JPH06214653A - Method and device for realizing operating feeling and switch therefor - Google Patents

Method and device for realizing operating feeling and switch therefor

Info

Publication number
JPH06214653A
JPH06214653A JP11339593A JP11339593A JPH06214653A JP H06214653 A JPH06214653 A JP H06214653A JP 11339593 A JP11339593 A JP 11339593A JP 11339593 A JP11339593 A JP 11339593A JP H06214653 A JPH06214653 A JP H06214653A
Authority
JP
Japan
Prior art keywords
force
operation feeling
stroke
feeling
electromagnetic drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11339593A
Other languages
Japanese (ja)
Other versions
JP2843230B2 (en
Inventor
Shigeki Fujiwara
茂喜 藤原
Masami Yanosaka
雅巳 矢野坂
Kunio Hara
都男 原
Tsukasa Hojo
司 法上
Takeshi Kandabashi
毅 神田橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP11339593A priority Critical patent/JP2843230B2/en
Publication of JPH06214653A publication Critical patent/JPH06214653A/en
Application granted granted Critical
Publication of JP2843230B2 publication Critical patent/JP2843230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily provide an optimum operating feeling without trials and errors by simulating the relation of force and the moving stroke of the operation part of an operation member by the position of a movable part driven by an electromagnetic driving member and force control. CONSTITUTION:In the simulator 1 of a push button switch, a coil frame in the voice coil motor type electromagnetic member 2 composed of a permanent magnet 21, a coil 20 and an iron core 22 is connected to the movable part 12 floated and supported by an air bearing 11 provided on a base 10. A position sensor 3 is arranged at the one end of the movable part 12 to face each other and an action part 13 is provided on the other end of the movable part 12. The electromagnetic driving member 2 is current-driven so as to obtain stroke force characteristics scheduled beforehand and the position information of the movable part 12 by the position sensor 3 is fed back to the control part of the electromagnetic driving member 2. At the time of simulation, the stroke and the reactive force are inputted to a computer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は操作部材の操作感触をシ
ミュレートすることで、良好な操作感触を得られる特性
を探ることができる操作感触実現方法及びその装置と、
これらを用いて実現したスイッチに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation feeling realization method and apparatus for simulating an operation feeling of an operation member so as to find a characteristic capable of obtaining a good operation feeling.
The present invention relates to a switch realized by using these.

【0002】[0002]

【従来の技術】従来、押し釦スイッチのような操作部材
を製作するにあたり、良好な操作感触を実現するには、
良好と思われる操作感触となる特性を予想して、この予
想に基づいて試作品を製作し、予想した操作感触になっ
ているかどうかの感触実験を行って確認するということ
を行っていた。
2. Description of the Related Art Conventionally, in manufacturing an operation member such as a push button switch, in order to realize a good operation feeling,
We had to predict the characteristics that would make the operation feel good, make a prototype based on this prediction, and confirm by conducting a tactile experiment to see if the expected operation feel was achieved.

【0003】[0003]

【発明が解決しようとする課題】このために、予想した
操作感触になっていなければ、設計試作を繰り返すとい
う試行錯誤が伴うものであった。本発明はこのような点
に鑑み為されたものであり、その目的とするところは試
行錯誤を必要とすることなく、最善の操作感触が得られ
るものを容易に実現することができる操作感触実現方法
及びその装置とスイッチを提供するにある。
For this reason, unless the expected operation feeling is obtained, trial and error of repeating design and trial production is involved. The present invention has been made in view of the above points, and an object of the present invention is to realize an operation feeling that can easily achieve the best operation feeling without requiring trial and error. A method and its apparatus and switch are provided.

【0004】[0004]

【課題を解決するための手段】しかして本発明に係る操
作感触実現方法は、操作部材の操作部の移動ストローク
と力の関係を電磁駆動部材によって駆動される可動部の
位置と力制御でシミュレートすることに特徴を有してお
り、また本発明に係る操作感触実現装置は、電磁駆動部
材によって直線駆動される可動部と、操作部材の操作部
に当接させた可動部の位置を検出する位置センサーと、
位置センサーの出力値と設定値とを基に電磁駆動部材に
流す電流を制御する制御回路とを備えていることに特徴
を有しており、さらに本発明にかかるスイッチは、上記
操作感触実現方法あるいは操作感触実現装置によって求
められた最適特性に形成されていることに特徴を有して
いる。
SUMMARY OF THE INVENTION In the method for realizing an operation feeling according to the present invention, however, the relationship between the movement stroke of the operation portion of the operation member and the force is simulated by the position and force control of the movable portion driven by the electromagnetic drive member. The operation feeling realization device according to the present invention detects the position of the movable part that is linearly driven by the electromagnetic drive member and the position of the movable part that is brought into contact with the operation part of the operation member. Position sensor,
The switch according to the present invention is characterized in that the switch according to the present invention is provided with a control circuit that controls a current flowing through the electromagnetic drive member based on the output value and the set value of the position sensor. Alternatively, it is characterized in that it is formed to have the optimum characteristics obtained by the operation feeling realization device.

【0005】[0005]

【作用】本発明によれば、設計試作を繰り返さなくても
電磁駆動部材の可動部を実際の操作部材の操作部とみな
したシミュレータで、求めている操作感触が得られるか
どうかをテストすることができる。この時、操作方向の
ストロークから、その方向に反力をシミュレートするだ
けでなく、操作方向以外の変位から各方向の力やモーメ
ントをシミュレートすれば、操作部材の操作部の横ずれ
や傾きといった点も検討することができ、より実製品に
近いシミュレートを行うことができる。
According to the present invention, it is possible to test whether or not a desired operation feeling can be obtained by a simulator in which the movable part of the electromagnetic drive member is regarded as the operation part of the actual operation member without repeating the design and trial production. You can At this time, not only simulating the reaction force from the stroke in the operating direction in that direction, but also simulating the force and moment in each direction from the displacement other than the operating direction will cause lateral displacement or inclination of the operating part of the operating member. Points can also be considered, and a simulation closer to a real product can be performed.

【0006】そして、このようにシミュレートすること
で求めた最適特性に併せて製作されるスイッチは、常に
良好な特性を有するものとなる。
The switch manufactured in accordance with the optimum characteristics obtained by simulating in this way always has good characteristics.

【0007】[0007]

【実施例】以下本発明を図示の実施例に基づいて詳述す
ると、図1は押し釦スイッチをシミュレートするシミュ
レータ1で、永久磁石21とコイル20及び鉄心22か
らなるボイスコイルモータ型の電磁駆動部材2における
コイル枠が、ベース10に設けた空気軸受11によって
浮上支持されている可動部12に連結されており、可動
部12の一端には位置センサー3が対向配置され、可動
部12の他端には作用部13が設けられている。ここに
おける電磁駆動部材2は、予め設定した図に示すような
ストローク−力特性が得られるように電流駆動されるも
ので、位置センサー3による可動部12の位置情報は、
この電磁駆動部材2の制御部にフィードバックされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the illustrated embodiments. FIG. 1 shows a simulator 1 for simulating a push button switch. The coil frame of the drive member 2 is connected to a movable portion 12 that is levitationally supported by an air bearing 11 provided on the base 10. The position sensor 3 is arranged at one end of the movable portion 12 so as to face the movable portion 12. The action portion 13 is provided at the other end. The electromagnetic driving member 2 here is current-driven so as to obtain a stroke-force characteristic as shown in a preset figure, and the position information of the movable portion 12 by the position sensor 3 is:
This is fed back to the control unit of the electromagnetic drive member 2.

【0008】シミュレートにあたっては、まず押し釦ス
イッチの押し釦の押し込みストロークとその反力との相
関が、最適な操作感触が得られると思われる状態となる
ように、たとえば図2に示すように、コンピュータ5に
入力する。この操作は、CRT50上にマウス51等の
入力手段を用いてグラフを描くようにして入力できるよ
うにしておくと、簡便で且つわかりやすいものとなる。
In the simulation, first, as shown in FIG. 2, for example, the correlation between the pushing stroke of the push button of the push button switch and the reaction force thereof is such that an optimum operation feeling can be obtained. , Input to the computer 5. This operation is simple and easy to understand if a graph is drawn on the CRT 50 by using an input means such as the mouse 51.

【0009】上記シミュレータ1における電磁駆動部材
2は、位置センサー3による可動部12の位置情報がフ
ィードバックされる状態で電流駆動されて、作用部13
を指で押し込む時の反力を上記設計値通りのものとす
る。図3に本動作のフローチャートを示す。押し釦スイ
ッチを試作しなくとも、上記設計の場合の操作感触を探
ることができるものであり、これが良くなければ、上記
押し込みストロークと反力との設定、つまりは弾性係数
特性の設定を変更して、再度試すことを繰り返せばよ
い。
The electromagnetic driving member 2 in the simulator 1 is current-driven while the position information of the movable portion 12 by the position sensor 3 is fed back, and the acting portion 13 is driven.
The reaction force when pushing in with the finger is as specified above. FIG. 3 shows a flowchart of this operation. It is possible to find out the operation feeling in the case of the above design without making a prototype push button switch.If this is not good, change the setting of the pushing stroke and reaction force, that is, the setting of the elastic coefficient characteristic. Then try again.

【0010】また、シミュレータ1として、図7に示す
ように、Z軸まわりの回転を可動部12に行わせるため
に、可動部12の周囲に等間隔で配設された3つのリニ
アアクチュエータ型電磁駆動部1a,1b,1cを備え
るとともに、Z軸方向の可動部12の駆動及びX,Y軸
回りの可動部12の駆動を行うために可動軸12の周囲
に等間隔で配設された3つのリニアアクチュエータ型電
磁駆動部1d,1e,1fとを備え、さらにZ軸方向の
位置と、X,Y軸方向の位置と、X,Y軸回りの回転角
θx,θyと、Z軸回りの回転角θzの6自由度を計測
するための都合6つの位置センサー3を備えたものを用
いれば、より実製品に近いシミュレートを行うことがで
きる。
Further, as the simulator 1, as shown in FIG. 7, in order to cause the movable portion 12 to rotate about the Z-axis, three linear actuator type electromagnetic waves are arranged around the movable portion 12 at equal intervals. The drive units 1a, 1b, and 1c are provided, and the drive units 1a, 1b, and 1c are arranged at equal intervals around the movable shaft 12 to drive the movable unit 12 in the Z-axis direction and to drive the movable unit 12 around the X and Y axes. Two linear actuator type electromagnetic drive units 1d, 1e and 1f are provided, and further, a position in the Z-axis direction, a position in the X- and Y-axis directions, rotation angles θx and θy about the X and Y axes, and a Z-axis rotation position. If a device equipped with six position sensors 3 for measuring the six degrees of freedom of the rotation angle θz is used, a simulation closer to an actual product can be performed.

【0011】つまり、押し釦スイッチSWの押し釦4の
押し込み方向をZ方向とする時、図4に示すように、押
し釦4を横にずらした時のストロークX,Yと力Fx,
Fyとの相関を設定し、図5に示すように、押し釦4を
X軸及びY軸回りに角度θx,θy回転させて傾けた時
のモーメントMx,Myの変化を設定し、更に図6に示
すように、Z軸回りに押し釦4を回転角θzだけ回転さ
せた時のモーメントMzを設定して、これらの設定と各
位置センサー3からの位置情報とで全電磁駆動部1a〜
1fを電流制御することで、押し釦4の押し込み方向に
ついてだけでなく、横ずれや傾きや回転までシミュレー
トして、がたつきを含めた操作感触をテストすることが
できる。図7中の14は第2の作用部である。
That is, when the pushing direction of the push button 4 of the push button switch SW is set to the Z direction, as shown in FIG. 4, the strokes X and Y and the force Fx when the push button 4 is laterally displaced,
By setting the correlation with Fy, as shown in FIG. 5, the changes in the moments Mx and My when the push button 4 is rotated and tilted about the X axis and the Y axis by the angles θx and θy are set, and further, as shown in FIG. As shown in FIG. 5, the moment Mz when the push button 4 is rotated by the rotation angle θz about the Z axis is set, and all the electromagnetic drive units 1a to 1a are set by these settings and the position information from each position sensor 3.
By controlling the current 1f with current, it is possible to test not only the pushing direction of the push button 4 but also lateral shift, tilt, and rotation to test the operational feel including rattling. Reference numeral 14 in FIG. 7 is a second acting portion.

【0012】押釦スイッチの動的な反力補償を付加すれ
ば、操作感触を更に忠実に再現することができるものと
なる。図8及び図9は、粘性特性もシミュレートするこ
とができるようにしたもので、上記ストローク−力特性
に加えて、ストローク−粘性係数特性も設定する。そし
てシミュレートに際しては、可動部12の位置情報と速
度情報とがフィードバックされる状態で、電磁駆動部材
2の位置に応じた粘性係数Cを上記設定したストローク
−粘性係数特性から逐次決定し、その時点での電磁駆動
部材2の速度と設定した粘性係数Cの積及びストローク
−力特性から、作用部13を指で押し込んだ時の反力が
設定したストローク−力特性及びストローク−粘性係数
特性と一致するように、電磁駆動部材2を電流駆動す
る。
By adding the dynamic reaction force compensation of the push button switch, the operation feeling can be reproduced more faithfully. FIG. 8 and FIG. 9 are designed so that the viscosity characteristic can also be simulated. In addition to the stroke-force characteristic, the stroke-viscosity coefficient characteristic is also set. When simulating, the viscosity coefficient C corresponding to the position of the electromagnetic drive member 2 is sequentially determined from the stroke-viscosity coefficient characteristics set above in a state where the position information and the speed information of the movable portion 12 are fed back, and From the product of the speed of the electromagnetic drive member 2 and the set viscosity coefficient C and the stroke-force characteristic at that time, the stroke-force characteristic and the stroke-viscosity coefficient characteristic are set by the reaction force when the action portion 13 is pushed in with a finger. The electromagnetic drive member 2 is current-driven so that they coincide with each other.

【0013】図10及び図11に示す実施例では、スト
ローク−力特性に加えて、ストローク−仮想質量特性を
設定し、シミュレートに際しては、可動部12の位置情
報と加速度情報とがフィードバックされる状態で、電磁
駆動部材2の位置に応じた仮想質量Mを上記設定したス
トローク−仮想質量特性から逐次決定し、その時点での
電磁駆動部材2の加速度と設定した仮想質量Mの積及び
ストローク−力特性から、作用部13を指で押し込んだ
時の反力が設定したストローク−力特性及びストローク
−仮想質量特性と一致するように、電磁駆動部材2を電
流駆動する。慣性力をシミュレートすることができるよ
うにしているものである。図中mは実際の質量である。
In the embodiment shown in FIGS. 10 and 11, in addition to the stroke-force characteristic, the stroke-virtual mass characteristic is set, and the position information and the acceleration information of the movable portion 12 are fed back during the simulation. In this state, the virtual mass M according to the position of the electromagnetic drive member 2 is sequentially determined from the stroke-virtual mass characteristics set above, and the product of the acceleration of the electromagnetic drive member 2 at that time and the set virtual mass M and the stroke- From the force characteristics, the electromagnetic drive member 2 is current-driven so that the reaction force when the action portion 13 is pushed in with the finger matches the set stroke-force characteristics and stroke-virtual mass characteristics. It is designed to be able to simulate inertial force. In the figure, m is the actual mass.

【0014】また、図12及び図13に示す実施例で
は、予め静止摩擦力Fsと動摩擦力Fdとを設定し、シ
ミュレート時に電磁駆動部材2の速度に応じて、静止摩
擦力Fsまたは動摩擦力Fdのどちらかを決定して、こ
の摩擦力をストローク−力特性から得られる力に付加し
ている。動摩擦力Fdについては、図14及び図15に
示すように、ストローク−動摩擦力特性を設定してお
き、シミュレート時に電磁駆動部材の可動部12の位置
に応じて動摩擦力の決定を行うとともに、この動摩擦力
がストローク−力特性から得られた力に付加されるよう
に、電磁駆動部材2を電流駆動すれば、さらに摩擦力を
良好にシミュレートしたものとなる。さらには、上記粘
性係数、慣性力、摩擦力についての補償を2つ以上組み
合わせることも可能であるとともに、この場合、より忠
実なシミュレーター1となる。
In the embodiment shown in FIGS. 12 and 13, the static friction force Fs and the dynamic friction force Fd are set in advance, and the static friction force Fs or the dynamic friction force Fd is set in accordance with the speed of the electromagnetic drive member 2 during simulation. Either Fd is determined and this frictional force is added to the force obtained from the stroke-force characteristic. As for the dynamic friction force Fd, as shown in FIG. 14 and FIG. 15, stroke-dynamic friction force characteristics are set in advance, and the dynamic friction force is determined according to the position of the movable portion 12 of the electromagnetic drive member during simulation. If the electromagnetic drive member 2 is current-driven so that the dynamic frictional force is added to the force obtained from the stroke-force characteristics, the frictional force can be further simulated well. Furthermore, it is possible to combine two or more compensations for the above-mentioned viscosity coefficient, inertial force, and frictional force, and in this case, the simulator 1 becomes more faithful.

【0015】押釦スイッチの操作条件を統一して最適な
操作感触を探る時、つまりは押釦スイッチの操作時の速
度や加速度を所定値に定めた条件のもとで最適な操作感
触を探る時は、粘性力や慣性力や摩擦力といったパラメ
ータによる反力を、弾性係数が関数であるストローク−
力特性に予め含めて設定してシミュレートしてもよい。
図16及び図17はこの場合を示している。
When searching for the optimum operation feeling by unifying the operation conditions of the push button switches, that is, when searching for the optimum operation feeling under the condition that the speed and acceleration at the time of operating the push button switch are set to predetermined values , The reaction force due to parameters such as viscous force, inertial force and frictional force, the stroke whose elastic coefficient is a function −
The force characteristics may be included in advance and set to simulate.
16 and 17 show this case.

【0016】ところで、粘性力や慣性力や摩擦力による
補償も行う場合、前述のように、可動部12の動きの速
度や加速度の情報もフィードバック情報に必要となる
が、これは図18に示すように、可動部12の一端面に
対向配置される速度センサー7や加速度センサー8を設
けることで対処するほかに、図19に示すように、可動
部12の位置情報を得るための位置センサー3の出力を
一階微分して速度情報を得る一階微分回路70や、位置
センサー3の出力を二階微分して加速度情報を得る二階
微分回路80を設けることで対処することができる。
By the way, when the compensation by viscous force, inertial force, and frictional force is also performed, as described above, the information on the speed and acceleration of the movement of the movable portion 12 is also necessary for the feedback information, which is shown in FIG. As shown in FIG. 19, the position sensor 3 for obtaining the position information of the movable portion 12 is provided in addition to the speed sensor 7 and the acceleration sensor 8 which are arranged to face each other on one end surface of the movable portion 12. This can be dealt with by providing a first-order differentiating circuit 70 that obtains velocity information by first-order differentiating the output of 1 and a second-order differentiating circuit 80 that obtains acceleration information by second-order differentiating the output of the position sensor 3.

【0017】また、上記シミュレーションに際して、図
20及び図21に示すように、可動部12が所定位置に
きた時にタイミング信号が出力されるようにするととも
に、このタイミング出力を受けて、音再生器90とアン
プ91とスピーカ92とが実際の押釦スイッチを操作し
た時と同じクリック音を再生するようにしておけば、よ
り現実感のあるシミュレーションを行うことができる。
In the simulation, as shown in FIGS. 20 and 21, a timing signal is output when the movable portion 12 reaches a predetermined position, and the sound reproducer 90 receives the timing output. If the amplifier 91 and the speaker 92 reproduce the same click sound as when the actual push button switch is operated, a more realistic simulation can be performed.

【0018】そして、このようなシミュレーションを使
用した場合、従来ならば前述のように設計試作と評価と
を繰り返すことになるのに対して、図22に示すよう
に、シミュレータ1上で最適操作感触と思われる状態を
設定して評価を行うことで、試作工程を経ることなく、
最適な設計値を容易に得ることができるものであり、こ
うして得た設計値に基づいて押釦スイッチを試作して、
試作品が設計通りの操作感触を実現しているかどうかを
確認するだけで、最適操作感触をもつスイッチを得るこ
とができる。
When such a simulation is used, in the conventional case, the design and trial production and the evaluation are repeated as described above. On the other hand, as shown in FIG. By setting a state that seems to be and performing evaluation, without going through the prototype process,
The optimum design value can be easily obtained, and a push button switch is prototyped based on the design value thus obtained,
A switch with an optimal operating feel can be obtained simply by confirming whether the prototype achieves the operating feel as designed.

【0019】[0019]

【発明の効果】以上のように本発明は、設計試作を繰り
返さなくても電磁駆動部材の可動部を実際の操作部材の
操作部とみなしたシミュレータで、求めている操作感触
が得られるかどうかをテストすることができるために、
よりよい操作感触を実現できる特性を持つものを簡便に
得ることができるものであり、従来の設計試作に要して
いた時間と手間を大幅に削減することができるものであ
る。そして、この時、操作方向のストロークから、その
方向に反力をシミュレートするだけでなく、操作方向以
外の変位から各方向の力やモーメントをシミュレートし
て、操作部材の操作部の横ずれや傾きといった点も検討
することができるようにしたり、粘性力や慣性力や摩擦
力による補償も加えれば、より実製品に近いシミュレー
トを行うことができる。
As described above, the present invention is a simulator in which the movable portion of the electromagnetic drive member is regarded as the operating portion of the actual operating member without repeating the design and trial production, and whether the desired operating feel can be obtained. To be able to test
It is possible to easily obtain the one having a characteristic that can realize a better operation feeling, and it is possible to greatly reduce the time and labor required for the conventional design and trial manufacture. At this time, in addition to simulating the reaction force in that direction from the stroke in the operation direction, it also simulates the force and moment in each direction from the displacements other than the operation direction to detect lateral displacement of the operation part of the operation member. By making it possible to consider points such as inclination, and by adding compensation by viscous force, inertial force, and frictional force, it is possible to perform a simulation closer to the actual product.

【0020】また、電磁駆動部材によって直線駆動され
る可動部と、操作部材の操作部に当接させた可動部の位
置を検出する位置センサーと、位置センサーの出力値と
設定値とを基に電磁駆動部材に流す電流を制御する制御
回路とを備えている操作感触実現装置では、大がかりな
装置を必要とすることなく、必要とするシミュレートを
行うことができる。
Further, based on an output value and set value of the position sensor, a movable portion which is linearly driven by an electromagnetic drive member, a position sensor which detects the position of the movable portion which is brought into contact with the operation portion of the operation member, The operation feeling realization device including the control circuit that controls the current flowing through the electromagnetic drive member can perform the required simulation without requiring a large-scale device.

【0021】そして、このようなシミュレーションによ
って求めた最適値を設計値として製作されたスイッチ
は、設計試作を繰り返さずとも、最適操作感触を有する
ものとなる。
The switch manufactured by using the optimum value obtained by such a simulation as a design value has an optimum operation feeling without repeating design and trial production.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の説明図である。FIG. 1 is an explanatory diagram of an example.

【図2】設定値の入力方法の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a method of inputting setting values.

【図3】同上の動作を示すフローチャートである。FIG. 3 is a flowchart showing an operation of the same.

【図4】(a)は横ずれの説明図、(b)は横ずれ特性の設定
値の入力方法の一例を示す説明図である。
4A is an explanatory diagram of lateral deviation, and FIG. 4B is an explanatory diagram showing an example of an input method of a setting value of lateral deviation characteristics.

【図5】(a)は傾きの説明図、(b)は傾き特性の設定値の
入力方法の一例を示す説明図である。
5A is an explanatory diagram of a tilt, and FIG. 5B is an explanatory diagram showing an example of a method of inputting a setting value of a tilt characteristic.

【図6】(a)は回転の説明図、(b)は回転特性の設定値の
入力方法の一例を示す説明図である。
6A is an explanatory view of rotation, and FIG. 6B is an explanatory view showing an example of an input method of a set value of a rotation characteristic.

【図7】(a)はシミュレータの他例の斜視図、(b)は概略
図である。
7A is a perspective view of another example of the simulator, and FIG. 7B is a schematic view.

【図8】他の実施例の説明図である。FIG. 8 is an explanatory diagram of another embodiment.

【図9】同上の動作を示すフローチャートである。FIG. 9 is a flowchart showing the same operation.

【図10】さらに他の実施例の説明図である。FIG. 10 is an explanatory diagram of still another embodiment.

【図11】同上の動作を示すフローチャートである。FIG. 11 is a flowchart showing an operation of the above.

【図12】別の実施例の説明図である。FIG. 12 is an explanatory diagram of another embodiment.

【図13】同上の動作を示すフローチャートである。FIG. 13 is a flowchart showing an operation of the same.

【図14】さらに別の実施例の説明図である。FIG. 14 is an explanatory diagram of yet another example.

【図15】同上の動作を示すフローチャートである。FIG. 15 is a flowchart showing an operation of the same.

【図16】他の実施例の説明図である。FIG. 16 is an explanatory diagram of another embodiment.

【図17】同上の動作を示すフローチャートである。FIG. 17 is a flowchart showing an operation of the same.

【図18】同上の速度センサー及び加速度センサーを有
するものの説明図である。
FIG. 18 is an explanatory diagram of a device having the above velocity sensor and acceleration sensor.

【図19】同上の他例の説明図である。FIG. 19 is an explanatory diagram of another example of the above.

【図20】クリック音発生手段を備えた実施例の説明図
である。
FIG. 20 is an explanatory diagram of an embodiment including click sound generating means.

【図21】同上の動作を示すフローチャートである。FIG. 21 is a flowchart showing an operation of the same.

【図22】スイッチの設計手順を示すフローチャートで
ある。
FIG. 22 is a flowchart showing a switch design procedure.

【符号の説明】[Explanation of symbols]

1 シミュレータ 2 電磁駆動部材 12 可動部 1 Simulator 2 Electromagnetic drive member 12 Moving part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 法上 司 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 神田橋 毅 大阪府門真市大字門真1048番地松下電工株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor HOSHI boss 1048 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Works Co., Ltd. (72) Inventor, Takeshi Kandabashi 1048, Kadoma, Kadoma City, Osaka

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 操作部材の操作部の移動ストロークと力
の関係を電磁駆動部材によって駆動される可動部の位置
と力制御でシミュレートすることを特徴とする操作感触
実現方法。
1. A method for realizing a feeling of operation, which comprises simulating a relationship between a movement stroke of an operation section of an operation member and a force by controlling the position and force of a movable section driven by an electromagnetic drive member.
【請求項2】 操作方向のストロークから、その方向に
反力をシミュレートすることを特徴とする請求項1記載
の操作感触実現方法。
2. The operation feeling realization method according to claim 1, wherein a reaction force is simulated in the direction of the stroke in the operation direction.
【請求項3】 操作方向以外の変位から各方向の力やモ
ーメントをシミュレートすることを特徴とする請求項1
記載の操作感触実現方法。
3. A force or moment in each direction is simulated from a displacement other than the operation direction.
How to realize the described operation feeling.
【請求項4】 操作方向のストローク及び操作方向以外
の変位から各方向の力やモーメントをシミュレートする
ことを特徴とする請求項1記載の操作感触実現方法。
4. The operation feeling realization method according to claim 1, wherein a force and a moment in each direction are simulated from a stroke in the operation direction and a displacement other than the operation direction.
【請求項5】 操作部材の操作部の移動ストロークの関
数として、粘性係数を設定し、この粘性係数の設定値と
操作部の移動ストローク方向の速度とによって決定され
る力を付加してシミュレートすることを特徴とする請求
項1記載の操作感触実現方法。
5. A viscous coefficient is set as a function of a moving stroke of an operating portion of an operating member, and a force is determined by a set value of this viscous coefficient and a velocity in a moving stroke direction of the operating portion to simulate it. The operation feeling realization method according to claim 1, wherein
【請求項6】 操作部材の操作部の移動ストロークの関
数として、仮想質量を設定し、この仮想質量の設定値と
操作部の移動ストローク方向の加速度とによって決定さ
れる力を付加してシミュレートすることを特徴とする請
求項1記載の操作感触実現方法。
6. A virtual mass is set as a function of a moving stroke of an operating portion of an operating member, and a simulation is performed by adding a force determined by a set value of the virtual mass and an acceleration in a moving stroke direction of the operating portion. The operation feeling realization method according to claim 1, wherein
【請求項7】 操作部材の操作部の移動ストローク方向
の速度の関数として、静止摩擦力または動摩擦力を設定
し、操作部の移動ストローク方向の速度に対して上記摩
擦力を付加してシミュレートすることを特徴とする請求
項1記載の操作感触実現方法。
7. A static friction force or a dynamic friction force is set as a function of the speed of the operating member in the moving stroke direction of the operating member, and the friction force is added to the speed of the operating member in the moving stroke direction to simulate the operation. The operation feeling realization method according to claim 1, wherein
【請求項8】 操作部材の操作部の移動ストロークの関
数として、動摩擦力を設定して、この動摩擦力を付加し
てシミュレートすることを特徴とする請求項1記載の操
作感触実現方法。
8. The operation feeling realization method according to claim 1, wherein a dynamic friction force is set as a function of a movement stroke of the operation portion of the operation member, and the dynamic friction force is added to simulate.
【請求項9】 請求項5または6または7または8記載
の関数のうちの少なくとも2種以上を組み合わせてシミ
ュレートすることを特徴とする請求項1記載の操作感触
実現方法。
9. The operation feeling realization method according to claim 1, wherein at least two or more of the functions according to claim 5, 6 or 7 or 8 are combined and simulated.
【請求項10】 シミュレートの動作パターンが限定で
きる時、操作部材の操作部の移動ストロークの関数であ
る弾性係数に、慣性力、粘性力、摩擦力の補償を加え
て、この補償された弾性係数と操作部の移動ストローク
とによって決定される力を付加してシミュレートするこ
とを特徴とする請求項1記載の操作感触実現方法。
10. When the simulated motion pattern can be limited, the elastic modulus which is a function of the movement stroke of the operating part of the operating member is added with the compensation of inertial force, viscous force and frictional force, and the compensated elastic force is obtained. The operation feeling realization method according to claim 1, wherein a force determined by a coefficient and a movement stroke of the operation unit is added to simulate.
【請求項11】 電磁駆動部材によって直線駆動される
可動部と、操作部材の操作部に当接させた可動部の位置
を検出する位置センサーと、位置センサーの出力値と設
定値とを基に電磁駆動部材に流す電流を制御する制御回
路とを備えていることを特徴とする操作感触実現装置。
11. A movable part that is linearly driven by an electromagnetic drive member, a position sensor that detects the position of the movable part that is brought into contact with the operating part of the operating member, and based on the output value and the set value of the position sensor. An operation feeling realization device, comprising: a control circuit that controls a current flowing through an electromagnetic drive member.
【請求項12】 可動部に少なくとも6自由度の動きを
行わせる複数の電磁駆動部と、可動部の6自由度の動き
による位置検出を行う複数の位置センサーとを設けてい
ることを特徴とする請求項11記載の操作感触実現装
置。
12. A plurality of electromagnetic drive parts for causing the movable part to move in at least 6 degrees of freedom, and a plurality of position sensors for detecting a position by the movement of the movable part in 6 degrees of freedom. The operation feeling realization device according to claim 11.
【請求項13】 操作部材の操作部に当接させた可動部
の速度を検出する速度センサーを備えて、制御回路はこ
の速度センサーの出力値と設定値とを基に電磁駆動部材
に流す電流を制御することを特徴とする請求項11また
は12記載の操作感触実現装置。
13. A current sensor, which is provided with a speed sensor for detecting a speed of a movable part brought into contact with an operation part of an operation member, and a control circuit supplies an electric current to an electromagnetic drive member on the basis of an output value and a set value of the speed sensor. 13. The operation feeling realization device according to claim 11, wherein the operation feeling realization device is controlled.
【請求項14】 操作部材の操作部に当接させた可動部
の加速度を検出する加速度センサーを備えて、制御回路
はこの加速度センサーの出力値と設定値とを基に電磁駆
動部材に流す電流を制御することを特徴とする請求項1
1または12または13記載の操作感触実現装置。
14. An acceleration sensor for detecting an acceleration of a movable part brought into contact with an operation part of an operation member, wherein a control circuit supplies a current to an electromagnetic drive member based on an output value and a set value of the acceleration sensor. 1. The method according to claim 1, wherein
The operation feeling realization device according to 1 or 12 or 13.
【請求項15】 位置センサーの出力を一階微分する一
階微分回路を備えて、制御回路はこの微分回路の出力値
と設定値とを基に電磁駆動部材に流す電流を制御するこ
とを特徴とする請求項13記載の操作感触実現装置。
15. A first-order differentiating circuit for first-order differentiating the output of the position sensor, wherein the control circuit controls a current flowing through the electromagnetic drive member based on an output value and a set value of the differentiating circuit. The operation feeling realization device according to claim 13.
【請求項16】 位置センサーの出力を二階微分する二
階微分回路を備えて、制御回路はこの微分回路の出力値
と設定値とを基に電磁駆動部材に流す電流を制御するこ
とを特徴とする請求項14記載の操作感触実現装置。
16. A second-order differentiating circuit for second-order differentiating the output of the position sensor, wherein the control circuit controls a current flowing through the electromagnetic drive member based on an output value and a set value of the differentiating circuit. The operation feeling realizing device according to claim 14.
【請求項17】 シミュレートに際して動作音を発生さ
せる動作音発生手段を備えていることを特徴とする請求
項11記載の操作感触実現装置。
17. The operation feeling realizing device according to claim 11, further comprising operation sound generating means for generating an operation sound during the simulation.
【請求項18】 請求項1乃至17の少なくとも一つ以
上の操作感触実現方法及び操作感触実現装置を用いて求
められた最適特性に形成されていることを特徴とするス
イッチ。
18. A switch formed to have optimum characteristics determined by using at least one operation feeling realization method and at least one operation feeling realization apparatus according to claim 1.
JP11339593A 1992-11-25 1993-05-14 Operation feeling realizing method, device and switch Expired - Lifetime JP2843230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11339593A JP2843230B2 (en) 1992-11-25 1993-05-14 Operation feeling realizing method, device and switch

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31529292 1992-11-25
JP4-315292 1992-11-25
JP11339593A JP2843230B2 (en) 1992-11-25 1993-05-14 Operation feeling realizing method, device and switch

Publications (2)

Publication Number Publication Date
JPH06214653A true JPH06214653A (en) 1994-08-05
JP2843230B2 JP2843230B2 (en) 1999-01-06

Family

ID=26452382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11339593A Expired - Lifetime JP2843230B2 (en) 1992-11-25 1993-05-14 Operation feeling realizing method, device and switch

Country Status (1)

Country Link
JP (1) JP2843230B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254319A (en) * 1994-03-15 1995-10-03 Matsushita Electric Ind Co Ltd Touch feeling inspection device for pushbutton switch
JPH10512983A (en) * 1995-01-18 1998-12-08 イマージョン ヒューマン インターフェイス コーポレイション Method and apparatus for providing mechanical input and output with high bandwidth and low noise for a computer system
JP2009211108A (en) * 1998-01-28 2009-09-17 Immersion Medical Inc Interface device for interfacing instruments to vascular access simulation systems
CN107544016A (en) * 2016-06-29 2018-01-05 大族激光科技产业集团股份有限公司 A kind of flying probe axle and its method of testing
JPWO2018193917A1 (en) * 2017-04-21 2020-01-23 アルプスアルパイン株式会社 Rotary operation device, control method thereof, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254319A (en) * 1994-03-15 1995-10-03 Matsushita Electric Ind Co Ltd Touch feeling inspection device for pushbutton switch
JPH10512983A (en) * 1995-01-18 1998-12-08 イマージョン ヒューマン インターフェイス コーポレイション Method and apparatus for providing mechanical input and output with high bandwidth and low noise for a computer system
JP2009211108A (en) * 1998-01-28 2009-09-17 Immersion Medical Inc Interface device for interfacing instruments to vascular access simulation systems
CN107544016A (en) * 2016-06-29 2018-01-05 大族激光科技产业集团股份有限公司 A kind of flying probe axle and its method of testing
JPWO2018193917A1 (en) * 2017-04-21 2020-01-23 アルプスアルパイン株式会社 Rotary operation device, control method thereof, and program

Also Published As

Publication number Publication date
JP2843230B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
Martinez et al. Evolution and analysis of hapkit: An open-source haptic device for educational applications
US5146566A (en) Input/output system for computer user interface using magnetic levitation
US6707443B2 (en) Haptic trackball device
EP0995152B1 (en) Method and apparatus for designing force sensations in force feedback computer applications
US5952806A (en) Inner force sense controller for providing variable force to multidirectional moving object, method of controlling inner force sense and information storage medium used therein
US20060187201A1 (en) Method and apparatus for designing force sensations in force feedback computer applications
Yokokohji et al. Analysis of maneuverability and stability of micro-teleoperation systems
JP4375200B2 (en) Basic information output device for haptic control
JPH06214653A (en) Method and device for realizing operating feeling and switch therefor
JP3191327B2 (en) Operation device
JP2956180B2 (en) Electronic musical instrument
Kim et al. A haptic dial system for multimodal prototyping
Timmermans et al. Application and validation of a linear electromagnetic actuator within a haptic piano key
JP3170367B2 (en) Impedance control method and simulator
JP3179949B2 (en) Operation feeling realization method
Kano et al. Design and prototype of a remote arm-wrestling system
Weir et al. Design and performance of a high fidelity, low mass, linear haptic display
Hanai et al. Advanced Musical Saw Manipulation by an Industrial Cooperative Humanoid Robot with Passive Sound Feedback
JPH07111631B2 (en) Electronic musical instrument
JP4019996B2 (en) Control device
JPH06160241A (en) Developing system for realizing optimal operational feeling
JP2000092882A (en) Position controller of two-inertial system
Timmermans et al. A Haptic Piano Keyboard Based on a Real-Time Multibody Model of the Action
Kaneko et al. A development of experimental system for macro-micro teleoperation
JP2009128769A (en) Operator unit of electronic keyboard musical instrument

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111023

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111023

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 15

EXPY Cancellation because of completion of term