JPH06213763A - Shock wave pipe employing detonation driven piston - Google Patents

Shock wave pipe employing detonation driven piston

Info

Publication number
JPH06213763A
JPH06213763A JP3600993A JP3600993A JPH06213763A JP H06213763 A JPH06213763 A JP H06213763A JP 3600993 A JP3600993 A JP 3600993A JP 3600993 A JP3600993 A JP 3600993A JP H06213763 A JPH06213763 A JP H06213763A
Authority
JP
Japan
Prior art keywords
piston
pipe
shock wave
detonation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3600993A
Other languages
Japanese (ja)
Inventor
Kunio Terao
邦夫 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3600993A priority Critical patent/JPH06213763A/en
Publication of JPH06213763A publication Critical patent/JPH06213763A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a system for generating shock wave of gas using a detonation driven free piston being employed in an ultrasonic wind tunnel requiring high temperature, high pressure driving gas. CONSTITUTION:A detonation pipe 1, a piston acceleration pipe 2, a driving gas pipe 3 and a shock wave generating pipe 4 are coupled sequentially through first, second and third diaphragms 6, 7, 8 and a firing unit is disposed at one end of the detonation pipe while a piston is disposed in the piston acceleration pipe. The detonation pipe is filled with a combustible mixture gas, the driving gas pipe is filled with a shock wave driving gas, the shock wave generating pipe is filled with a low pressure gas and the piston acceleration pipe is evacuated.

Description

【発明の詳細な説明】Detailed Description of the Invention

〔0001〕 〔産業上の利用分野〕本発明により、マッハ数10乃至
20の強い衝撃波が得られるので、 1)高エンタルピー超音速風洞として利用出来、マッハ
数5乃至10の超音速流を簡単に作る事ができる。 2)衝撃波発生管端での反射衝撃波中の気体を5乃至1
0万度(K)の高温にする事ができるので、常温で固体
の炭素や金属も気化出来る。其をノズルを通して急膨
張、急冷却して固体化し,新材料作成が可能となる。 3)高温完全プラズマとして利用出来る。 〔0002〕 〔従来の技術〕ストーカ管の様に、自由ピストンを高圧
ガスで駆動し、それで衝撃波駆動気体を断熱的に圧縮、
加熱して強い衝撃波を得る方法がある。 〔0003〕 〔発明が解決しようとする課題〕従来の方法ではピスト
ン駆動用に数百kg/cm以上の高圧を必要とするた
め、耐圧上装置が重くなり、構造も複雑となる。また、
断熱圧縮のため温度上昇が少なく、効果が低い。 〔0004〕本発明では、ピストン駆動混合気の初期圧
を10kg/cm以下の低い圧力にし、装置の軽量
化、構造の簡単化をはかり、また、衝撃波駆動気体を繰
り返し衝撃波で圧縮、加熱するため、はるかに高い温度
に出来、更に強い衝撃波を得る事が出来る。 〔0005〕 〔課題を解決するための手段〕上記目的を達成するた
め、本発明に於いては、デトネーション管、ピストン加
速管、駆動気体管、衝撃波発生管を順次金属又はポリエ
ステル等で出来た隔膜を介し連結し、ピストン加速管中
には自由ピストンを入れ、デトネーション管中の一端に
着火装置を持つ装置を作る。 〔0006〕デトネーション管中には可燃性混合気、駆
動気体管中にはヘリウム、水素等の衝撃波駆動に適した
気体をそれぞれ封入、ピストン加速管中は真空にしてお
く。 〔0007〕 〔作用〕デトネーション管端の着火装置で可燃性混合気
に着火すると火炎が伝播し、それがデトネーション波に
遷移する。背後の隔膜がデトネーションの圧力で破断、
さらに自由ピストンがデトネーション波背後気体の圧
力、流れにより駆動され、ピストン加速管中で加速さ
れ、毎秒数百メートルの速度で飛翔する。 〔0008〕その高速で飛翔するピストンはさらに第二
の隔膜を破り、駆動気体中に突入、減速しながら進が、
その前面に衝撃波を発生する。その衝撃波は次の第三の
隔膜とピストンの間を反射を繰り返しつつ往復し、その
けっか、駆動気体を300乃至1000kg/cm
高圧に圧縮、2000乃至5000°Kの高温に加熱す
る。
[0001] [Industrial field of application] Since a strong shock wave of Mach number 10 to 20 can be obtained by the present invention, 1) it can be used as a high enthalpy supersonic wind tunnel, and a supersonic flow of Mach number 5 to 10 can be easily performed. You can make it. 2) 5 to 1 gas in the shock wave reflected at the end of the shock wave generating tube
Since it can be heated to a high temperature of 0,000 degrees Celsius (K), solid carbon and metal can be vaporized at room temperature. It can be rapidly expanded through a nozzle, rapidly cooled and solidified to create a new material. 3) It can be used as high temperature complete plasma. [0002] [Prior Art] Like a stoker tube, a free piston is driven by a high-pressure gas, so that a shock wave driven gas is adiabatically compressed,
There is a method of heating to obtain a strong shock wave. [Problems to be Solved by the Invention] In the conventional method, a high pressure of several hundreds kg / cm 2 or more is required for driving the piston, so that the pressure resistance device becomes heavy and the structure becomes complicated. Also,
Due to adiabatic compression, the temperature rise is small and the effect is low. In the present invention, the initial pressure of the piston-driven mixture is set to a low pressure of 10 kg / cm 2 or less to reduce the weight of the device and simplify the structure, and the shock-wave driven gas is repeatedly compressed and heated by shock waves. Therefore, the temperature can be much higher, and a stronger shock wave can be obtained. [0005] [Means for Solving the Problems] In order to achieve the above object, in the present invention, a detonation tube, a piston accelerating tube, a driving gas tube, and a shock wave generating tube are sequentially formed by a metal or polyester diaphragm. A free piston is inserted in the piston accelerating pipe, and a device having an ignition device at one end in the detonation pipe is made. [0006] A combustible gas mixture is filled in the detonation tube, a gas suitable for shock wave driving such as helium and hydrogen is filled in the driving gas tube, and a vacuum is kept in the piston accelerating tube. [Operation] [Operation] When a flammable air-fuel mixture is ignited by an igniter at the end of a detonation tube, a flame propagates, and it transits to a detonation wave. The diaphragm behind is broken by the pressure of detonation,
Furthermore, the free piston is driven by the pressure and flow of gas behind the detonation wave, is accelerated in the piston acceleration tube, and flies at a speed of several hundred meters per second. [0008] The high-speed flying piston further breaks the second diaphragm, plunges into the driving gas, and advances while decelerating,
A shock wave is generated in front of it. The shock wave reciprocates between the third diaphragm and the piston while repeating reflection, and at that time, the driving gas is compressed to a high pressure of 300 to 1000 kg / cm 2 and heated to a high temperature of 2000 to 5000 ° K.

〔0009〕このようにして得られた高温、高圧気体を
駆動気体として、高エンタルピー風洞窟を作動させ、高
マッハ数の超音速流や、衝撃波管中で高マッハ数の衝撃
波を発生させることができる。 〔0010〕 〔実施例〕実施例について図面を参照して説明する。図
1のデトネーション管(1)中にプロパン−酸素の等量
混合気を圧力3kg/cm,20゜Cで封入し、点火
栓(9)で着火すると、火炎が伝播しデトネーション波
に遷移する。その時の上昇圧で第一隔膜(6)が破れ、
自由ピストン(5)が撚焼ガスの圧力と流れにより駆動
される。その時の状況を図2の時間−位置線図に示す。 〔0011〕ピストンは真空の加速管中を速度を速めな
がら飛翔し400m/s以上に達し第二隔膜(7)を破
り、駆動気体管(3)ヘリウムに突入する。図2中に示
す様にピストン前面で衝撃波を生じ、それがさらに伝播
して第三隔膜(8)に衝突、反射し、反対方向に伝播、
ピストンに衝突、また反射して前方に伝播し再び第三隔
膜で反射する。このように衝撃波は反射を繰り返しピト
ンと第三隔膜間を何度も往復する。その時の駆動気体ヘ
リウム中の実測圧力変化の状況を図3に示す。衝撃波の
反射の様子を良く表している。 〔0012〕駆動気体の圧力が500kg/cm近く
に達すると、第三隔膜(8)が破れ駆動気体のヘリウム
が圧力10mmHgのアルゴン・ガス中に流れ込み、そ
こにマッハ数15の衝撃波を生ずる。この時ヘリウムの
温度は約2500°Kと推定される。 〔0013〕 〔発明の効果〕本発明は、以上説明したように、簡単で
軽量な装置で高温(2000°K以上)高圧(300k
g/cm以上)の気体が得られるので、それを種々利
用する事ができる。特に衝撃波管の駆動気体として利用
すると、高マッハ数の衝撃波を発生させ、其により更
に、5万乃至10万度Kのプラズマが作れ、常温で固体
の炭素や金属も気体とし、其をノズルを通して急膨張、
急冷却する事により、新材料の開発が可能となる。
[0009] The high-temperature, high-pressure gas thus obtained is used as a driving gas to operate a high-enthalpy wind cave to generate a high-Mach number supersonic flow and a high-Mach number shock wave in a shock tube. it can. Embodiments Embodiments will be described with reference to the drawings. When an equal amount mixture of propane-oxygen is filled in the detonation pipe (1) of FIG. 1 at a pressure of 3 kg / cm 2 , 20 ° C and ignited by the spark plug (9), a flame propagates and transitions to a detonation wave. . At that time, the first diaphragm (6) broke due to the rising pressure,
The free piston (5) is driven by the pressure and flow of the twisting gas. The situation at that time is shown in the time-position diagram of FIG. [0011] The piston flies in the vacuum accelerating tube while increasing the speed, reaches 400 m / s or more, breaks the second diaphragm (7), and rushes into the helium drive gas tube (3). As shown in FIG. 2, a shock wave is generated in front of the piston, which further propagates, collides with the third diaphragm (8), is reflected, and propagates in the opposite direction.
It collides with the piston, is reflected, propagates forward, and is reflected again by the third diaphragm. In this way, the shock wave is repeatedly reflected and repeatedly travels back and forth between the piton and the third diaphragm. FIG. 3 shows the situation of the actual pressure change in the driving gas helium at that time. It shows well how the shock wave is reflected. [0012] When the pressure of the driving gas reaches near 500 kg / cm 2 , the third diaphragm (8) is broken and helium as the driving gas flows into the argon gas having a pressure of 10 mmHg, and a shock wave of Mach number 15 is generated there. At this time, the temperature of helium is estimated to be about 2500 ° K. [Effects of the Invention] As described above, the present invention uses a simple and lightweight device for high temperature (2000 ° K or higher) and high pressure (300k).
Since a gas of g / cm 2 or more) is obtained, it can be used in various ways. Especially when it is used as a driving gas for a shock tube, a shock wave with a high Mach number is generated, which allows plasma of 50,000 to 100,000 K to be generated, and carbon or metal that is solid at room temperature is also gas, which is passed through the nozzle. Sudden expansion,
Rapid cooling enables the development of new materials.

〔符号の説明〕[Explanation of symbols]

0 先端壁 1 デトネーション管 2 ピストン加速管 3 駆動気体管 4 衝撃波発生管 5 自由ピストン 6 第一隔膜 7 第二隔膜 8 第三隔膜 9 着火用放電電極 10 後端壁 0 tip wall 1 detonation tube 2 piston acceleration tube 3 driving gas tube 4 shock wave generation tube 5 free piston 6 first diaphragm 7 second diaphragm 8 third diaphragm 9 ignition discharge electrode 10 rear end wall

Claims (3)

【特許請求の範囲】[Claims] 〔請求項1〕 デトネーション管(1)、ピストン加速
管(2)、駆動気体管(3)、衝撃波発生管を順次第一
隔膜(6)、第二隔膜(7)、第三隔膜(8)で仕切っ
た状態で連結し、更にピストン加速管中に第一隔膜に接
して自由ピストン(5)をおいた装置。
[Claim 1] A detonation tube (1), a piston accelerating tube (2), a driving gas tube (3), and a shock wave generating tube are sequentially arranged as a first diaphragm (6), a second diaphragm (7) and a third diaphragm (8). A device in which the free piston (5) is placed in contact with the first diaphragm in the piston accelerating pipe and connected in the state of being partitioned by.
〔請求項2〕 自由ピストン(5)をデトネーション波
で駆動できるようにデトネーション管(1〕中に可燃性
混合気を任意の圧力、温度で封入し、管端近くに設けら
れた着火装置(9)により着火される構造。
[Claim 2] A detonation pipe (1) is filled with a combustible mixture at an arbitrary pressure and temperature so that the free piston (5) can be driven by a detonation wave, and an ignition device (9) provided near the pipe end. ) Structure that is ignited by.
〔請求項3〕 ピストン加速管中は真空、又はそれに近
い低圧にしておきピストンが加速され、高速で飛翔し易
い構造。
[Claim 3] A structure in which the piston is accelerated and the piston is accelerated by keeping the inside of the piston accelerating tube at a vacuum or at a low pressure close to it so that the piston can fly at a high speed.
JP3600993A 1993-01-14 1993-01-14 Shock wave pipe employing detonation driven piston Pending JPH06213763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3600993A JPH06213763A (en) 1993-01-14 1993-01-14 Shock wave pipe employing detonation driven piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3600993A JPH06213763A (en) 1993-01-14 1993-01-14 Shock wave pipe employing detonation driven piston

Publications (1)

Publication Number Publication Date
JPH06213763A true JPH06213763A (en) 1994-08-05

Family

ID=12457767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3600993A Pending JPH06213763A (en) 1993-01-14 1993-01-14 Shock wave pipe employing detonation driven piston

Country Status (1)

Country Link
JP (1) JPH06213763A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442034B2 (en) 2003-12-11 2008-10-28 Shocksystem, Inc. Detonative cleaning apparatus
CN102384834A (en) * 2011-08-10 2012-03-21 中国科学院力学研究所 Detonation-driving shock tunnel explosive discharge device
CN107271132A (en) * 2017-05-12 2017-10-20 中国科学院力学研究所 A kind of method that jet engine high-temperature fuel gas is simulated based on single detonation driven clean gas
CN107966262A (en) * 2017-11-20 2018-04-27 北京航天长征飞行器研究所 A kind of high-temperature vacuum wind tunnel test cabin and diffuser overall structure and slip compensation method for thermal with slip thermal compensation function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442034B2 (en) 2003-12-11 2008-10-28 Shocksystem, Inc. Detonative cleaning apparatus
CN102384834A (en) * 2011-08-10 2012-03-21 中国科学院力学研究所 Detonation-driving shock tunnel explosive discharge device
CN107271132A (en) * 2017-05-12 2017-10-20 中国科学院力学研究所 A kind of method that jet engine high-temperature fuel gas is simulated based on single detonation driven clean gas
CN107966262A (en) * 2017-11-20 2018-04-27 北京航天长征飞行器研究所 A kind of high-temperature vacuum wind tunnel test cabin and diffuser overall structure and slip compensation method for thermal with slip thermal compensation function
CN107966262B (en) * 2017-11-20 2019-07-12 北京航天长征飞行器研究所 A kind of high-temperature vacuum wind tunnel test cabin and diffuser overall structure and sliding compensation method for thermal with sliding thermal compensation function

Similar Documents

Publication Publication Date Title
Helman et al. Detonation pulse engine
Thomas et al. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction
Wu et al. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes
Urtiew et al. Experimental observations of the transition to detonation in an explosive gas
Canning et al. Ballistic-range technology
Crittenden et al. Combustion-driven jet actuators for flow control
Dabora et al. A study of heterogeneous detonations.
US4982647A (en) Method and apparatus for initating stable operation of a ram accelerator
Stalker The free-piston shock tube
Vasiljev Initiation of gaseous detonation by a high speed body
Lu et al. Recent advances in detonation techniques for high-enthalpy facilities
JPH06213763A (en) Shock wave pipe employing detonation driven piston
Morgan et al. A review of the use of expansion tubes for creating superorbital flows
Desbordes et al. Supersonic H2-air combustions behind oblique shock waves
Zhao et al. Performance of a detonation driven shock tunnel
Wiggins et al. Rotating detonations through hydrogen-air and ethylene-air mixtures in hollow and flow-through combustors
BRUCKNER et al. Investigation of gasdynamic phenomena associated with the ram accelerator concept
US3839094A (en) Fluidic thermoelectric generator
Kull et al. Experimental studies of superdetonative ram accelerator modes
Daniau et al. Effects of nozzles of different length and shape on the propulsion performance of pulsed detonation engines
MCALEVY III et al. Tapered resonance tubes-Some experiments
Urtiew et al. Transverse flame-shock interactions in an explosive gas
Toong Instabilities in reacting flows
Bruckner et al. Initiation of combustion in the thermally choked ram accelerator
Bar-Or et al. The reaction zone structure of cylindrical detonations in monodisperse sprays