JPH062126Y2 - Thermocouple temperature measuring device - Google Patents

Thermocouple temperature measuring device

Info

Publication number
JPH062126Y2
JPH062126Y2 JP7129487U JP7129487U JPH062126Y2 JP H062126 Y2 JPH062126 Y2 JP H062126Y2 JP 7129487 U JP7129487 U JP 7129487U JP 7129487 U JP7129487 U JP 7129487U JP H062126 Y2 JPH062126 Y2 JP H062126Y2
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
measuring device
differential amplifier
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7129487U
Other languages
Japanese (ja)
Other versions
JPS63181832U (en
Inventor
陽康 村林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP7129487U priority Critical patent/JPH062126Y2/en
Publication of JPS63181832U publication Critical patent/JPS63181832U/ja
Application granted granted Critical
Publication of JPH062126Y2 publication Critical patent/JPH062126Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【考案の詳細な説明】 [考案の分野] この考案は、温度補償回路をもった熱電対測温装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a thermocouple temperature measuring device having a temperature compensation circuit.

[従来技術とその問題点] 第5図はこの種の熱電対測温装置の一例を示す回路図で
ある。
[Prior Art and Its Problems] FIG. 5 is a circuit diagram showing an example of this type of thermocouple temperature measuring device.

図において、1は熱電対で、この熱電対1の正負端子、
つまり冷接点2,3をたとえば0℃に保持すれば、その
冷接点2,3間に熱起電力Exっが発生するから、たと
えばこれを直流電圧計に接続すれば、測温点4の温度T
1を知ることができる。ところが、冷接点2,3の温度
が変動すると、熱電対1の発生起電力Eも変動するか
ら、測温点4の正確な温度T1を知ることができない。
In the figure, 1 is a thermocouple, the positive and negative terminals of this thermocouple 1,
That is, if the cold junctions 2 and 3 are kept at 0 ° C., for example, a thermoelectromotive force Ex is generated between the cold junctions 2 and 3. Therefore, if this is connected to a DC voltmeter, the temperature T of the temperature measuring point 4
You can know 1. However, when the temperature of the cold junctions 2 and 3 fluctuates, the electromotive force E of the thermocouple 1 also fluctuates, so that the accurate temperature T1 of the temperature measuring point 4 cannot be known.

そこで、従来、たとえば抵抗ブリッジ回路5の一辺に冷
接点補償用の感温素子6を介挿するとともに、上記ブリ
ッジ回路5の他の二辺を構成する摺動抵抗器7の接点と
連動するサーボモータ8を設けたものが知られている。
(電子工学ポケットブック第3版、第9編電子計測・計
測機器第9−94頁参照) いま、上記感温素子6を冷接点2,3の温度と同じ温度
に保持し、その温度が変化したとき、感温素子6の抵抗
値も変化し、その温度変化に相当する電圧Eを発生さ
せて、温度補償を達成する。
Therefore, conventionally, for example, a servo which interposes a temperature sensitive element 6 for cold junction compensation on one side of the resistance bridge circuit 5 and interlocks with a contact of a sliding resistor 7 constituting the other two sides of the bridge circuit 5 is used. A motor having a motor 8 is known.
(Refer to Electronic Engineering Pocket Book, 3rd Edition, 9th Edition, Electronic Measurement / Measurement Equipment, pages 9-94) Now, the temperature sensor 6 is kept at the same temperature as the cold junctions 2 and 3, and the temperature changes. At that time, the resistance value of the temperature sensitive element 6 also changes, and the voltage E S corresponding to the temperature change is generated to achieve temperature compensation.

ところが、この種の熱電対測温装置は熱電対1の接続端
子2,3がケース9の外部に配置されており、その近傍
のケース9の内部に感温素子6が配置されているから、
熱電対1の接続端子2,3と感温素子6との間に所定の
距離的な誤差がある。そのため、ケース9の内部にトラ
ンスのような発熱体が存在していると、その熱勾配によ
って熱電対1の冷接点2,3と感温素子6との間に温度
差が生じて、正確な温度補償が達成できない欠点を有す
る。
However, in this type of thermocouple temperature measuring device, the connection terminals 2 and 3 of the thermocouple 1 are arranged outside the case 9, and the temperature sensitive element 6 is arranged inside the case 9 in the vicinity thereof.
There is a predetermined distance error between the connection terminals 2 and 3 of the thermocouple 1 and the temperature sensitive element 6. Therefore, when a heating element such as a transformer is present inside the case 9, a temperature difference occurs between the cold junctions 2 and 3 of the thermocouple 1 and the temperature sensitive element 6 due to the thermal gradient, and an accurate temperature difference occurs. It has the drawback that temperature compensation cannot be achieved.

[考案の目的] この考案は上記欠点を改善するためになされたもので、
熱電対の接続端子と感温素子との間に所定の距離的な誤
差があっても、正確な温度補償が達成できる熱電対測温
装置を提供することを目的とする。
[Purpose of Invention] This invention was made to improve the above-mentioned drawbacks.
An object of the present invention is to provide a thermocouple temperature measuring device capable of achieving accurate temperature compensation even if there is a predetermined distance error between the connection terminal of the thermocouple and the temperature sensitive element.

[考案の構成と効果] この考案による熱電対測温装置は、熱電対測温装置を構
成するケースの外部に設定された熱電対の接続端子と、
この熱電対接続端子の近傍に位置して上記ケースの内部
に配設された感温素子と、少なくとも上記ケースの内部
発熱体の近傍に位置して上記ケースの内部に配設された
感温素子と、上記各感温素子と抵抗体との複数の直列体
を並列接続してなる直並列体と、上記感温素子と抵抗体
との複数の各接続点の電位を入力とする差動増幅器とを
備えたことを特徴とする。
[Structure and Effect of the Invention] A thermocouple temperature measuring device according to the present invention includes a thermocouple connection terminal set outside a case constituting the thermocouple temperature measuring device,
A temperature-sensitive element disposed near the thermocouple connection terminal inside the case, and a temperature-sensitive element disposed at least near the internal heating element of the case inside the case. And a serial / parallel body in which a plurality of series bodies of the temperature sensitive elements and resistors are connected in parallel, and a differential amplifier having the potentials at a plurality of connection points of the temperature sensitive elements and resistors as inputs It is characterized by having and.

上記差動増幅器の増幅度は、この差動増幅器の出力が熱
電対の測温点の温度のみの関数となるように調整して決
定される。
The amplification degree of the differential amplifier is adjusted and determined so that the output of the differential amplifier is a function of only the temperature at the temperature measuring point of the thermocouple.

このように、差動増幅器の増幅度を設定することによ
り、熱電対の接続端子と感温素子との間に所定の距離的
な誤差があっても、正確な温度補償が達成できる。
By setting the amplification degree of the differential amplifier in this manner, accurate temperature compensation can be achieved even if there is a predetermined distance error between the connection terminal of the thermocouple and the temperature sensitive element.

[実施例の説明] 以下、この考案の実施例を図面にしたがって説明する。
第1図はこの考案による熱電対測温装置の一例を示す回
路図である。第1図において、第5図と同一部分には同
一の符号を付してその詳しい説明を省略する。
[Description of Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing an example of a thermocouple temperature measuring device according to the present invention. In FIG. 1, the same parts as those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.

図において、熱電対1の負側接続端子3は直列接続され
た抵抗体R1と感温素子Z1の接続点10に接続されて
いる。上記抵抗体R1と感温素子Z1の直列体には、抵
抗体R2と感温素子Z2の直列体、および抵抗体R20
と抵抗体R21の直列体が並列接続されている。上記感
温素子Z1,Z2は、たとえば抵抗体やコイルから構成
されている。
In the figure, the negative connection terminal 3 of the thermocouple 1 is connected to the connection point 10 of the resistor R1 and the temperature sensitive element Z1 which are connected in series. The series body of the resistor R1 and the temperature sensitive element Z1 includes a series body of the resistor R2 and the temperature sensitive element Z2, and a resistor R20.
And a resistor R21 in series are connected in parallel. The temperature sensitive elements Z1 and Z2 are composed of, for example, resistors and coils.

11は直流定電圧回路の正側端子で、上記抵抗体R1と
感温素子Z1の直列体の一方に電圧Vccが供給される
とともに、他方の接地されている。
Reference numeral 11 denotes a positive side terminal of the DC constant voltage circuit, which supplies the voltage Vcc to one of the series bodies of the resistor R1 and the temperature sensitive element Z1 and grounds the other.

12,13が差動増幅器で一方の差動増幅器12は演算
増幅器OP1と4つの抵抗体R3,R4,R5およびR
6から構成されている。また、他方の差動増幅器13は
演算増幅器OP2と4つの抵抗体R7,R8,R9およ
びR10から構成されている。
Reference numerals 12 and 13 are differential amplifiers, and one differential amplifier 12 is an operational amplifier OP1 and four resistors R3, R4, R5 and R.
It is composed of 6. The other differential amplifier 13 is composed of an operational amplifier OP2 and four resistors R7, R8, R9 and R10.

すなわち、上記演算増幅器OP1の負側端子は、抵抗体
R3を介して抵抗体R20とR21の接続点14に接続
され、その正側端子は、抵抗体R5を介して熱電対1の
正側接続端子2に接続されている。また、他方の演算増
幅器OP2の負側端子は、抵抗体R7を介して抵抗体R
1と感温素子Z1の接続点10に接続され、その正側端
子は、抵抗体R8を介して抵抗体R2感温素子Z2の接
続点15に接続されている。さらに、この演算増幅器O
P2の出力端子は、抵抗体R4を介して、上記演算増幅
器OP1の負側端子に接続されている。16は演算増幅
器OP1の出力端子である。
That is, the negative terminal of the operational amplifier OP1 is connected to the connection point 14 of the resistors R20 and R21 via the resistor R3, and the positive terminal thereof is connected to the positive side of the thermocouple 1 via the resistor R5. It is connected to terminal 2. Further, the negative terminal of the other operational amplifier OP2 has a resistor R7 via a resistor R7.
1 is connected to a connection point 10 between the temperature sensitive element Z1 and its positive terminal is connected to a connection point 15 between the resistor R2 and the temperature sensitive element Z2 via the resistor R8. Furthermore, this operational amplifier O
The output terminal of P2 is connected to the negative terminal of the operational amplifier OP1 via the resistor R4. Reference numeral 16 is an output terminal of the operational amplifier OP1.

上記構成において、直接電圧回路からの定電圧Vccが
抵抗体R20と抵抗体R21とで分圧されて、接続点1
4の電圧V3が抵抗体R3を介して、上記演算増幅器O
P1の負側端子に供給される。
In the above configuration, the constant voltage Vcc from the direct voltage circuit is divided by the resistor R20 and the resistor R21, and the connection point 1
4 through the resistor R3, the operational amplifier O
It is supplied to the negative terminal of P1.

他方、上記感温素子Z1は第2図で示すように、熱電対
1の接続端子2,3の近傍に配置され、他方の感温素子
Z2はケース9の内部に配置されたトランスのような発
熱体Hの近傍に配置されている。
On the other hand, the temperature sensitive element Z1 is arranged near the connection terminals 2 and 3 of the thermocouple 1 as shown in FIG. 2, and the other temperature sensitive element Z2 is like a transformer arranged inside the case 9. It is arranged near the heating element H.

つぎに、上記構成の動作について説明する。Next, the operation of the above configuration will be described.

いま、第1図において、熱電対1の測温点4、冷接点
2,3、感温素子Z1および感温素子Z2の各温度がT
1,T2,T3およびT3であるとすると、熱電対1の
冷接点2,3にはT1−T2に相当する熱起電力Exが
発生する。また、冷接点2,3の温度T2と感温素子Z
1の温度T3は等しくないから、演算増幅器OP1の正
側入力端子に印加される電圧V5はT1−T2+T3に
相当する電圧E(T1−T2+T3)となる。
Now, in FIG. 1, each temperature of the temperature measuring point 4 of the thermocouple 1, the cold junctions 2 and 3, the temperature sensing element Z1 and the temperature sensing element Z2 is T.
1, T2, T3 and T3, a thermoelectromotive force Ex corresponding to T1-T2 is generated at the cold junctions 2 and 3 of the thermocouple 1. Further, the temperature T2 of the cold junctions 2 and 3 and the temperature sensitive element Z
Since the temperatures T3 of 1 are not equal, the voltage V5 applied to the positive side input terminal of the operational amplifier OP1 becomes the voltage E (T1-T2 + T3) corresponding to T1-T2 + T3.

すなわち、 V5=E(T1−T2+T3) …(1) 他方、T3,T4に相当する電圧V1,V2は演算増幅
器OP2の入力端子に印加されて、その出力電圧V4は
T4−T3に相当する電圧E(T4−T3)と、差動増
幅器13の増幅度α1との乗算値となる。
That is, V5 = E (T1-T2 + T3) (1) On the other hand, the voltages V1 and V2 corresponding to T3 and T4 are applied to the input terminals of the operational amplifier OP2, and the output voltage V4 thereof is the voltage corresponding to T4-T3. It is a multiplication value of E (T4−T3) and the amplification degree α1 of the differential amplifier 13.

すなわち、 V4=α1・E(T4−T3) …(2) ここで、α1=R9/R7 よって、差動増幅器12の出力電圧Vo1は、 上記(1),(2)式から、 Vo1=β1・[E(T1−T2+T3)−α1・E(T4−T3) …
(3) となる。
That is, V4 = α1 · E (T4−T3) (2) where α1 = R9 / R7 Therefore, the output voltage Vo1 of the differential amplifier 12 is Vo1 = β1 from the above equations (1) and (2). -[E (T1-T2 + T3) -α1 * E (T4-T3) ...
(3)

ここで、β1=R6/R4 上記(3)式において、一般に温度勾配は第3図で示すよ
うに、直接的に変化するものとみなすこちおができるか
ら、 E(T1−T2+T3)=E(T1)+E(T3−T2) …(4) となる。
Here, β1 = R6 / R4 In the above formula (3), it can be generally considered that the temperature gradient directly changes as shown in FIG. 3, so E (T1-T2 + T3) = E ( T1) + E (T3-T2) (4)

なお、第3図において、横軸は発熱体H、感温素子Z
1,Z2および熱電対接続端子2,3の各配置位置を、
縦軸はこれら各配置位置の温度を示す。
In FIG. 3, the horizontal axis represents the heating element H and the temperature sensing element Z.
1, Z2 and thermocouple connection terminals 2, 3
The vertical axis represents the temperature at each of these arrangement positions.

したがって、上記(3)式は、 Vo1=β1・[E(T1)+E(T3−T2)−α1・E(T4−T3)]
…(5) となる。
Therefore, the above equation (3) is expressed as Vo1 = β1 · [E (T1) + E (T3-T2) −α1 · E (T4-T3)]
… (5).

そのため、この(5)式において、 E(T3−T2)=α1・E(T4−T3)]
…(6) となるような差動増幅器13の増幅度α1を設定すれ
ば、上記(5)式は Vo1=β1・E(T1) …(7) となる。
Therefore, in this equation (5), E (T3-T2) = α1 · E (T4-T3)]
By setting the amplification degree α1 of the differential amplifier 13 such that (6), the above equation (5) becomes Vo1 = β1 · E (T1) (7)

すなわち、差動増幅器13の増幅度α1を、 α1=E(T3−T2)/E(T4−T3) …
(8) に設定すれば、差動増幅器13の出力Vo1は測温点4
の温度T1のみの関数となり、これを測定回路に接続す
れば、測温点4の温度T1を正確に測定することができ
る。
That is, the amplification degree α1 of the differential amplifier 13 is expressed as α1 = E (T3-T2) / E (T4-T3) ...
If set to (8), the output Vo1 of the differential amplifier 13 will be the temperature measuring point 4
The temperature T1 of the temperature measuring point 4 can be accurately measured by connecting this to a measuring circuit.

第4図はこの考案による熱電対測温装置の他の例を示
す。上記実施例においては、1対の演算増幅器OP1.
OP2を有していたけれども、1つの演算増幅器OPの
みを有する。なお、第4図において、第1図と同一部分
には同一の符号を付してその詳しい説明を省略する。
FIG. 4 shows another example of the thermocouple temperature measuring device according to the present invention. In the above embodiment, a pair of operational amplifiers OP1.
Although it has OP2, it has only one operational amplifier OP. In FIG. 4, the same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

まず、 V1=(1+α)・E(T3) …(9) となるように、R1の抵抗値を設定する。First, the resistance value of R1 is set so that V1 = (1 + α) · E (T3) (9).

つぎに、 V2=α・E(T4) …(10) となるように、R2の抵抗値を設定する。Next, the resistance value of R2 is set so that V2 = α · E (T4) (10).

さらに、 V5=E(T1−T2)+V1 =E(T1−T2)+(1+α)・E(T3)
…(11) よって、差動増幅器22の出力電圧Voは、 Vo=β(V5−V2)=β・[E(T1−T2)+(1+α)・E(T3)
−α・E(T4)] …(12) となる。ここで、β=R6/R3 上記(12)式において、一般に温度勾配は前述の第3図で
説明したように、直線的に変化するものとみなすことが
できるから、 E(T1−T2)+(1+α)・E(T3)−α・E(T4)=E(T1)+
E(T3−T2)−α・E(T4−T3) …(13) となる。
Furthermore, V5 = E (T1-T2) + V1 = E (T1-T2) + (1 + α) · E (T3)
(11) Therefore, the output voltage Vo of the differential amplifier 22 is Vo = β (V5-V2) = β · [E (T1-T2) + (1 + α) · E (T3)
−α · E (T4)] (12) Here, β = R6 / R3 In the above formula (12), the temperature gradient can be generally regarded as linearly changing as described in FIG. 3 above, so E (T1−T2) + (1 + α) · E (T3) −α · E (T4) = E (T1) +
E (T3−T2) −α · E (T4−T3) (13)

したがって、上記(12)は式は、 Vo=β・[E(T1)+E(T3−T2)−α・E(T4−T3)]
…(14) となる。
Therefore, the equation (12) above is Vo = β · [E (T1) + E (T3-T2) −α · E (T4-T3)]
… (14).

そのため、この(14)式においては、 E(T3−T2)=α・E(T4−T3) …(1
5) となるような差動増幅器22の増幅度αを設定すれば、
上記(14)式は Vo=β・E(T1) …(16) となる。
Therefore, in this equation (14), E (T3-T2) = α · E (T4-T3) (1
By setting the amplification degree α of the differential amplifier 22 such that
The above equation (14) becomes Vo = β · E (T1) (16).

すなわち、差動増幅器22の増幅度αを、 α=E(T3−T2)/E(T4−T3) …(1
7) に設定すれば、差動増幅器22の出力Voは測温点4の
温度T1のみの関数となり、これを測定回路に接続すれ
ば、測温点4の温度T1を正確に測定することができ
る。
That is, the amplification factor α of the differential amplifier 22 is α = E (T3-T2) / E (T4-T3) (1
If set to 7), the output Vo of the differential amplifier 22 becomes a function of only the temperature T1 of the temperature measuring point 4, and if this is connected to the measuring circuit, the temperature T1 of the temperature measuring point 4 can be accurately measured. it can.

なお、上記実施例においては、1対の感温素子Z1,Z
2で熱電対測温装置の温度補償を達成する場合について
説明したけれども、感温素子は2以上設けて、多数の感
温素子で温度補償を行なってもよいことはいうまでもな
い。
In the above embodiment, a pair of temperature sensitive elements Z1, Z
Although the case where the temperature compensation of the thermocouple temperature measuring device is achieved in 2 has been described, it goes without saying that two or more temperature sensitive elements may be provided and the temperature compensation may be performed by a large number of temperature sensitive elements.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案による熱電対測温装置の一例を示す回
路図、第2図はこの考案による熱電対測温装置の概略構
成図、第3図は動作説明用の特性図、第4図はこの考案
による熱電対測温装置の他の例を示す回路図、第5図は
従来の熱電対測温装置の一例を示す回路図である。 1…熱電対、2,3…接続端子、4…熱電対の測温点、
9…ケース、10,15…感温素子と抵抗体の接続点、
12,22…差動増幅器、Z1,Z2…感温素子、R
1,R2…抵抗体、Vo1,Vo…差動増幅器の出力、
α,α1…差動増幅器の増幅度、T1…測温点の温度、
H…内部発熱体。
FIG. 1 is a circuit diagram showing an example of a thermocouple temperature measuring device according to the present invention, FIG. 2 is a schematic configuration diagram of the thermocouple temperature measuring device according to the present invention, FIG. 3 is a characteristic diagram for explaining operation, and FIG. Is a circuit diagram showing another example of the thermocouple temperature measuring device according to the present invention, and FIG. 5 is a circuit diagram showing an example of a conventional thermocouple temperature measuring device. 1 ... Thermocouple, 2, 3 ... Connection terminal, 4 ... Thermocouple temperature measuring point,
9 ... Case, 10, 15 ... Connection point between temperature sensitive element and resistor,
12, 22 ... Differential amplifier, Z1, Z2 ... Temperature sensitive element, R
1, R2 ... resistor, Vo1, Vo ... output of differential amplifier,
α, α1 ... Degree of amplification of differential amplifier, T1 ... Temperature of temperature measuring point,
H ... Internal heating element.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】熱電対測温装置を構成するケースの外部に
設定された熱電対の接続端子と、この熱電対接続端子の
近傍に位置して上記ケースの内部に配設された感温素子
と、少なくとも上記ケースの内部発熱体の近傍に位置し
て上記ケースの内部に配設された感温素子と、上記各感
温素子と抵抗体との複数の直列体を並列接続してなる直
並列体と、上記感温素子と抵抗体との複数の各接続点の
電位を入力とする差動増幅器とを備え、この差動増幅器
の出力が熱電対の測温点の温度のみの関数となるよう
に、上記差動増幅器の増幅度を設定したことを特徴とす
る熱電対測温装置。
1. A thermocouple connecting terminal set outside a case constituting a thermocouple temperature measuring device, and a temperature sensing element arranged near the thermocouple connecting terminal and disposed inside the case. A temperature sensing element disposed inside the case at least in the vicinity of the internal heating element of the case, and a plurality of series bodies of the temperature sensing element and the resistor are connected in parallel. A parallel body and a differential amplifier that receives the potentials at the plurality of connection points of the temperature sensing element and the resistor as inputs are provided, and the output of the differential amplifier is a function of only the temperature at the temperature measurement point of the thermocouple The thermocouple temperature measuring device, wherein the amplification degree of the differential amplifier is set so that
JP7129487U 1987-05-13 1987-05-13 Thermocouple temperature measuring device Expired - Lifetime JPH062126Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7129487U JPH062126Y2 (en) 1987-05-13 1987-05-13 Thermocouple temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7129487U JPH062126Y2 (en) 1987-05-13 1987-05-13 Thermocouple temperature measuring device

Publications (2)

Publication Number Publication Date
JPS63181832U JPS63181832U (en) 1988-11-24
JPH062126Y2 true JPH062126Y2 (en) 1994-01-19

Family

ID=30913720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7129487U Expired - Lifetime JPH062126Y2 (en) 1987-05-13 1987-05-13 Thermocouple temperature measuring device

Country Status (1)

Country Link
JP (1) JPH062126Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3829637B2 (en) * 2001-03-27 2006-10-04 株式会社山武 Temperature measuring device
JP6897104B2 (en) * 2017-01-13 2021-06-30 オムロン株式会社 Thermocouple temperature measuring device
JP6881355B2 (en) * 2018-03-08 2021-06-02 オムロン株式会社 Temperature measuring device, temperature adjusting device, temperature measuring method, and temperature measuring program

Also Published As

Publication number Publication date
JPS63181832U (en) 1988-11-24

Similar Documents

Publication Publication Date Title
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
US5481199A (en) System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages
US4872339A (en) Mass flow meter
JPS645360B2 (en)
US4150433A (en) Automatic common mode rejection in an analog measuring system
US5134885A (en) Circuit arrangement for measuring a mechanical deformation, in particular under the influence of a pressure
US4109196A (en) Resistance measuring circuit
US4873490A (en) Circuit arrangement for generating an output signal that is nonlinearly dependent on the temperature
US4777428A (en) Device for compensation of transfer functions
JPH062126Y2 (en) Thermocouple temperature measuring device
US4528499A (en) Modified bridge circuit for measurement purposes
JPH0233991B2 (en)
US4090151A (en) Temperature sensing device for producing alternating electric signals whose period is a function of a temperature
DE69006162D1 (en) ARRANGEMENT FOR ELECTRONIC CIRCUIT.
US3956686A (en) Compensating circuit for a cold junction of a thermocouple
CN217424580U (en) Cold end simulation compensation circuit
US4045734A (en) Differential thermal wattmeter
JPS5831077Y2 (en) Thermoelectric temperature measuring device
JPH0443791Y2 (en)
SU758022A1 (en) Device for temperature compensation of hall sensors
JPS5937711Y2 (en) temperature measurement circuit
SU1622779A1 (en) Digital temperature meter
SU1339413A1 (en) Temperature measuring device
JP2988858B2 (en) Temperature detection circuit
JPS5942691Y2 (en) temperature compensation circuit