules in which the EVA as the adhesive was sufficiently filled in the portions between the long end portions of the adjacent rectangular units where the protrusions of the present invention did not exist. I was able to confirm about.

【0051】また、作製した総ての太陽電池モジュール
の電気性能を市販の擬似太陽光発生装置(SPIRE社
商品名:250A)で、各々測定し、個々の太陽電池の
電流・電圧曲線から、矩形単位間の絶縁不良による出力
の著しい低下の有無を調べた。その結果、本実施例の太
陽電池モジュールでは、著しい出力の低下は観測されな
かった。
The electrical performances of all the solar cell modules produced were measured with a commercially available pseudo-sunlight generator (trade name: 250A, manufactured by SPIRE Co.), and a rectangular shape was obtained from the current-voltage curves of the individual solar cells. It was examined whether there was a significant decrease in output due to poor insulation between units. As a result, in the solar cell module of this example, no remarkable decrease in output was observed.

【0052】以上の結果より、本実施例の太陽電池モジ
ュールにおいても、矩形単位を長端部が相対するように
整列させて直列接続する場合、従来のように、個々の矩
形単位の長端部を絶縁処理する工程を必要とせず、平板
状基体と突起を一体成形することによって、矩形単位の
長端部を確実に絶縁することが可能であり、作業工程を
減少させるという当初の目標が達成されることが確認さ
れた。
From the above results, also in the solar cell module of this embodiment, when the rectangular units are aligned in series so that the long ends face each other and are connected in series, the long end portions of the individual rectangular units are arranged as in the conventional case. It is possible to reliably insulate the long end of the rectangular unit by integrally forming the plate-shaped substrate and the protrusion without requiring the step of insulating treatment, and the original goal of reducing the number of working steps is achieved. It was confirmed to be done.

【0053】(実施例3)本実施例に用いる太陽電池素
子の矩形単位は、実施例1,2と同様のものを用い、こ
れらの太陽電池素子の矩形単位を130枚用意した。
(Example 3) The rectangular unit of the solar cell element used in this example was the same as in Examples 1 and 2, and 130 rectangular units of these solar cell elements were prepared.

【0054】これらの矩形単位を支持する平板状基体
は、図5に示す形状であり、外寸法縦1500mm、横
320mm、厚さ0.27mm、材質は亜鉛メッキ鋼板
である。
The flat plate-shaped substrate that supports these rectangular units has the shape shown in FIG. 5, and has outer dimensions of 1500 mm in length, 320 mm in width, 0.27 mm in thickness, and is made of a galvanized steel sheet.

【0055】次に上述の平板状基体1上の複数の突起2
について説明する。これらの突起2は、平板状基体1の
外表面の矩形単位を設置する接触面のうち、矩形単位の
相対する長辺の間に位置させた。設置方法は曲げ加工を
用いた。図6に示すように、平板状基体1のうち突起2
を必要とする部分付近に縦1.0cm、横2.0mmの
「コ」の字型の切り込みを入れ、その部分を矩形単位を
設置する側に端部が高さ0.5mmになるように曲げて
突起2を形成した。その後、平板状基体1及び突起2の
総ての外表面を絶縁性の樹脂(旭硝子製商品名ルミフロ
ン)を満たした容器に浸すことによって塗布し絶縁処理
した。
Next, a plurality of protrusions 2 on the flat plate-shaped substrate 1 described above.
Will be described. These protrusions 2 were located between the long sides of the rectangular unit on the outer surface of the flat substrate 1 on which the rectangular unit was placed. Bending was used as the installation method. As shown in FIG. 6, the protrusions 2 of the plate-shaped substrate 1
Make a "U" -shaped notch of 1.0 cm in length and 2.0 mm in width in the vicinity of the part that needs to be, and make the end 0.5 mm in height on the side where the rectangular unit is installed. Bent to form the protrusion 2. After that, the outer surfaces of all of the flat substrate 1 and the protrusions 2 were dipped in a container filled with an insulating resin (trade name: Lumiflon manufactured by Asahi Glass Co., Ltd.) to apply and insulate them.

【0056】次に、太陽電池素子の矩形単位と平板状基
体及び片面のみに粘着性のある導電性テープを用いて、
矩形単位の電気的直列接続を、実施例1,2と同様の手
順で行った。
Next, using a rectangular unit of the solar cell element, a plate-shaped substrate and a conductive tape having adhesiveness on only one side,
Electrical series connection in rectangular units was performed in the same procedure as in Examples 1 and 2.

【0057】次に、直列接続した太陽電池素子の矩形単
位及び平板状基体を、実施例1,2と同様の手順で封止
した。本実施例における、表面保護材、裏面保護材、接
着材の材質、寸法及び真空ラミネートの方法は実施例
1,2と同様とした。
Next, the rectangular unit and the flat plate-shaped substrate of the solar cell elements connected in series were sealed in the same procedure as in Examples 1 and 2. In this embodiment, the materials and dimensions of the surface protection material, the back surface protection material, the adhesive material, and the vacuum laminating method were the same as those in the first and second embodiments.

【0058】最後に平板状基体1の長手方向の端部の裏
面及び表面に、それぞれ導電性基板及びバスバー部分に
通じる穴を開け、それぞれマイナス端子、プラス端子と
して取り出した。出力ケーブルとしては、断面積1.2
5mm2、長さ50cmの銅製のケーブルを用い、プラ
ス、マイナスの各出力端子に半田付けし、シリコンゴム
を用いて半田部分を絶縁防水した。出力ケーブルのもう
一方の端には出力接続部材としてプラス側には雄型、マ
イナス側には雌型の100V、15Aの2Pの防水コネ
クタを取り付けた。以上で本実施例の太陽電池モジュー
ルが完成した。上述の太陽電池モジュールを10個作製
した。
Finally, holes were formed in the back surface and the front surface of the end portion of the plate-shaped substrate 1 in the longitudinal direction, respectively, which lead to the conductive substrate and the bus bar portion, and were taken out as a minus terminal and a plus terminal, respectively. The output cable has a cross-sectional area of 1.2.
A copper cable of 5 mm 2 and a length of 50 cm was used for soldering to each of the plus and minus output terminals, and the solder portion was insulated and waterproofed with silicon rubber. At the other end of the output cable, a male type 100V, 15A 2P waterproof connector was attached to the positive side and an female type 2P waterproof connector to the negative side as an output connecting member. Thus, the solar cell module of this example is completed. Ten solar cell modules described above were produced.

【0059】これとは別に、実施例1で作製した従来例
としての太陽電池モジュールと本発明の太陽電池モジュ
ールとの作業工程数の比較を行った。
Separately from this, the number of working steps of the solar cell module as a conventional example produced in Example 1 and the solar cell module of the present invention was compared.

【0060】目視検査の結果、隣接する矩形単位の長端
部の間の部分で本発明の突起が存在しない部分には、接
着剤であるEVAが十分に充填されていることが総ての
モジュールについて確認できた。
As a result of visual inspection, it was found that all the modules in which the EVA as the adhesive was sufficiently filled in the portion between the long end portions of the adjacent rectangular units where the protrusion of the present invention does not exist. I was able to confirm about.

【0061】また、作製した総ての太陽電池モジュール
の電気性能を市販の擬似太陽光発生装置(SPIRE社
製商品名250A)で、各々測定し、個々の太陽電池の
電流・電圧曲線から、矩形単位間の絶縁不良による出力
の著しい低下の有無を調ベた。その結果、本実施例の太
陽電池モジュールでは、著しい出力の低下は観測されな
かった。
The electrical performances of all the solar cell modules produced were measured with a commercially available pseudo-sunlight generator (trade name 250A manufactured by SPIRE), and the rectangular shape was obtained from the current / voltage curves of the individual solar cells. It was checked whether the output was significantly reduced due to insulation failure between the units. As a result, in the solar cell module of this example, no remarkable decrease in output was observed.

【0062】以上の結果より、本実施例の太陽電池モジ
ュールにおいても、矩形単位を長端部が相対するように
整列させて直列接続する場合、従来のように、個々の矩
形単位の長端部を絶縁処理する工程を必要とせず、平板
状基体と突起を一体成形することによって、矩形単位牟
の長端部を確実に絶縁することが可能であり、作業工程
を減少させるという本発明の目的が達成されることが確
認された。
From the above results, also in the solar cell module of this embodiment, when the rectangular units are aligned in series so that the long ends face each other and connected in series, the long end portions of the individual rectangular units are arranged as in the conventional case. It is possible to surely insulate the long end portion of the rectangular unit tile by integrally molding the flat plate-shaped substrate and the projection without requiring a step of insulating treatment, and it is an object of the present invention to reduce the working steps. Was confirmed to be achieved.

【0063】[0063]

【発明の効果】以上説明したように、導電性基板を用い
た複数の非晶質シリコン太陽電池の矩形単位を支持する
平板状基体の該太陽電池の矩形単位との接触面となる外
表面のうち、隣接する該矩形単位の端面間に位置する部
分に連続または断続的な線状でかつ隣接する該矩形単位
の相対する端部の一方を挿入する空間を有し、かつ少な
くとも表面に絶縁性を有する突起を具備したことによっ
て、隣接導電性基板の絶縁性を確保でき、また、突起が
あることで直列時の該矩形単位の端面での短絡が防止で
きる。更に、個々の該矩形単位の端部の絶縁処理が不要
となる為、作業の簡略化と作業工程数の減少が可能とな
る。
As described above, the flat substrate supporting the rectangular unit of a plurality of amorphous silicon solar cells using a conductive substrate has an outer surface which is a contact surface with the rectangular unit of the solar cell. Of these, there is a space for inserting one of the opposite ends of the adjacent rectangular units in a continuous or intermittent linear shape in a portion located between the end faces of the adjacent rectangular units, and at least the surface has an insulating property. By providing the protrusion having the above, the insulating property of the adjacent conductive substrate can be ensured, and the presence of the protrusion can prevent a short circuit at the end face of the rectangular unit in series. Further, since it is not necessary to insulate the end of each rectangular unit, the work can be simplified and the number of work steps can be reduced.

【0064】[0064]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の太陽電池モジュールを示す概念断面
図。
FIG. 1 is a conceptual cross-sectional view showing a solar cell module of the present invention.

【図2】実施例1の平板状基体1の特徴を表す概念図。FIG. 2 is a conceptual diagram showing the characteristics of the flat substrate 1 of Example 1.

【図3】実施例1,2の平板状基体1及び突起2の特徴
を表す構造概念断面図。
FIG. 3 is a structural conceptual cross-sectional view showing the features of the flat plate-shaped substrate 1 and the protrusions 2 of Examples 1 and 2.

【図4】実施例2の平板状基体1の特徴を表す概念図。FIG. 4 is a conceptual diagram showing the characteristics of the flat substrate 1 of Example 2.

【図5】実施例3の平板状基体lの特徴を表す概念図。FIG. 5 is a conceptual diagram showing the characteristics of a flat plate-shaped substrate l of Example 3.

【図6】実施例3の平板状基体l及び突起2と太陽電池
素子の矩形単位4の関係を示す概念断面図。
FIG. 6 is a conceptual cross-sectional view showing the relationship between a flat plate-shaped substrate 1 and projections 2 of Example 3 and a rectangular unit 4 of a solar cell element.

【図7】従来の太陽電池モジュールの直列接続部分の特
徴を示す概念断面図。
FIG. 7 is a conceptual cross-sectional view showing the features of a serial connection portion of a conventional solar cell module.

【符号の説明】[Explanation of symbols]

1 平板状基体 2 突起 3 導電性短絡材 4 太陽電池素子の矩形単位 5 集電電極 6 バスバー 7 導電性ペースト 8 端部挿入部分 9 絶縁性樹脂 10 平板状基体(絶縁性) 11 絶縁性テープ DESCRIPTION OF SYMBOLS 1 Flat substrate 2 Protrusion 3 Conductive short-circuiting material 4 Rectangular unit of solar cell element 5 Current collecting electrode 6 Bus bar 7 Conductive paste 8 Edge insertion part 9 Insulating resin 10 Flat substrate (insulating) 11 Insulating tape

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性基板を用いた非晶質シリコン太陽
電池の矩形単位を、平板状基体上に複数個配置してなる
太陽電池モジュールにおいて、該平板状基体に、前記矩
形単位の端部を収納する空間を有した、少なくとも表面
が絶縁性である複数の突起が連続または断続した線状に
設けられ、前記矩形単位の端部が前記突起の収納空間に
挿入され、支持されていることを特徴とする太陽電池モ
ジュール。
1. A solar cell module in which a plurality of rectangular units of an amorphous silicon solar cell using a conductive substrate are arranged on a flat substrate, and the flat substrate has an end portion of the rectangular unit. A plurality of protrusions having a space for accommodating at least the surface of which is insulative are provided in a continuous or intermittent linear shape, and the end portion of the rectangular unit is inserted into and supported by the accommodating space of the protrusions. A solar cell module.
JP4194788A 1992-06-29 1992-06-29 Solar cell module Pending JPH0621500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4194788A JPH0621500A (en) 1992-06-29 1992-06-29 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4194788A JPH0621500A (en) 1992-06-29 1992-06-29 Solar cell module

Publications (1)

Publication Number Publication Date
JPH0621500A true JPH0621500A (en) 1994-01-28

Family

ID=16330276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4194788A Pending JPH0621500A (en) 1992-06-29 1992-06-29 Solar cell module

Country Status (1)

Country Link
JP (1) JPH0621500A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509649A (en) * 2011-11-18 2012-06-20 中国科学院等离子体物理研究所 Novel connecting method for dye-sensitized solar cell and plug-in structure
WO2013058202A1 (en) * 2011-10-19 2013-04-25 シャープ株式会社 Liquid crystal display panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058202A1 (en) * 2011-10-19 2013-04-25 シャープ株式会社 Liquid crystal display panel
JPWO2013058202A1 (en) * 2011-10-19 2015-04-02 シャープ株式会社 LCD panel
US9298046B2 (en) 2011-10-19 2016-03-29 Sharp Kabushiki Kaisha Liquid crystal display panel
CN102509649A (en) * 2011-11-18 2012-06-20 中国科学院等离子体物理研究所 Novel connecting method for dye-sensitized solar cell and plug-in structure

Similar Documents

Publication Publication Date Title
US6441297B1 (en) Solar cell arrangement
KR101656118B1 (en) Solar battery, solar battery module, and solar battery system
EP1801889B1 (en) Thin-film solar cell module and method of manufacturing the same
US7534956B2 (en) Solar cell module having an electric device
US5667596A (en) Photovoltaic device and manufacturing method of the same
US6300556B1 (en) Solar cell module
US6184457B1 (en) Photovoltaic device module
JP4791098B2 (en) Integrated thin film solar cell module
US20090255572A1 (en) Sealed Thin Film Photovoltaic Modules
US20100319751A1 (en) Series interconnected thin-film photovoltaic module and method for preparation thereof
WO2003001602A3 (en) Manufacturing a solar cell foil connected in series via a temporary substrate
EP1069624A2 (en) Solar cell module
CN215988787U (en) Solar cell and photovoltaic module
WO2014069118A1 (en) Solar cell and solar cell module
US20120133012A1 (en) Composite system for photovoltaic modules
WO2003050891A2 (en) Sealed thin film photovoltaic modules
JP2007305876A (en) Solar cell module
WO2010010821A1 (en) Solar battery module and method for manufacturing the same
JP2007165531A (en) Solar cell and manufacturing method thereof
JP4358549B2 (en) Translucent thin film solar cell module
JP3006711B2 (en) Solar cell module
JPH0621500A (en) Solar cell module
JPH0864850A (en) Thin film solar battery and fabrication thereof
JP3852662B2 (en) Method for extracting power leads from solar cell module
JP2006041349A (en) Photovoltaic element and its manufacturing method