JPH06214626A - Nc data producing device - Google Patents

Nc data producing device

Info

Publication number
JPH06214626A
JPH06214626A JP10354592A JP10354592A JPH06214626A JP H06214626 A JPH06214626 A JP H06214626A JP 10354592 A JP10354592 A JP 10354592A JP 10354592 A JP10354592 A JP 10354592A JP H06214626 A JPH06214626 A JP H06214626A
Authority
JP
Japan
Prior art keywords
approach
data
intersection line
line
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10354592A
Other languages
Japanese (ja)
Inventor
Takahiro Tanaka
太宏 田中
Tatsuya Fujii
達哉 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP10354592A priority Critical patent/JPH06214626A/en
Publication of JPH06214626A publication Critical patent/JPH06214626A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the NC data in order to smoothly cut an intersecting line between both curved surfaces. CONSTITUTION:A curved surface generating function 61 produces two or more curved surfaces to be cut, and an intersecting line calculating function 62 calculates the intersecting line between both curved surfaces produced by the function 61. An approaching function 63 adds an approach to make a machining tool approach from the tangent vector direction at the start point of the intersecting line to this start point and also adds a relief to relieve the machining tool in the tangent vector direction at the end point of the intersecting line to this end point respectively. Then an NC data converting function 64 converts the value of the intersecting line obtained by the function 62 and the value added by the function 63 into the NC data. Thus the intersecting line cutting NC data are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は工作機械のNCデータ作
成装置に関し、更に詳細には曲面と曲面との交線を滑ら
かに切削するNCデータ作成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an NC data creating device for a machine tool, and more particularly to an NC data creating device for smoothly cutting a curved line and a line of intersection between curved surfaces.

【0002】[0002]

【従来技術】従来から工作機制御用データの作成にNC
データ作成装置が用いられている。このNCデータ作成
装置には交線切削機能を含む3次元のNCデータ作成機
能を有するものが有る。このNCデータ作成装置の機能
を図10を参照して説明する。該装置は先ず入力された
データを基にワイヤフレームモデルを作成し、曲面1と
曲面2との2つの曲面を創成する。そしてこれら2曲面
の交わった交線(稜線)を算出する。これにより求めら
れた交線をボールエンドミルで加工し稜線部分を滑らか
に仕上げている。このNCデータ作成装置の作成したデ
ータに基づく交線の加工作業は、稜線部分の加工におい
て図11で示すようにボールエンドミルをスタート点か
ら送り出し、クリアランス点(交線始点よりクリアラン
ス分だけZ方向にあげたところ)まで早送りで送り、開
始点まで切削送りで送り交線に沿って切削を開始する。
そして切削送りで交線を進んだ後早送りでスタート点ま
で戻している。
2. Description of the Related Art Conventionally, NC has been used to create machine tool control data.
A data generator is used. Some of the NC data creating devices have a three-dimensional NC data creating function including a cross cutting function. The function of this NC data creation device will be described with reference to FIG. The apparatus first creates a wireframe model based on the input data and creates two curved surfaces, curved surface 1 and curved surface 2. Then, the intersection line (ridge line) where these two curved surfaces intersect is calculated. The intersecting line obtained by this is processed with a ball end mill to finish the ridge line part smoothly. The machining work of the intersection line based on the data created by this NC data creation device is performed by feeding the ball end mill from the start point as shown in FIG. Fast feed to the point) and cutting feed to the start point to start cutting along the feed intersection line.
Then, after going through the intersection line with cutting feed, it is returned to the start point with fast feed.

【0003】[0003]

【発明が解決しようとする問題点】上記NCデータ作成
装置では、加工サイクルの中でクリアランス点から交線
開始点へ切削送りで切削を進めるときに、交線が略XY
平面(水平面)上にある場合、ボールエンドミルを交線
に対してほぼ垂直にアプローチしている。この場合、図
12に示すように交線開始点に対してボールエンドミル
が垂直に入るため若干の食い込みが生ずるという問題点
がある。また図13に示すように交線がルーブ形状、即
ち交線に沿って切削が行われた後再び開始点に戻る場
合、交線の切削開始時に工具をアプローチさせてから交
線に沿って進める時、図に示すように略垂直にアプロー
チさせた工具を略水平に交線上を送るためかなりのベク
トル変動が生ずる。同様に交線の切削終了時に交線上を
略水平に送られた工具を略垂直に逃がすため、やはりか
なりのベクトル変化が生じる。このためサーボ系の遅れ
から交線開始側及び交線終了側でだれが起き(即ち、図
に示すように交線開始側で工具をほぼ垂直にアプローチ
した後水平に切削する軌跡がだれ、同様に交線終了側で
も軌跡がだれ)、削り残しが生ずるという問題点があ
る。
In the NC data creating apparatus described above, when the cutting is advanced from the clearance point to the intersection line start point by cutting feed in the machining cycle, the intersection line is approximately XY.
When it is on a plane (horizontal plane), the ball end mill is approached almost perpendicular to the intersection line. In this case, as shown in FIG. 12, since the ball end mill enters perpendicularly to the intersection line start point, there is a problem that some bite occurs. In addition, as shown in FIG. 13, when the intersection line is a lobe shape, that is, when cutting is performed along the intersection line and then returns to the start point, the tool is approached at the start of the cutting of the intersection line and then advanced along the intersection line. At this time, as shown in the figure, since a tool which is approached in a substantially vertical direction is fed in a horizontal direction on a line of intersection, a considerable vector fluctuation occurs. Similarly, at the end of the cutting of the intersecting line, the tool fed substantially horizontally on the intersecting line is allowed to escape substantially vertically, so that a considerable vector change also occurs. For this reason, due to the delay of the servo system, sagging occurs on the intersection line start side and the intersection line end side (that is, as shown in the figure, there is a trajectory where the tool is approached almost vertically at the intersection line start side and then cut horizontally. However, there is a problem in that the locus of the trace on the end side of the intersection line) and uncut parts occur.

【0004】本発明は、上記問題点を解決するために成
されたもので、その目的とするとこは、曲面と曲面との
交線の切削における、交線に工具が接触した際に生ずる
交線への工具の食い込みをなくし滑らかな切削面を形成
することにある。更に本発明は、ループ状の交線を切削
する場合においてサーボ系のだれにより生ずる削り残し
をなくすことにある。
The present invention has been made in order to solve the above problems, and an object thereof is to provide an intersection generated when a tool comes into contact with an intersection line in cutting an intersection line between curved surfaces. It is to eliminate the bite of the tool into the line and form a smooth cutting surface. Further, the present invention is to eliminate the uncut residue caused by the sag of the servo system when the loop-shaped intersection line is cut.

【0005】[0005]

【問題点を解決するための手段】上記問題点を解決する
ため本発明のNCデータ作成装置は、切削を行う2以上
の曲面を作成する曲面創成手段と、前記曲面創成手段に
より作成された曲面相互の交線を算出する交線算出手段
と、交線の始点に該始点おける接線ベクトル方向から加
工工具をアプローチさせるアプローチと、交線の終点に
該終点おける接線ベクトル方向へ加工工具を逃がす逃げ
とを付加するアプローチ手段と、前記交線作成手段によ
り求められた交線の値と前記アプローチ手段により付加
された値とを交線切削用NCデータに変換するNCデー
タ変換手段と、を有することを特徴とする。
In order to solve the above problems, the NC data creating apparatus of the present invention is a curved surface creating means for creating two or more curved surfaces for cutting, and a curved surface created by the curved surface creating means. An intersection line calculating means for calculating mutual intersection lines, an approach of approaching the machining tool from the tangent vector direction at the starting point to the starting point of the intersection line, and a relief for escaping the machining tool toward the tangent vector direction at the ending point of the intersection line And an NC data conversion unit that converts the value of the intersection line obtained by the intersection line creation unit and the value added by the approach unit into NC data for intersecting line cutting. Is characterized by.

【0006】[0006]

【作用】本発明のNCデータ作成装置は、先ず曲面創成
手段が入力された断面形状からワイヤーフレームモデル
を作成して2曲面を創成する。次に交線算出手段が曲面
創成手段により求められた2曲面相互の交線を算出す
る。そしてアプローチ手段が、交線切削の始点に該始点
おける接線ベクトル方向から加工工具をアプローチさせ
るアプローチと、交線の終点に該終点おける接線ベクト
ル方向へ加工工具を逃がす逃げとを上記交線算出手段が
算出した交線に付加する。最後に、NCデータ変換手段
が、前記交線作成手段により求められた交線の値と前記
アプローチ手段により付加された値とを交線切削用NC
データに変換する。
The NC data creating apparatus of the present invention first creates a wire frame model from the cross-sectional shape input by the curved surface creating means and creates two curved surfaces. Next, the intersecting line calculating means calculates the intersecting line between the two curved surfaces obtained by the curved surface generating means. Then, the approach means calculates the approach of approaching the machining tool from the tangent vector direction at the start point to the intersection line cutting start point and the escape at which the machining tool escapes to the end point of the intersection line in the tangent vector direction at the end point. Is added to the calculated intersection line. Finally, the NC data conversion means sets the value of the intersection line obtained by the intersection line creation means and the value added by the approach means to the intersection line cutting NC.
Convert to data.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1において12はNCデータ作成装置であり、
20はマシニングセンタ形の工作機械であり、10は数
値制御装置であって工作機械20をNCデータ作成装置
の作成したデータに基づいて制御する。この数値制御装
置10には、サーボモータ駆動回路DUX、DUY、D
UZ、シーケンスコントローラ11がインタフェース
(図略)を介して接続されている。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 12 is an NC data creating device,
20 is a machining center type machine tool, and 10 is a numerical controller for controlling the machine tool 20 based on the data created by the NC data creating device. The numerical controller 10 includes servo motor drive circuits DUX, DUY, D
The UZ and sequence controller 11 are connected via an interface (not shown).

【0008】一方、工作機械20は、前記サーボモータ
駆動回路DUX、DUY、DUZのそれぞれによって駆
動されるサーボモータ21、22、23の回転によっ
て、工作物Wを支持する工作物テーブル25と、主軸モ
ータSMによって駆動される主軸26を軸架する主軸ヘ
ッド24との間の相対位置が3次元的に変更される。ま
た、27は、複数種類の工具を保持する工具マガジンで
あり、マガジン割出装置(図略)と工具交換装置28と
によって次工程で必要となる工具を取り出して主軸26
に装着すると共に主軸にそれまで装着されていた工具を
マガジンに戻すようになっており、この主軸に装着され
た工具により工作物Wの加工が行われる。
On the other hand, the machine tool 20 includes a work table 25 for supporting a work W by the rotation of servo motors 21, 22, 23 driven by the servo motor drive circuits DUX, DUY, DUZ, and a spindle. The relative position between the spindle 26 driven by the motor SM and the spindle head 24 that hangs the spindle 26 is three-dimensionally changed. Further, 27 is a tool magazine that holds a plurality of types of tools, and a tool required for the next process is taken out by a magazine indexing device (not shown) and a tool exchanging device 28 to remove the spindle 26.
The tool previously mounted on the spindle is returned to the magazine, and the workpiece W is processed by the tool mounted on the spindle.

【0009】シーケンスコントローラ11には、NCデ
ータ作成装置12と主軸モータSMの回転速度を制御す
る主軸モータ駆動回路15とが接続されている。このN
Cデ−タ作成装置12はマイクロプロセッサ12a、ク
ロック信号発生回路12b、ROM12c、RAM12
d、固定ディスク12e、インタフェース12f、12
g、12hによって主に構成され、インタフェース12
hにはキーボード13とCRT表示装置14が接続され
ている。固定ディスク12e内にはNCデータ作成装置
12が処理を行うための情報が記憶され、NCデータ作
成装置は該情報を基にキーボード13から入力された値
に従い所望のNCデータを作成する。
The sequence controller 11 is connected to an NC data generator 12 and a spindle motor drive circuit 15 for controlling the rotation speed of the spindle motor SM. This N
The C data creating device 12 includes a microprocessor 12a, a clock signal generating circuit 12b, a ROM 12c, and a RAM 12
d, fixed disk 12e, interfaces 12f, 12
The interface 12 is mainly composed of g and 12h.
A keyboard 13 and a CRT display device 14 are connected to h. Information for the NC data creating device 12 to perform processing is stored in the fixed disk 12e, and the NC data creating device creates desired NC data according to the value input from the keyboard 13 based on the information.

【0010】図2に本実施例のNCデータ作成装置12
の各機能を示す。このNCデータ作成装置は、入力断面
から2つの曲面を創成する曲面創成機能61と、2以上
の曲面が交わる交線を算出する交線算出機能62と、交
線へのアプローチベクトルを付加するアプローチ機能6
3と、交線の値をNCデータに変換するNCデータ変換
機能64と、を有する。
FIG. 2 shows an NC data generating device 12 of this embodiment.
Each function of is shown. This NC data creation device has a curved surface creation function 61 that creates two curved surfaces from an input cross section, an intersection line calculation function 62 that calculates an intersection line where two or more curved surfaces intersect, and an approach that adds an approach vector to the intersection line. Function 6
3 and an NC data conversion function 64 for converting the value of the intersecting line into NC data.

【0011】先ず曲面創成機能61は、入力された断面
形状からワイヤフレームモデルを作成し、図4に示す曲
面1と曲面2とを創成する。次に交線算出機能62が、
曲面創成機能61により創成された2曲面が交わる交線
を算出する。そして、アプローチ機能63が交線算出機
能62により算出された交線の始点と終点に、図5,図
6を参照し後述するアプローチベクトル方向にクリアラ
ンス分移動する動きを付加する。このクリアランス分の
動きと算出された交線の値とをNCデータ変換機能64
が、該曲面の交線を切削するための工作機械用NCデー
タに変換する。このアプローチ機能63とNCデータ変
換機能64による処理手順を図3のフローチャートを用
いて説明する。なお、本実施例では交線がループ状即ち
交線の始点と終点が一致している場合を例に挙げて説明
する。
First, the curved surface creation function 61 creates a wire frame model from the input cross-sectional shape and creates the curved surface 1 and the curved surface 2 shown in FIG. Next, the intersection calculation function 62
The intersection line where the two curved surfaces created by the curved surface creation function 61 intersect is calculated. Then, the approach function 63 adds movement to the start point and the end point of the intersection calculated by the intersection calculation function 62 to move by the clearance in the approach vector direction described later with reference to FIGS. 5 and 6. The NC data conversion function 64 calculates the movement of the clearance and the calculated intersection line value.
Converts into NC data for machine tools for cutting the intersection line of the curved surface. The processing procedure by the approach function 63 and the NC data conversion function 64 will be described with reference to the flowchart of FIG. In the present embodiment, the case where the intersection line is looped, that is, the start point and the end point of the intersection line coincide will be described as an example.

【0012】先ずアプローチ機能63は、ステップ71
で交線算出手段より計算された交線点群を入手する。こ
の算出された交線点群をP[1],P[2],P
[3],・・・P[n]とするとこれらは下記の2次補
間式で表される。補間式は交線点群の3点で構成され
る。 P(ξ)=〔{P[2k−1]−2P[2k]+P[2k+1]}/2〕・ξ +〔{P[2k+1]−P[2k−1]}/2〕ξ+P[2k] ・・・(式1) ここで、k=1,2,3,・・・{n−1}/2 −1.0≦ξ≦1.0
First, the approach function 63 is performed in step 71.
The intersection line point group calculated by the intersection line calculation means is obtained. The calculated intersection line points are P [1], P [2], P
Let [3], ... P [n] be expressed by the following quadratic interpolation formula. The interpolation formula is composed of three points in the intersection line group. P (ξ) = [{P [2k−1] −2P [2k] + P [2k + 1]} / 2] · ξ 2 + [{P [2k + 1] −P [2k−1]} / 2] ξ + P [2k ] (Formula 1) Here, k = 1, 2, 3, ... {n-1} /2-1.0≤ξ≤1.0

【0013】次にアプローチ機能63は、ステップ72
で交線の始点に加工工具をアプローチする進入側アプロ
ーチベクトルと、交線の終点から加工工具を逃がすため
の後退側アプローチベクトルとを算出する。本実施例で
はこれらアプローチベクトルとして、交線の始点側の3
点及び終点側の3点からそれぞれ始点と終点の接線のベ
クトルを求める。接線ベクトルを求めるため、上記(式
1)を微分すると(式2)が求められる。 P’(ξ)={P[2k−1]−2P[2k]+P[2k+1]}・ξ +{P[2k+1]−P[2k−1]}/2 ・・・(式2)
The approach function 63 then proceeds to step 72.
The approach side approach vector for approaching the machining tool to the start point of the intersection line and the retreat side approach vector for letting the machining tool escape from the end point of the intersection line are calculated. In the present embodiment, these approach vectors are 3 on the side of the starting point of the intersection line.
The vector of the tangent line of the start point and the end point is obtained from each of the three points on the point side and the end point side. To obtain the tangent vector, (Equation 2) is obtained by differentiating the above (Equation 1). P ′ (ξ) = {P [2k−1] −2P [2k] + P [2k + 1]} · ξ + {P [2k + 1] −P [2k−1]} / 2 (Equation 2)

【0014】交線始点での接線ベクトルを求めるために
(式2)にk=1,ξ=−1.0を代入すると下記(式
3)が求まる。 P’(−1.0)=−{P[1]−2P[2]+P[3]} +{P[3]−P[1]}/2 =−3/2・P[1]+2P[2]−1/2・P[3] ・・・(式3)
Substituting k = 1 and ξ = -1.0 into (Equation 2) to obtain the tangent vector at the intersection start point, the following (Equation 3) is obtained. P '(-1.0) =-{P [1] -2P [2] + P [3]} + {P [3] -P [1]} / 2 = -3 / 2 · P [1] + 2P [2] -1 / 2 · P [3] (Equation 3)

【0015】同様に、交線終点での接線ベクトルを求め
るために(式2)にk={n−1}/2、ξ=1.0を
代入すると下記(式4)が求まる。 P’(1.0)={P[n−2]−2P[n=1]+P[n]} +{P[n]−P[n−2]}/2 =−1/2・P[n−2]−2P[n−1]+3/2・P[n] ・・・(式4)
Similarly, when k = {n-1} / 2 and ξ = 1.0 are substituted into (Equation 2) to obtain the tangent vector at the intersection line end point, the following (Equation 4) is obtained. P ′ (1.0) = {P [n−2] −2P [n = 1] + P [n]} + {P [n] −P [n−2]} / 2 = −1 / 2 · P [N-2] -2P [n-1] + 3/2 · P [n] (Equation 4)

【0016】次にステップ73でアプローチ機能63
は、上記の式に基づき求められた接線ベクトルからアプ
ローチ点を求め、アプローチベクトル方向に加工工具を
クリアランス分移動する動きを交線の始点及び終点に付
加する。このアプローチ点は、上記(式3)と(式4)
とから、進入側の単位アプローチベクトルをVs、後退
側の単位アプローチベクトルをVeとし、クリアランス
をCとすると下記(式5)、(式6)で表される。 進入側アプローチ点 Ps=P(1)−CVs・・・(式5) 後退側アプローチ点 Pe=P(n)+CVe・・・(式5)
Next, at step 73, the approach function 63
Calculates the approach point from the tangent vector calculated based on the above equation, and adds the movement of the machining tool in the approach vector direction by the clearance to the start point and the end point of the intersection line. This approach point is based on (Equation 3) and (Equation 4) above.
From the above, assuming that the approaching unit approach vector is Vs, the retreating unit approach vector is Ve, and the clearance is C, it is represented by the following (Equation 5) and (Equation 6). Approach side approach point Ps = P (1) -CVs ... (Equation 5) Retreat side approach point Pe = P (n) + CVe ... (Equation 5)

【0017】(式5)、(式6)の内容を図5、図6を
参照して更に説明する。図5では(式5)で示す様に交
線の始点P[1]に該P[1]における接線ベクトル|
CVs|が付加され進入側アプローチ点Psが定められ
る。同様に図6は(式6)に示すように交線の終点P
(n)に該P(n)における接線ベクトル|CVe|が
付加され後退側アプローチ点Peが定められる。
The contents of (Equation 5) and (Equation 6) will be further described with reference to FIGS. In FIG. 5, the tangent vector at P [1] at the starting point P [1] of the intersection line as shown in (Equation 5) |
CVs | is added to define the approach point Ps on the approach side. Similarly, FIG. 6 shows the end point P of the intersection line as shown in (Equation 6).
The tangent vector | CVe | in P (n) is added to (n) to define the backward approach point Pe.

【0018】最後にステップ74でNCデータ変換機能
64が、図5,図6に示すクリアランス分移動する動き
が付加された上記交線点群の値を工作物の交線(稜線)
切削用NCデータに変換することによりNCデータが完
成する。ここで、上記NCデータに基づく工作機械20
による加工作業について説明する。まず工作機械20
は、比較的大きな径のボールエンドミルを用い、サーボ
モータ21,22,23を駆動して工作物Wを支持する
工作物テーブル25と、主軸ヘッド24との間の相対位
置を変更し、図4に示す曲面1と曲面2とを切削する。
Finally, at step 74, the NC data conversion function 64 sets the value of the intersection point group to which the movement for moving the clearance shown in FIGS. 5 and 6 is added to the intersection line (ridge line) of the workpiece.
The NC data is completed by converting it into NC data for cutting. Here, the machine tool 20 based on the NC data
The processing operation by will be described. First, the machine tool 20
4 uses a ball end mill having a relatively large diameter to drive the servomotors 21, 22, 23 to change the relative position between the work table 25 that supports the work W and the spindle head 24. The curved surface 1 and the curved surface 2 shown in are cut.

【0019】次に、曲面の交線(稜線)の仕上げ加工に
移る。工作機械20は、工具交換装置28により上記の
比較的径の大きなボールエンドミルから交線仕上げ用の
径の小さなボールエンドミルに工具を取り替える。そし
て該ボールエンドミルを曲面の交線にアプローチさせ
る、このアプローチについて図7を参照しながら説明す
る。先ず、図5で説明した進入側アプローチ点Psに、
スタート点から工具(ボールエンドミル)をZ軸上に早
送りで送る。そしてこのアプローチ点Psから始点に接
線方向に沿って切削送りで工具を送り交線の加工を開始
する。交線の加工が終了するとき、工具を終点から接線
方向に図6で説明した後退側アプローチ点Peまで逃が
す。このアプローチ点Peからは工具をZ軸上に早送り
し、そしてXY上を移動させてスタート点に戻す。上記
説明においては、2つの曲面の交線を切削する例につい
て説明したが、本発明は3以上の曲面の交線切削に用い
得る、また曲面の交線のみでなく一般の曲面加工にも用
いることができる。この例を図8,図9を参照して説明
する。
Next, the process of finishing the intersection line (ridge line) of the curved surface is started. The machine tool 20 uses the tool changing device 28 to replace the ball end mill having a relatively large diameter with a ball end mill having a small diameter for intersecting line finishing. Then, this approach in which the ball end mill is approached to the intersection of curved surfaces will be described with reference to FIG. 7. First, at the approach point Ps on the approach side described in FIG.
From the start point, the tool (ball end mill) is fast-forwarded on the Z axis. Then, the tool is fed by cutting feed from the approach point Ps to the start point along the tangential direction, and the machining of the intersecting line is started. When the machining of the intersecting line is completed, the tool is released from the end point in the tangential direction to the retract side approach point Pe described in FIG. From this approach point Pe, the tool is fast-forwarded on the Z-axis and then moved on XY to return to the start point. In the above description, an example of cutting the intersection line of two curved surfaces has been described, but the present invention can be used for cutting the intersection line of three or more curved surfaces, and is used not only for the intersection line of curved surfaces but also for general curved surface processing. be able to. This example will be described with reference to FIGS.

【0020】図8は、従来の曲面加工におけるアプロー
チ方法を示す。先ずスタート点から加工工具を曲面端部
Esよりクリアランス分を上げたクリアランス点まで早
送りで送り、次に曲面端部Esまで切削送りで送り、曲
面に沿って切削送りで他方の曲面端部Eeまで送った後
該EeからZ軸上に早送りで逃がす。そして加工工具を
前述の曲面端部Esに隣接する曲面端部Es’上までX
Y軸上に送る。
FIG. 8 shows an approach method in conventional curved surface processing. First, from the start point, send the machining tool by rapid feed to the clearance point where clearance is increased from the curved surface end Es, then feed by cutting feed to the curved end Es, and then cut feed along the curved surface to the other curved end Ee. After sending, it escapes from the Ee by fast-forwarding on the Z-axis. Then, place the processing tool on the curved surface end Es' adjacent to the curved surface end Es until X
Send on Y-axis.

【0021】図9は、本実施例の曲面加工のアプローチ
方法を示す。この実施例のNCデータ作成装置は、図
2、図3で説明したと略同様な処理により切削の始点側
の端部E’sへの接線方向からの進入側アプローチ点
P’sと、終点側の端部E’eからの接線方向への後退
側アプローチ点P’eとを付加したNCデータを作成す
る。これに基づき本実施例では、加工工具をスタート点
から早送りでZ軸上を進入側アプローチ点P,sまで送
り、次に切削送りで始点側の端部E’sへ接線方向から
アプローチし切削を開始する。当該部分の切削終了時、
終点側の端部E’eから接線方向に工具を後退側アプロ
ーチ点P’eまで逃がす。そして該アプローチ点P’e
から、早送りで工具をZ軸上で送った後、進入側アプロ
ーチ点P’sに隣接するアプローチ点P”s’上の位置
までXY軸上に送り、以下同様に工具を送り隣接部分の
切削を行う。この実施例によれば、曲面切削時に従来生
じていた工具の突込みによる削り上がりのみだれを防ぐ
ことができる。
FIG. 9 shows an approach method for curved surface processing according to this embodiment. The NC data creation apparatus of this embodiment performs an approach side approach point P's from the tangential direction to the end point E's on the starting point side of cutting and an end point P's by the processing substantially similar to that described with reference to FIGS. NC data to which a receding side approach point P′e in the tangential direction from the side end E′e is added is created. Based on this, in the present embodiment, the machining tool is fast-forwarded from the start point on the Z-axis to the approach-side approach points P and s, and then cutting feed is made to approach the end E's on the start point side from the tangential direction to perform cutting. To start. At the end of cutting of the part,
The tool is released from the end portion E'e on the end point side in the tangential direction to the approach point P'e on the retreat side. And the approach point P'e
To the position on the approach point P "s' adjacent to the approach point P's adjacent to the approach side P's" on the XY axes, and then the tool is fed in the same manner to cut the adjacent part. According to this embodiment, it is possible to prevent the drooling caused by the plunging of the tool, which has conventionally occurred when the curved surface is cut.

【0022】[0022]

【発明の効果】本発明によれば、曲面と曲面との交線を
切削する場合において、切削を開始する点に該開始点の
接線方向からアプローチするため、交線に工具が接触す
る際に交線への工具の食い込みが生じず滑らかな切削面
を形成することができる。更に本発明は、ループ状の交
線を切削する場合において、交線の切削の始点及び終点
で切削方向のベクトルが急に変化しないためサーボ系の
だれが生じず、このだれに起因する削り残しをなくすこ
とができる。
According to the present invention, when cutting a line of intersection between curved surfaces, the starting point of cutting is approached from the tangential direction of the starting point, so that the tool touches the line of intersection. It is possible to form a smooth cutting surface without biting of the tool into the intersection line. Further, according to the present invention, when cutting a loop-shaped intersection line, since the vector in the cutting direction does not change suddenly at the start point and the end point of the intersection line cutting, the servo system does not sag, and the uncut portion caused by this sag Can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】NCデータ作成装置及び工作機械の構成を示し
た構成図。
FIG. 1 is a configuration diagram showing configurations of an NC data creation device and a machine tool.

【図2】本実施例のNCデータ作成装置が有する機能の
ブロック図。
FIG. 2 is a block diagram of functions of the NC data creation device according to the present embodiment.

【図3】図1の実施例のNCデータ作成装置のアプロー
チ機能63とNCデータ変換機能64による処理手順を
示したフローチャート。
FIG. 3 is a flowchart showing a processing procedure by an approach function 63 and an NC data conversion function 64 of the NC data creating apparatus of the embodiment of FIG.

【図4】本発明の実施例のNCデータ作成装置の作成し
たデータにより加工される交線の説明図。
FIG. 4 is an explanatory diagram of an intersection line processed by data created by the NC data creating device according to the embodiment of this invention.

【図5】図4の交線始点への進入側アプローチ点の説明
図。
5 is an explanatory diagram of an approach point on the approach side to the intersection line start point in FIG. 4;

【図6】図4の交線終点からの後退側アプローチ点の説
明図。
6 is an explanatory diagram of a backward approach point from the end point of the intersection line in FIG. 4;

【図7】本実施例の交線を切削するボールエンドミルに
よるアプローチの説明図。
FIG. 7 is an explanatory diagram of an approach using a ball end mill for cutting the intersecting line of the present embodiment.

【図8】従来の曲面加工時におけるボールエンドミルの
軌跡の説明図。
FIG. 8 is an explanatory view of a trajectory of a ball end mill during conventional curved surface processing.

【図9】本発明の別実施例の曲面加工時におけるボール
エンドミルの軌跡の説明図。
FIG. 9 is an explanatory view of the trajectory of the ball end mill during curved surface processing according to another embodiment of the present invention.

【図10】従来のNCデータ作成装置が加工を行う曲面
の説明図。
FIG. 10 is an explanatory diagram of a curved surface processed by a conventional NC data creation device.

【図11】従来の交線を切削するボールエンドミルによ
るアプローチの説明図。
FIG. 11 is an explanatory view of a conventional approach using a ball end mill for cutting a line of intersection.

【図12】従来の交線を切削するボールエンドミルによ
るアプローチの説明図。
FIG. 12 is an explanatory view of a conventional approach using a ball end mill that cuts a line of intersection.

【図13】従来の交線を切削するボールエンドミルによ
るアプローチの説明図。
FIG. 13 is an explanatory view of a conventional approach using a ball end mill for cutting a line of intersection.

【符号の説明】 10 数値制御装置 12 NCデータ作成装置 12a マイクロプロセッサ 12e 固定ディスク 20 工作機械 61 曲面創成機能 62 交線算出機能 63 アプローチ機能 64 NCデータ変換機能[Explanation of Codes] 10 Numerical Control Device 12 NC Data Creation Device 12a Microprocessor 12e Fixed Disk 20 Machine Tool 61 Curved Surface Creation Function 62 Intersection Line Calculation Function 63 Approach Function 64 NC Data Conversion Function

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】切削を行う2以上の曲面を作成する曲面創
成手段と、 前記曲面創成手段により作成された曲面相互の交線を算
出する交線算出手段と、 交線の始点に該始点おける接線ベクトル方向から加工工
具をアプローチさせるアプローチと、交線の終点に該終
点おける接線べクトル方向へ加工工具を逃がす逃げとを
付加するアプローチ手段と、 前記交線作成手段により求められた交線の値と前記アプ
ローチ手段により付加された値とを交線切削用NCデー
タに変換するNCデータ変換手段と、を有することを特
徴とするNCデータ作成装置。
1. A curved surface creating means for creating two or more curved surfaces to be cut, an intersecting line calculating means for calculating an intersecting line of curved surfaces created by the curved surface creating means, and a starting point at the starting point of the intersecting line. An approach for approaching the machining tool from the tangent vector direction, and an approach means for adding an escape for escaping the machining tool in the tangential vector direction at the end point of the intersection line, and an intersection line obtained by the intersection line creation means. An NC data creating device comprising: an NC data converting unit that converts a value and a value added by the approaching unit into NC data for intersecting line cutting.
JP10354592A 1992-03-30 1992-03-30 Nc data producing device Pending JPH06214626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10354592A JPH06214626A (en) 1992-03-30 1992-03-30 Nc data producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10354592A JPH06214626A (en) 1992-03-30 1992-03-30 Nc data producing device

Publications (1)

Publication Number Publication Date
JPH06214626A true JPH06214626A (en) 1994-08-05

Family

ID=14356811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10354592A Pending JPH06214626A (en) 1992-03-30 1992-03-30 Nc data producing device

Country Status (1)

Country Link
JP (1) JPH06214626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6311098B1 (en) 1996-03-26 2001-10-30 Toyota Jidosha Kabushiki Kaisha Method and apparatus for preparing data on tool moving path, and machining method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6311098B1 (en) 1996-03-26 2001-10-30 Toyota Jidosha Kabushiki Kaisha Method and apparatus for preparing data on tool moving path, and machining method and system

Similar Documents

Publication Publication Date Title
CN102147600B (en) Numerical control interpolation system for real-time generation of curvature-continuous path
JP5737970B2 (en) Machine tool control system
JP4233147B2 (en) How to determine an applicable feed rate for a machine tool
CN101767303B (en) CNC abrasive belt grinding machine of steam turbine blade
JP5619640B2 (en) Machine tool, machining method, program, and NC data generator
US4649252A (en) Wire-cut electric discharge machining method
WO1997015874A1 (en) Method of axis movement numeric control machine tool and apparatus therefor
EP3278925A1 (en) Tool path-generating method, drilling method, and tool path-generating device
WO1988010171A1 (en) Acceleration/deceleration controller
WO2008053601A1 (en) Working control device, and its program
JPS61125754A (en) Nc data preparing device for processing metal dies
JPH06214626A (en) Nc data producing device
JPS6326707A (en) Method and device for prevention of generation of path error caused by fast nc working droop
Lee Generation of velocity profiles with speed limit of each axis for high-speed machining using look-ahead buffer
Boer et al. A CAPP/CAM expert system for a high productivity, high flexibility CNC turning center
JP3572113B2 (en) Control method of NC machine tool
JP3202068B2 (en) Method of creating tool movement path for NC machining
JP3411477B2 (en) Cutting device control method
JPH0751989A (en) Free-form surface machining device
JP2001179519A (en) Cutting work method and nc data originating device for carrying out the method
JPH0691479A (en) Machining method of noncircular work
Yeh Feed rate determination method for tool path interpolation considering piecewise-continued machining segments with cornering errors and kinematic constraints
JPH0635096B2 (en) NC processing method and device
JPH02132503A (en) Numerical control data producing device
JPH0360620B2 (en)