JPH06214264A - Waveguide type electrooptical element - Google Patents

Waveguide type electrooptical element

Info

Publication number
JPH06214264A
JPH06214264A JP22270492A JP22270492A JPH06214264A JP H06214264 A JPH06214264 A JP H06214264A JP 22270492 A JP22270492 A JP 22270492A JP 22270492 A JP22270492 A JP 22270492A JP H06214264 A JPH06214264 A JP H06214264A
Authority
JP
Japan
Prior art keywords
waveguide
optical waveguide
electrode
buffer layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22270492A
Other languages
Japanese (ja)
Inventor
Masami Hatori
正美 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP22270492A priority Critical patent/JPH06214264A/en
Publication of JPH06214264A publication Critical patent/JPH06214264A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To separate buffer layers by each electrode and and to suppress DC drift by forming a thin-film optical waveguide by a proton exchange and heat treatment. CONSTITUTION:This waveguide type electrooptical element has the thin-film optical waveguide 11 formed on an LiNbO3 substrate 10, the buffer layer consisting of an SiO2 film formed thereon, EOG electrodes 13 formed on the buffer layer 12, a linear diffraction grating (LGC) for light input and LGC for light output formed on the surface of the optical waveguide 11 in the state of separating these EOG electrodes 13 from each other with spaces therebetween and a driving circuit for applying a prescribed voltage to the EOG electrodes 13. The thin-film optical waveguide 11 is formed by executing the heat treatment after the proton exchange. The buffer layer 12 is separated by each electrode of the EOG electrodes 13. As a result, the generation of the DC drift is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気光学効果を有する
薄膜光導波路の上に格子状電極が形成されてなり、この
格子状電極への電圧印加状態に応じて導波光を選択的に
回折させるようにした導波路型電気光学素子に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a thin film optical waveguide having an electro-optic effect and a grid electrode formed on the thin film optical waveguide. The grid light is selectively diffracted according to the voltage applied to the grid electrode. The present invention relates to a waveguide-type electro-optical element configured to do so.

【0002】[0002]

【従来の技術】例えば特開平2−931号公報に示され
るように、電気光学効果を有する薄膜光導波路と、その
上に形成されて該光導波路に電気光学的回折格子(Elec
tro-Optic Gratig)を形成する格子状電極(以下EOG
電極と称する)と、このEOG電極に電圧を印加する駆
動回路とからなり、上記光導波路を導波する導波光を、
EOG電極への電圧印加状態に応じて選択的に回折させ
るようにした導波路型電気光学素子が公知となってい
る。
2. Description of the Related Art As disclosed in, for example, Japanese Patent Application Laid-Open No. 2-931, a thin-film optical waveguide having an electro-optical effect and an electro-optical diffraction grating (Elec grating) formed on the thin-film optical waveguide are provided.
Lattice-like electrodes that form tro-Optic Gratigs (hereinafter EOG)
(Referred to as an electrode) and a drive circuit that applies a voltage to the EOG electrode, and guides light guided through the optical waveguide,
A waveguide type electro-optical element is known which is configured to selectively diffract according to a voltage applied state to an EOG electrode.

【0003】このような導波路型電気光学素子を用いれ
ば、回折光と非回折光(0次光)のいずれか一方を使用
光としたとき、その使用光を回折の有無あるいは程度に
応じて変調することができる。また、上記回折の有無に
応じて導波光の光路を切り換える光スイッチを構成する
こともできる。
When such a waveguide type electro-optical element is used, when either the diffracted light or the non-diffracted light (0th order light) is used, the used light depends on the presence or absence of diffraction or the degree thereof. Can be modulated. Further, it is possible to configure an optical switch that switches the optical path of the guided light depending on the presence or absence of the diffraction.

【0004】ところで、上記のような導波路型電気光学
素子においては、EOG電極による光散乱や光吸収を避
けるために、EOG電極と光導波路との間にSiO2
どからなるバッファ層を形成することが必要である。
By the way, in the above-mentioned waveguide type electro-optical element, a buffer layer made of SiO 2 or the like is formed between the EOG electrode and the optical waveguide in order to avoid light scattering and light absorption by the EOG electrode. It is necessary.

【0005】[0005]

【発明が解決しようとする課題】ところが、上述のよう
なバッファ層を設けた導波路型電気光学素子において
は、いわゆるDCドリフトすなわち、印加電圧対回折効
率の特性が電圧を加えるのに従って変動する現象が生じ
やすいことが認められている。
However, in the above-described waveguide type electro-optical element provided with the buffer layer, so-called DC drift, that is, a phenomenon in which the characteristics of the applied voltage and the diffraction efficiency change as the voltage is applied. It is recognized that

【0006】このようなDCドリフトを防止するための
構造として、従来、JAPANESE JOURNAL OF APPLIED PHYS
ICS (ジャパニーズ・ジャーナル・オブ・アプライド・
フィジックス)Vol.20, No.4, April, 1981 pp.733〜73
7 に示されるように、2本のTi拡散型チャンネル光導
波路の上にCOBRA型電極を各々形成した光導波路型
のカプラー光変調器において、COBRA型電極と光導
波路との間に配するバッファ層のうち電極間の部分を取
り除いて、バッファ層を電極毎に分離する構造が知られ
ている。
As a structure for preventing such DC drift, there has been a conventional Japanese JOURNAL OF APPLIED PHYS.
ICS (Japanese Journal of Applied
Physics) Vol.20, No.4, April, 1981 pp.733〜73
As shown in 7, an optical waveguide type coupler optical modulator in which COBRA type electrodes are formed on two Ti diffusion type channel optical waveguides, and a buffer layer disposed between the COBRA type electrodes and the optical waveguide. There is known a structure in which the buffer layer is separated for each electrode by removing the portion between the electrodes.

【0007】この構造は、前述した薄膜光導波路上にE
OG電極を形成した導波路型電気光学素子とは、光導波
路の構造もまた電極構造も全く異なるものであるが、試
みに上記と同様にTi拡散法によって薄膜光導波路を形
成し、その上に各電極毎に分離したバッファ層を介して
EOG電極を形成してみたが、そのようにして得られた
導波路型電気光学素子においては、DCドリフトを抑え
る効果は得られなかった。
This structure is formed on the above-mentioned thin film optical waveguide by E
Although the structure of the optical waveguide and the electrode structure are completely different from the waveguide type electro-optical element in which the OG electrode is formed, a thin film optical waveguide is formed by the Ti diffusion method similarly to the above, and it is tried on it. Although an EOG electrode was formed through a buffer layer separated for each electrode, the effect of suppressing DC drift was not obtained in the waveguide type electro-optical element thus obtained.

【0008】本発明は上記のような事情に鑑みてなされ
たものであり、薄膜光導波路上にEOG電極を形成して
なる導波路型電気光学素子において、DCドリフトの発
生を防止することを目的とするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to prevent the occurrence of DC drift in a waveguide type electro-optical element formed by forming an EOG electrode on a thin film optical waveguide. It is what

【0009】[0009]

【課題を解決するための手段】本発明による導波路型電
気光学素子は、先に述べた通りの薄膜光導波路と、EO
G電極と、そこに電圧を印加する駆動回路とからなる導
波路型電気光学素子において、上記薄膜光導波路とし
て、プロトン交換および熱処理によって形成されたもの
が用いられる一方、EOG電極と薄膜光導波路との間
に、各電極毎に分離したバッファ層が形成されているこ
とを特徴とするものである。
A waveguide type electro-optical element according to the present invention comprises a thin film optical waveguide as described above and an EO.
In a waveguide-type electro-optical element including a G electrode and a drive circuit for applying a voltage thereto, the thin film optical waveguide formed by proton exchange and heat treatment is used, while the EOG electrode and the thin film optical waveguide are used. A separate buffer layer is formed between the electrodes.

【0010】[0010]

【作用および発明の効果】前述したように、Ti拡散型
の薄膜光導波路上にEOG電極を形成する場合、それら
両者の間に配するバッファ層を電極毎に分離しても、D
Cドリフトを抑える効果は得られないが、上記構成にお
けるように薄膜光導波路をプロトン交換および熱処理に
よって形成した場合は、その理由は不明であるが、バッ
ファ層を電極毎に分離することによりDCドリフトが抑
えられるようになる。
As described above, when the EOG electrode is formed on the Ti diffusion type thin film optical waveguide, even if the buffer layer disposed between the two is separated for each electrode, D
Although the effect of suppressing the C drift cannot be obtained, when the thin film optical waveguide is formed by the proton exchange and the heat treatment as in the above-mentioned configuration, the reason is unknown, but the DC drift is caused by separating the buffer layer for each electrode. Will be suppressed.

【0011】[0011]

【実施例】以下、図面に示す実施例に基づいて本発明を
詳細に説明する。図2および図3はそれぞれ、本発明の
一実施例による導波路型電気光学素子の平面形状および
側面形状を示すものである。この導波路型電気光学素子
は光変調器として構成されたものであり、LiNbO3
基板10上に形成された薄膜光導波路11と、その上に形成
されたSiO2 膜からなるバッファ層12と、このバッフ
ァ層12の上に形成されたEOG電極13と、このEOG電
極13を間において互いに離れる状態で光導波路11の表面
に形成された光入力用線状回折格子(Linear Gratig Co
upler :以下LGCと称する)14および光出力用LGC
15と、上記EOG電極13に所定の電圧を印加する駆動回
路16とを有している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the embodiments shown in the drawings. 2 and 3 are plan and side views, respectively, of a waveguide type electro-optical element according to an embodiment of the present invention. This waveguide type electro-optical element is configured as an optical modulator, and is made of LiNbO 3
The thin film optical waveguide 11 formed on the substrate 10, the buffer layer 12 formed on the SiO 2 film, the EOG electrode 13 formed on the buffer layer 12, and the EOG electrode 13 are interposed between the thin film optical waveguide 11 and the buffer layer 12. At a distance from each other, a linear diffraction grating for optical input (Linear Gratig Co
upler: hereinafter referred to as LGC) 14 and light output LGC
15 and a drive circuit 16 for applying a predetermined voltage to the EOG electrode 13.

【0012】変調される光ビーム20を発する例えばHe
−Neレーザー等のレーザー光源21は、平行光であるこ
の光ビーム20が、基板10の斜めにカットされた端面10a
を通過し、光導波路11を透過してLGC14の部分に入射
するように配置されている。それにより、光ビーム20は
このLGC14で回折して光導波路11内に入射し、該光導
波路11を導波モードで矢印A方向に進行する。
A modulated light beam 20 is emitted, for example He
A laser light source 21, such as a Ne laser, is provided with an end face 10a of the substrate 10 in which this light beam 20 which is parallel light is obliquely cut.
Through the optical waveguide 11 and is incident on the portion of the LGC 14. As a result, the light beam 20 is diffracted by the LGC 14 and enters the optical waveguide 11, and travels in the optical waveguide 11 in the waveguide mode in the direction of arrow A.

【0013】この光ビーム(導波光)20は、EOG電極
13に対応する部分を通って導波するが、EOG電極13に
電圧が印加されていない状態では、この導波光20は直進
する。一方、EOG電極13に駆動回路16から所定の電圧
が印加されると、電気光学効果を有する光導波路11の屈
折率が変化して光導波路11に回折格子が形成され、導波
光20はその回折格子により回折する。以上のようにして
回折した光ビーム20Aおよび回折しない光ビーム20B
は、LGC15において基板10側に回折し、この基板10の
斜めにカットされた端面10bから素子外に出射する。
The light beam (guided light) 20 is emitted from the EOG electrode.
Although guided through the portion corresponding to 13, the guided light 20 travels straight when no voltage is applied to the EOG electrode 13. On the other hand, when a predetermined voltage is applied to the EOG electrode 13 from the drive circuit 16, the refractive index of the optical waveguide 11 having the electro-optical effect is changed and a diffraction grating is formed in the optical waveguide 11, and the guided light 20 is diffracted. Diffract by the grating. The light beam 20A diffracted as described above and the non-diffracted light beam 20B
Is diffracted to the substrate 10 side in the LGC 15 and emitted from the obliquely cut end face 10b of the substrate 10 to the outside of the element.

【0014】そこでこの素子外に出射した例えば光ビー
ム20Aを使用光とすれば、前記駆動回路16による電圧印
加の有無に応じてこの光ビーム20Aを変調することがで
きる。例えば所定の画像信号に基づいてこの光ビーム20
Aを変調する場合は、その画像信号に基づいて駆動回路
16による電圧印加を制御すればよい。
Therefore, if, for example, the light beam 20A emitted outside the device is used as light, the light beam 20A can be modulated according to the presence or absence of voltage application by the drive circuit 16. For example, the light beam 20 is generated based on a predetermined image signal.
When A is modulated, the drive circuit is based on the image signal.
The voltage application by 16 may be controlled.

【0015】本実施例において、LiNbO3 基板10と
してはX板あるいはY板が用いられ、導波光20の伝播方
向をY軸方向(X板使用の場合)あるいはX軸方向(Y
板使用の場合)とする。そして導波光20は、TEモード
で導波させている。また上記LiNbO3 基板10には、
光損傷低減のために、MgOがドープされているもの
や、OH吸収スペクトルの点では2.87μmにピーク
を持つものを用いるのが好ましい。
In this embodiment, an X plate or a Y plate is used as the LiNbO 3 substrate 10, and the propagation direction of the guided light 20 is the Y axis direction (when the X plate is used) or the X axis direction (Y plate).
When using a board). The guided light 20 is guided in the TE mode. Further, the LiNbO 3 substrate 10 includes
In order to reduce optical damage, it is preferable to use one doped with MgO or one having a peak at 2.87 μm in terms of OH absorption spectrum.

【0016】一方EOG電極13としては、電極周期Λが
6.9μmと13.8μm、電極本数が20対、40
対、80対、電極長が100Λ(=690μmと138
0μm)の計6通りのものを作成した。
On the other hand, as the EOG electrode 13, the electrode period Λ is 6.9 μm and 13.8 μm, and the number of electrodes is 20 pairs and 40.
Pair, 80 pairs, electrode length 100 Λ (= 690 μm and 138
0 μm) was prepared in total of 6 ways.

【0017】なお以上の説明から明らかなように、この
構成によれば、光ビーム20の光路を2通りに切り換える
光スイッチを形成することも可能である。
As is apparent from the above description, according to this configuration, it is possible to form an optical switch that switches the optical path of the light beam 20 between two ways.

【0018】ここで本実施例の導波路型電気光学素子に
おいては、図2のB−B線断面図である図1に示すよう
に、バッファ層12がEOG電極13の各電極毎に分離され
ている。また薄膜光導波路11は、プロトン交換後に熱処
理を行なって形成されている。以下、上記の構成に係る
部分の作成方法を、図4を参照して説明する。
Here, in the waveguide type electro-optical element of this embodiment, as shown in FIG. 1 which is a sectional view taken along the line BB of FIG. 2, the buffer layer 12 is separated for each electrode of the EOG electrode 13. ing. The thin film optical waveguide 11 is formed by heat treatment after proton exchange. Hereinafter, a method of creating a portion having the above configuration will be described with reference to FIG.

【0019】まず光導波路11を形成する。白金ルツボ内
にピロリン酸を貯えてそれを温度150℃に保ち、その
中にLiNbO3 基板を64分間浸してH+ (プロト
ン)交換を行なう(図4の(1) 参照)。次いで上記基板
を水洗して酸を洗い落とし、乾燥後、350℃×1時間
の条件で熱処理してH+ を拡散させ、薄膜光導波路11を
得る(図4の(2) 参照)。
First, the optical waveguide 11 is formed. Pyrophosphoric acid is stored in a platinum crucible and kept at a temperature of 150 ° C., and a LiNbO 3 substrate is immersed therein for 64 minutes to carry out H + (proton) exchange (see (1) in FIG. 4). Next, the substrate is washed with water to remove the acid, dried and then heat-treated at 350 ° C. for 1 hour to diffuse H + to obtain a thin film optical waveguide 11 (see (2) in FIG. 4).

【0020】なお以上のようにして作成した薄膜光導波
路11の特性を測定した結果を示す。導波光のプロファイ
ルは、波長633nmのHe−Neレーザーを用いて測
定したところ、1/e2 径で1.6μm厚であり、EO
Gに最適となっている。また光伝播損失は1dB/cm
未満と、極めて低損失である。
The results of measuring the characteristics of the thin film optical waveguide 11 produced as described above are shown below. The profile of the guided light was measured using a He-Ne laser with a wavelength of 633 nm, and was 1 / e 2 diameter was 1.6 μm thick.
Optimal for G. The optical propagation loss is 1 dB / cm
When it is less than 1, the loss is extremely low.

【0021】次にバッファ層12とEOG電極13とを作成
する。上記のようにして形成された薄膜光導波路11の表
面にレジストを塗布し、電子線(EB)描画によりEO
G電極13のパターンを形成する(図4の(3) 参照)。次
に現像を行ない(図4の(4)参照)、その後SiO2
厚さ50〜100nmにスパッタリングし(同図(5)参
照)、その上にAlを厚さ100〜500nmに蒸着し
(同図(6) 参照)、次いでリフトオフを行なうことによ
り、同図(7) に示すようにSiO2 からなるバッファ層
12上にAlからなるEOG電極13が形成される。以上の
ようにすることにより、バッファ層12はEOG電極13の
各電極毎に分離したものとなる。なおバッファ層12は上
記のSiO2 の他、Al2 3 やSiNx等から形成し
てもよい。
Next, the buffer layer 12 and the EOG electrode 13 are formed. A resist is applied to the surface of the thin film optical waveguide 11 formed as described above, and EO is drawn by electron beam (EB) drawing.
The pattern of the G electrode 13 is formed (see (3) in FIG. 4). Next, development is performed (see (4) in FIG. 4), then SiO 2 is sputtered to a thickness of 50 to 100 nm (see (5) in the same figure), and Al is vapor-deposited to a thickness of 100 to 500 nm (see FIG. 5). (6) in the figure), and then lift-off is performed to obtain a buffer layer made of SiO 2 as shown in (7) in the figure.
An EOG electrode 13 made of Al is formed on the surface 12. By doing so, the buffer layer 12 is separated for each electrode of the EOG electrode 13. The buffer layer 12 may be formed of Al 2 O 3 , SiNx, or the like in addition to SiO 2 described above.

【0022】上記構成の本実施例の導波路型電気光学素
子において、DCドリフトが生じるか否かを測定した結
果を以下に記す。この測定に使用した導波路型電気光学
素子は、前述した6種類のうちの1つ、つまり電極周期
Λが13.8μm、電極本数が20対のものである。そ
して測定は、駆動回路16から、図5の(1) に示すパルス
幅50秒のパルス電圧を周期100秒でEOG電極13に
印加し、そのときの光ビーム20Aの強度を検出すること
によって行なった。この場合、図5の(2) に示すよう
に、上記パルス電圧と同じ波形で光ビーム20Aの強度が
変化し、DCドリフトが全く生じていないことが確認さ
れた。
The results of measuring whether or not DC drift occurs in the waveguide type electro-optical element of the present embodiment having the above-mentioned structure will be described below. The waveguide type electro-optical element used for this measurement is one of the above-mentioned six types, that is, the electrode period Λ is 13.8 μm and the number of electrodes is 20 pairs. The measurement is performed by applying a pulse voltage having a pulse width of 50 seconds shown in FIG. 5 (1) to the EOG electrode 13 at a cycle of 100 seconds from the drive circuit 16 and detecting the intensity of the light beam 20A at that time. It was In this case, as shown in (2) of FIG. 5, it was confirmed that the intensity of the light beam 20A changed with the same waveform as the pulse voltage, and no DC drift occurred.

【0023】一方、比較例として、前述のプロトン交換
による光導波路11の代りにTi拡散光導波路を形成し、
その上に上記実施例と同様のバッファ層12およびEOG
電極13を層成してなる導波路型電気光学素子を作成し
た。この比較例の素子において、SiO2 からなるバッ
ファ層12は厚さが50nm、AlからなるEOG電極13
は厚さが140nmであり、バッファ層12はEOG電極
13の各電極毎に分離されている。
On the other hand, as a comparative example, a Ti diffusion optical waveguide is formed in place of the optical waveguide 11 by the above-mentioned proton exchange,
On top of that, the buffer layer 12 and EOG similar to those in the above-mentioned embodiment are provided.
A waveguide-type electro-optical element formed by layering the electrodes 13 was prepared. In the device of this comparative example, the buffer layer 12 made of SiO 2 has a thickness of 50 nm and the EOG electrode 13 made of Al.
Has a thickness of 140 nm, and the buffer layer 12 is an EOG electrode
It is separated for each of the 13 electrodes.

【0024】この比較例の素子について上記と同様の測
定を行なった結果を図5の(3) に示す。図示される通り
この比較例の素子においては、EOG電極13に駆動電圧
が印加されている間光ビーム20Aの強度がパルス状に立
ち上がった状態を維持すべきであるのに、立上り後急激
に低下してしまい、またこの駆動電圧がOFFになった
際光ビーム20Aの強度が瞬時にゼロまで低下するべきで
あるのに応答遅れがあり、DCドリフト防止の効果が得
られていないのが分かる。
The result of the same measurement as described above for the device of this comparative example is shown in FIG. 5 (3). As shown in the figure, in the device of this comparative example, the intensity of the light beam 20A should be maintained in a pulse-like state while the drive voltage is being applied to the EOG electrode 13, but the intensity sharply decreases after the rise. It can be seen that when the drive voltage is turned off, the intensity of the light beam 20A should be instantly reduced to zero, but there is a response delay, and the effect of preventing DC drift is not obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による導波路型電気光学素子
の要部を示す断面図
FIG. 1 is a sectional view showing a main part of a waveguide type electro-optical element according to an embodiment of the present invention.

【図2】上記導波路型電気光学素子の平面図FIG. 2 is a plan view of the waveguide type electro-optical element.

【図3】上記導波路型電気光学素子の側面図FIG. 3 is a side view of the waveguide type electro-optical element.

【図4】上記導波路型電気光学素子の作成方法を説明す
る概略図
FIG. 4 is a schematic diagram illustrating a method for manufacturing the above-mentioned waveguide type electro-optical element.

【図5】上記導波路型電気光学素子のDCドリフト発生
状況を、比較例の素子とともに調べた結果を示すグラフ
FIG. 5 is a graph showing the results of examining the DC drift occurrence state of the above-mentioned waveguide type electro-optical element together with the element of the comparative example.

【符号の説明】 10 LiNbO3 基板 11 薄膜光導波路 12 バッファ層 13 EOG電極 16 駆動回路 20 光ビーム 20A 回折した光ビーム 20B 回折しない光ビーム[Explanation of symbols] 10 LiNbO 3 substrate 11 thin film optical waveguide 12 buffer layer 13 EOG electrode 16 drive circuit 20 light beam 20A diffracted light beam 20B non-diffracted light beam

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電気光学効果を有する薄膜光導波路と、
この光導波路上に形成された格子状電極と、この格子状
電極に電圧を印加する駆動回路とを有し、 前記薄膜光導波路の格子状電極に対応する部分を導波す
る導波光を、該格子状電極への電圧印加状態に応じて選
択的に回折させる導波路型電気光学素子において、 前記薄膜光導波路として、プロトン交換および熱処理に
よって形成されたものが用いられ、 前記格子状電極と薄膜光導波路との間に、各電極毎に分
離したバッファ層が形成されていることを特徴とする導
波路型電気光学素子。
1. A thin film optical waveguide having an electro-optical effect,
The thin film optical waveguide has a grid electrode formed on the optical waveguide and a drive circuit for applying a voltage to the grid electrode, and guides light guided in a portion corresponding to the grid electrode of the thin film optical waveguide. In a waveguide type electro-optical element that selectively diffracts according to a voltage applied state to a grid electrode, a thin film optical waveguide formed by proton exchange and heat treatment is used. A waveguide type electro-optical element characterized in that a buffer layer separated for each electrode is formed between the waveguide and the waveguide.
JP22270492A 1992-08-21 1992-08-21 Waveguide type electrooptical element Withdrawn JPH06214264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22270492A JPH06214264A (en) 1992-08-21 1992-08-21 Waveguide type electrooptical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22270492A JPH06214264A (en) 1992-08-21 1992-08-21 Waveguide type electrooptical element

Publications (1)

Publication Number Publication Date
JPH06214264A true JPH06214264A (en) 1994-08-05

Family

ID=16786603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22270492A Withdrawn JPH06214264A (en) 1992-08-21 1992-08-21 Waveguide type electrooptical element

Country Status (1)

Country Link
JP (1) JPH06214264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122062A (en) * 2014-12-24 2016-07-07 日本放送協会 Optical deflection element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122062A (en) * 2014-12-24 2016-07-07 日本放送協会 Optical deflection element

Similar Documents

Publication Publication Date Title
JP3771287B2 (en) Waveguide type electro-optic element
Ohmachi et al. Electro‐optic light modulator with branched ridge waveguide
JPH1184328A (en) Integrated optical light intensity modulator and manufacture thereof
JP4119508B2 (en) Optical wavelength conversion element and manufacturing method thereof, light generation apparatus and optical pickup using the element, and manufacturing method of polarization inversion unit
JP3907762B2 (en) Optical wavelength conversion element, short wavelength light generator and optical pickup
JPH05196972A (en) Waveguide type optical directional coupler
Verber et al. Large-angle optical switching in waveguides in LiNbO3
JPH06214264A (en) Waveguide type electrooptical element
JPS63298309A (en) Integrated light waveguide, manufacture thereof and use in electrooptical modulator
Chen et al. Bragg switch for optical channel waveguides
US5566258A (en) Waveguide type electro-optical element comprising material having specific resistance ranging between 107-1011 omega CM
JP2739405B2 (en) Electric field sensor
JP2877125B2 (en) Waveguide type optical arrester
JP3417427B2 (en) Optical waveguide device and method of manufacturing optical waveguide device or optical waveguide
JPH05297430A (en) Formation of domain inversion structure of ferroelectric substance
Samson et al. Two-section reversed/spl Delta//spl beta/switch with uniform electrodes and domain reversal
Finak et al. An improved optical TE-TM mode splitter and modulator using a Ti-LiNbO 3 Y-junction waveguide
JP2764473B2 (en) How to make an optical waveguide
JPH0667235A (en) Wavelength conversion device
JPH07168042A (en) Light control device and its manufacture
JPH07287259A (en) Waveguide type electrooptic element
JPH10213821A (en) Waveguide type light limiter
JP2004333949A (en) Optical waveguide element
JPH10307225A (en) Waveguide type optical element and its manufacture
JPS6269247A (en) Optical switch

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102