JPH06212309A - Method for recovering rare-earth elements by selective adsorption - Google Patents
Method for recovering rare-earth elements by selective adsorptionInfo
- Publication number
- JPH06212309A JPH06212309A JP30918392A JP30918392A JPH06212309A JP H06212309 A JPH06212309 A JP H06212309A JP 30918392 A JP30918392 A JP 30918392A JP 30918392 A JP30918392 A JP 30918392A JP H06212309 A JPH06212309 A JP H06212309A
- Authority
- JP
- Japan
- Prior art keywords
- spirulina
- rare
- ions
- rare earth
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野][0001]本発明は、藻類粉末
を用いて水溶液中の金属イオンを吸着する方法のうち、
特な希土類イオンを選択吸着回収する方法に関するもの
で、希土類イオンと他の金属イオンの混合水溶液からの
希土類の分離回収に用いることができる。Description: [Industrial application] [0001] The present invention relates to a method for adsorbing metal ions in an aqueous solution using algal powder,
The present invention relates to a method for selectively adsorbing and collecting rare earth ions, which can be used for separating and collecting rare earth ions from a mixed aqueous solution of rare earth ions and other metal ions.
[従来の技術][0002]藻類を用いて水溶液中に存
在する金属イオンを吸着する方法の作用についての従来
の報文には、活性炭の吸着作用に類似する単純な吸着作
用によるもの、陽イオン交換樹脂に類似する陽イオン交
換作用によるもの、陰イオン交換樹脂に類似する陰イオ
ン交換作用によるものがある。陽イオン交換作用に基づ
いて吸着される金属イオンは、銅イオン、コバルトイオ
ン、カドミウムイオンなど大多数の陽イオン型金属イオ
ンである。陰イオン交換作用に基づいて吸着される金属
イオンは、塩化金酸イオン、塩化白金酸イオンのような
陰イオンである。[Prior Art] [0002] A conventional report on the action of a method for adsorbing metal ions present in an aqueous solution using algae includes a simple adsorption action similar to that of activated carbon, a cation. There are a cation exchange action similar to an exchange resin and an anion exchange action similar to an anion exchange resin. The metal ions that are adsorbed based on the cation exchange action are the majority of cation-type metal ions such as copper ions, cobalt ions, and cadmium ions. The metal ions that are adsorbed on the basis of the anion exchange action are anions such as chloroaurate ion and chloroplatinate ion.
[発明が解決しようとする課題][0003]いうまで
もなく、陽イオン交換的吸着体を用いれば、中性に近い
pHにおいて陽イオンが高率で吸着され、陰イオンの吸
着率は低率となる。逆に、陰イオン交換的吸着体を用い
た場合には、弱酸性において陰イオンが高率で吸着さ
れ、陽イオンの吸着率は低率となる。従って、金属陽イ
オンと金属陰イオンの混合水溶液からの選択吸着分離
は、好適なpHにおいて陽陰イオン交換的吸着体のいず
れかを用いることにより、比較的容易に実現される。し
かし、金属陽イオン同志、あるいは金属陰イオン同志の
選択吸着分離は、原則として不可能である。サマリウ
ム、ネオジム、イットリウムあるいはランタンのような
希土類も、銅、コバルトあるいは鉄のような卑金属類も
通常の水溶液中では陽イオンとして存在するので、希土
類とこれら卑金属類の選択吸着分離は容易にはできな
い。[Problems to be Solved by the Invention] [0003] Needless to say, if a cation-exchangeable adsorbent is used, cations are adsorbed at a high rate at a pH close to neutral and the anion adsorption rate is low. Becomes On the contrary, when an anion exchange adsorbent is used, the anions are adsorbed at a high rate and the cations are adsorbed at a low rate in weakly acidic conditions. Therefore, selective adsorption separation from a mixed aqueous solution of a metal cation and a metal anion is relatively easily realized by using any of the cation-anion exchange adsorbents at a suitable pH. However, selective adsorption separation of metal cations or metal anions is impossible in principle. Since rare earths such as samarium, neodymium, yttrium, or lanthanum and base metals such as copper, cobalt, or iron also exist as cations in ordinary aqueous solutions, selective adsorption separation of rare earths and these base metals cannot be easily performed. .
[0004]希土類が工業的に用いられる場合、たとえ
ばサマリウムとコバルトの場合のように、卑金属類と混
合して用いられることが多い。従って、工業的に用いら
れた希土類をリサイクル使用するには、希土類と卑金属
類の分離技術を確立することが必要である。本発明は、
希土類イオンと卑金属類イオンの混合水溶液から、希土
類イオンを選択吸着分離する方法に関するものである。[0004] When rare earths are used industrially, they are often used in admixture with base metals, such as in the case of samarium and cobalt. Therefore, in order to recycle and use industrially used rare earths, it is necessary to establish a technique for separating rare earths and base metals. The present invention is
The present invention relates to a method for selectively adsorbing and separating rare earth ions from a mixed aqueous solution of rare earth ions and base metal ions.
[課題を解決するための手段][0005]本発明者ら
は、まず希土類イオン水溶液を種々の藻類粉末によって
吸着する実験を行った。その結果を図1〜4に示す。図
1,2,3,4の順にサマリウム、ネオジム、イットリ
ウム、ランタン塩化物水溶液を被実験液とした場合であ
る。これらによれば、藻類としてこんぶあるいはわかめ
を用いた場合には、希土類イオン吸着率は中性付近で高
く、弱酸性において低い。また、陽イオン交換樹脂を用
いた場合にはpHのいかんにかかわらず高い吸着率を示
す。従って希土類イオンは陽イオン交換反応的に吸着さ
れるものと思われる。一方、銅、コバルトのような卑金
属類も前述のように陽イオン交換反応的に藻類に吸着さ
れる。従って、こんぶ、わかめあるいはイオン交換樹脂
を用いた場合、希土類と銅、コバルトの選択吸着分離は
できない。[Means for Solving the Problem] [0005] The present inventors first conducted an experiment of adsorbing a rare earth ion aqueous solution with various algal powders. The results are shown in FIGS. This is the case where samarium, neodymium, yttrium, and lanthanum chloride aqueous solutions were used as test liquids in the order of FIGS. According to these, when konbu or wakame is used as algae, the adsorption rate of rare earth ions is high in the vicinity of neutrality and low in weak acidity. Moreover, when a cation exchange resin is used, a high adsorption rate is exhibited regardless of the pH. Therefore, it is considered that rare earth ions are adsorbed by cation exchange reaction. On the other hand, base metals such as copper and cobalt are also adsorbed by algae in a cation exchange reaction as described above. Therefore, when Konbu, Wakame or ion-exchange resin is used, selective adsorption separation of rare earth and copper or cobalt cannot be performed.
[0006]ところが、スピルリナあるいはクロレラを
吸着体として用いた場合には、図1〜4から分かるよう
に、pH3〜4.5において希土類の吸着率が最高値を
示す。pH3〜4.5におけるスピルリナあるいはクロ
レラによる銅、コバルトなど卑金属類の吸着率は低い。
従ってpH3〜4.5においてこれら卑金属類イオンと
希土類イオンの混合水溶液からの希土類イオンの選択吸
着分離ができた。pH3〜4.5における吸着率が最高
値を示すという現象は、吸着反応が陽イオン交換反応的
でも陰イオン交換反応的でもない特殊なメカニズムによ
るものと思われた。そこで発明者らはスピルリナを用い
た場合の水溶液の色に着目して更に実験を進めた。図5
に示すように、スピルリナは中性付近のpHの水により
色素が抽出され、水溶液は美しい濃青色を呈する。一
方、pH1〜2の弱酸性水にスピルリナを接触させた場
合には、水溶液は薄い青色を示した。ところが、pH3
〜4.5の水にスピルリナを接触させた場合の水溶液の
色は、無色となった。以上の実験からpH3〜4.5に
おいてはスピルリナの色素が凝集し、この凝集色素に希
土類イオンが吸着捕収されると推定した。[0006] However, when Spirulina or Chlorella is used as the adsorbent, the adsorption rate of the rare earth element exhibits the highest value at pH 3 to 4.5, as can be seen from FIGS. The adsorption rate of base metals such as copper and cobalt by Spirulina or chlorella at pH 3 to 4.5 is low.
Therefore, selective adsorption and separation of rare earth ions from the mixed aqueous solution of these base metal ions and rare earth ions was possible at pH 3 to 4.5. The phenomenon that the adsorption rate shows the maximum value at pH 3 to 4.5 was considered to be due to a special mechanism in which the adsorption reaction was neither a cation exchange reaction nor an anion exchange reaction. Therefore, the inventors further conducted the experiment by paying attention to the color of the aqueous solution when spirulina was used. Figure 5
As shown in Fig. 5, the pigment of spirulina is extracted by water having a pH around neutrality, and the aqueous solution exhibits a beautiful dark blue color. On the other hand, when Spirulina was brought into contact with weakly acidic water having a pH of 1 to 2, the aqueous solution showed a pale blue color. However, pH3
The color of the aqueous solution when spirulina was brought into contact with water of ˜4.5 became colorless. From the above experiments, it was estimated that the spirulina pigment aggregates at pH 3 to 4.5, and the rare earth ions are adsorbed and collected by the aggregated pigment.
[0007]次にこの推定を確認するために、pH6付
近の水でスピルリナを抽出して残渣を瀘別除去し得られ
た色素水溶液を凍結乾燥することによって生ずる青色粉
末を吸着体として種々のpHにおいて希土類イオンをそ
の水溶液から吸着させた場合の吸着率を図6に示し、吸
着反応終了後のスラリーを瀘紙で瀘別した場合の瀘液と
瀘紙残留物の写真を図7に示す。図7は希土類としてサ
マリウムを使用した場合であるが、他の希土類の場合も
ほぼ同様な傾向であった。また、被験水溶液中に金属イ
オンがあってもなくても、色素の色調や凝集程度は変わ
りなく、pHのみに依存した。図7によれば、pH3〜
4.5の場合だけ、瀘液が無色で瀘紙残留物が青色とな
り、他のpHの場合には、瀘液が青色で瀘紙残留物が無
色あるいは薄青色となっているので、pH3〜4.5に
おける青色色素の凝集が確認された。図6によればこの
凝集色素に希土類イオンがきわめて高率に吸着されてい
ることが明白で、色素が凝集されないpHにおいては、
希土類イオンは水溶液中に残留している。結局、図6の
希土類吸着率のpHによる変化の傾向は図1よりもシャ
ープであり、スピルリナによる希土類イオン吸着作用
は、特定pH範囲における青色色素の凝集現象に極めて
深く関わっていることが確認された。[0007] Next, in order to confirm this estimation, spirulina was extracted with water having a pH of around 6, the residue was removed by filtration, and the resulting aqueous dye solution was freeze-dried to obtain various powders with various pH values as adsorbents. 6 shows the adsorption rate when the rare earth ion was adsorbed from the aqueous solution thereof, and FIG. 7 shows a photograph of the filtrate and the residue of the filter paper when the slurry after the adsorption reaction was filtered by the filter paper. FIG. 7 shows the case where samarium is used as the rare earth element, but the similar tendency was observed in the case of other rare earth elements. In addition, the color tone and the degree of aggregation of the dye did not change regardless of the presence or absence of metal ions in the test aqueous solution, and depended only on the pH. According to FIG. 7, a pH of 3 to
Only in the case of 4.5, the filter paper is colorless and the filter paper residue is blue, and in the case of other pH, the filter solution is blue and the filter paper residue is colorless or light blue. Aggregation of the blue dye at 4.5 was confirmed. According to FIG. 6, it is clear that the rare earth ions are adsorbed to this aggregated dye at a very high rate, and at a pH at which the dye is not aggregated,
Rare earth ions remain in the aqueous solution. After all, the tendency of the rare earth adsorption rate in FIG. 6 to change with pH is sharper than in FIG. 1, and it was confirmed that the rare earth ion adsorption action by spirulina is extremely deeply related to the aggregation phenomenon of the blue dye in a specific pH range. It was
[0008]次に図6と同条件で被吸着イオンを銅ある
いはコバルトとした場合の実験結果を図8に示す。図8
によれば銅あるいはコバルトはpH3〜4.5の凝集青
色色素に殆ど吸着されないことが確認された。従って、
凝集青色色素による希土類の選択吸着分離が可能である
ことが理解される。図6および図8はスピルリナからの
水抽出液を凍結乾燥したものを吸着体とした場合の実験
データであるが、スピルリナ水抽出液を凍結乾燥せずそ
のまま含金属イオン水溶液に添加し、水溶液pHを調整
した場合にも同様な効果が得られた。また、スピルリナ
からpH6〜7において水溶性青色色素などを溶出させ
た瀘過残渣への希土類、銅あるいはコバルトの吸着率を
図9に示すが、これなよると、希土類の吸着率にはpH
3〜4.5のピークは認められない。従って、スピルリ
ナによるpH3〜4.5における希土類の吸着は凝集色
素の作用によるものと判断される。[0008] Next, FIG. 8 shows the experimental results when the adsorbed ions were copper or cobalt under the same conditions as in FIG. Figure 8
According to the above, it was confirmed that copper or cobalt was hardly adsorbed by the aggregated blue dye having a pH of 3 to 4.5. Therefore,
It is understood that selective adsorption separation of rare earths is possible with aggregated blue dyes. FIGS. 6 and 8 show the experimental data when a lyophilized water extract from spirulina was used as an adsorbent. The spirulina water extract was added to the metal ion-containing aqueous solution as it was without being lyophilized. The same effect was obtained when the value was adjusted. In addition, the adsorption rate of rare earth, copper or cobalt to the filtration residue obtained by eluting the water-soluble blue dye or the like from Spirulina at pH 6 to 7 is shown in Fig. 9. According to this, the adsorption rate of rare earth depends on the pH.
No peaks of 3 to 4.5 are observed. Therefore, it is judged that the adsorption of the rare earth at pH 3 to 4.5 by Spirulina is due to the action of the aggregating dye.
[0009]以上を総括して、本発明の構成はクロレ
ラ、スピルリナあるいはスピルリナをpH5〜7の水で
浸出固液分離することによって得た水溶性成分を希土類
イオン水溶液に添加し、pHを3〜4.5に調整し、不
溶残分に希土類を吸着させること特徴とする希土類の選
択吸着回収法である。[0009] In summary, in the constitution of the present invention, the water-soluble component obtained by leaching solid-liquid separation of chlorella, spirulina or spirulina with water having a pH of 5 to 7 is added to the rare earth ion aqueous solution to adjust the pH to 3 to. It is a selective adsorption recovery method for rare earths, which is characterized in that the insoluble residue is adsorbed with the rare earths adjusted to 4.5.
[作用][0010]以上に述べたように、また、以下
の実施例からも分かるように、スピルリナの凝集青色色
素は希土類イオンに対して高度の選択吸着性を有してい
ることが分かる。スピルリナから水によって抽出される
青色色素はフィコシアニンであるといわれている。図1
1にフィコシアニンの構造式を示す。フィコシアニンに
乳糖やクエン酸3ナトリウムを数十%添加混合して安定
化し、商品化したものはリナブルーAと呼ばれ、冷菓な
どの青色着色料として用いられる。このリナブルーAに
対する希土類の吸着挙動を実験によって調査したとこ
ろ、pH3〜4.5において最高値を示したが、吸着率
は全般的に低く、リナブルーAの使用量を増加してフィ
コシアニン装入正味量を等しくしても希土類の吸着率は
向上しなかったので、吸着作用に対して混合成分が何ら
かの妨害をしていることが推定された。フィコシアニン
水溶液がpH3〜4.5において凝集するときに希土類
イオンに対する選択吸着性を示す事実については全く報
文がない。また、藻類による金属イオン吸着機構につい
ても、陽イオンあるいは陰イオン交換作用に基づくもの
は多数見受けるが、特定のpH範囲における色素凝集作
用と結びついた金属イオン選択吸着作用を示す報文はな
い。以下に実施例を示すが、本発明はこれらに限定され
るものではない。[Operation] [0010] As described above and as can be seen from the following examples, it is understood that the aggregated blue pigment of Spirulina has a high selective adsorption property to rare earth ions. The blue pigment extracted with water from Spirulina is said to be phycocyanin. Figure 1
1 shows the structural formula of phycocyanin. Lactose or trisodium citrate is added to and mixed with phycocyanin to stabilize it, and the product is commercialized and called Lina Blue A, which is used as a blue colorant for frozen desserts and the like. When the adsorption behavior of this rare earth to Linablue A was investigated by experiments, it showed the highest value at pH 3 to 4.5, but the adsorption rate was generally low, and the amount of Linablue A used was increased to increase the net amount of phycocyanin charged. Since the adsorption rate of rare earth did not improve even when the values were equal, it was estimated that the mixed components interfered with the adsorption action. There is no report on the fact that the selective adsorption of rare earth ions occurs when the aqueous phycocyanin solution aggregates at pH 3 to 4.5. Regarding the mechanism of metal ion adsorption by algae, although many are based on the cation or anion exchange action, there is no report showing the metal ion selective adsorption action associated with the dye aggregation action in a specific pH range. Examples will be shown below, but the present invention is not limited thereto.
[実施例] (実施例1)[0011]サマリウム濃度12mg/l
となるように濃度調整した塩化サマリウム水溶液20m
lを常温においてビーカー中で撹拌しつつ藻類粉末を6
0mg添加し、所定のpHになるように必要があれば塩
酸をごく少量滴下し、1時間撹拌処理した。処理前後の
水溶液中のサマリウム濃度から吸着率を求め、pHと対
比して各藻類について示したのが図1である。被吸着イ
オンをネジオジムとした同様な実験結果を図2に、イッ
トリウムの結果を図3に、ランタンの結果を図4に示
す。各図とも、藻類としてスピルリナおよびクロレラを
用いた場合には、pH3〜4.5に希土類イオン吸着率
の最高値があることが明白に分かる。[Example] (Example 1) [0011] Samarium concentration 12 mg / l
20m samarium chloride aqueous solution whose concentration is adjusted to
agar powder with stirring in a beaker at room temperature.
0 mg was added, and if necessary, a very small amount of hydrochloric acid was dropped so as to obtain a predetermined pH, and the mixture was stirred for 1 hour. FIG. 1 shows the adsorption rate from the samarium concentration in the aqueous solution before and after the treatment, and shows the results for each alga in comparison with pH. FIG. 2 shows a similar experimental result in which the adsorbed ions were Neodymium, FIG. 3 shows a result of yttrium, and FIG. 4 shows a result of lanthanum. In each figure, it is clearly seen that when Spirulina and Chlorella are used as algae, the maximum adsorption rate of rare earth ions is at pH 3 to 4.5.
(実施例2)[0012]スピルリナ粉末60mgを水
20mlに添加して撹拌しつつ、塩酸滴下によってpH
を1,2,3,4,5,6,7に調整したスラリーの瀘
液を試験管に受け、その色を撮影したものが図5であ
る。pH7〜6における瀘液は濃い青色を呈している
が、pH3〜4.5では殆ど無色になり、pH2あるい
は1では再び青みを帯びた瀘液になっていることが分か
る。(Example 2) [0012] 60 mg of spirulina powder was added to 20 ml of water with stirring, and the pH was dropped by adding hydrochloric acid.
FIG. 5 is a photograph of the filtered filtrate of the slurry adjusted to 1, 2, 3, 4, 5, 6, 6 and 7, and photographed the color thereof. It can be seen that the pH liquor at pH 7 to 6 exhibits a deep blue color, but it becomes almost colorless at pH 3 to 4.5, and becomes a bluish liquor again at pH 2 or 1.
(実施例3)[0013]スピルリナ粉末6gを蒸留水
120mlでスラリー化したところ、pHは6.79を
示した。瀘過洗浄により2.7gの瀘過残渣を瀘別除去
した。この操作に伴って得られた青色水溶液を凍結乾燥
したところ、1.2gの青色粉末が得られた。この青色
粉末30mgずつを濃度12mg/lのサマリウム、ネ
オジム、イットリウムあるいはランタンを含む塩化物水
溶液各20mlに添加し、撹拌しつつごく少量の塩酸滴
下によってpHを調節し、1時間撹拌処理後に瀘過によ
り固液分離し、処理前後の液中の希土類イオン濃度か
ら、吸着率を求めた。結果をpHと吸着率のグラフとし
て図6に示す。この結果によれば、図1〜4と同様にp
H3〜4.5において希土類イオンの吸着率が最大にな
っている。希土類としてサマリウムを用いた場合の各p
Hにおける吸着撹拌処理後の瀘液と瀘過残渣の写真を図
7に示す。これによると、pH6付近の場合、青色色素
は凝集することが全くなく、従って希土類イオンも水溶
液中に残る。pH2付近の場合、ごく僅かに瀘紙上に青
い色素が残るが、瀘液はかなりの青色を呈し、サマリウ
ムイオンは水溶液中に残る。これに反し、pH3〜4.
5の場合にはかなりの量の凝集青色色素が瀘紙上に残
り、瀘液は無色となり、大部分のサマリウムイオンは凝
集青色色素中に残留している。サマリウム以外の他の希
土類の場合もpHと瀘液および瀘過残渣の色調の関係は
同様であった。(Example 3) [0013] When 6 g of spirulina powder was slurried with 120 ml of distilled water, the pH was 6.79. 2.7 g of the filtration residue was removed by filtration by filtration. When the blue aqueous solution obtained by this operation was freeze-dried, 1.2 g of blue powder was obtained. 30 mg of each of the blue powders was added to 20 ml of a chloride aqueous solution containing samarium, neodymium, yttrium or lanthanum with a concentration of 12 mg / l, the pH was adjusted by adding a very small amount of hydrochloric acid while stirring, and the mixture was filtered for 1 hour after filtration. Solid-liquid separation was carried out with and the adsorption rate was calculated from the rare earth ion concentrations in the liquid before and after the treatment. The results are shown in FIG. 6 as a graph of pH and adsorption rate. According to this result, p as in FIGS.
The adsorption rate of rare earth ions is maximum in H3 to 4.5. Each p when samarium is used as a rare earth
A photograph of the filtrate and the filtration residue after the adsorption stirring treatment in H is shown in FIG. According to this, in the vicinity of pH 6, the blue dye does not aggregate at all, and therefore the rare earth ions also remain in the aqueous solution. When the pH is around 2, only a slight amount of blue pigment remains on the filter paper, but the filtrate has a considerably blue color, and the samarium ion remains in the aqueous solution. Contrary to this, pH 3-4.
In the case of 5, a considerable amount of the aggregated blue dye remains on the filter paper, the filtrate becomes colorless, and most of the samarium ions remain in the aggregated blue dye. In the case of other rare earths other than samarium, the relationship between the pH and the color tone of the filtrate and the filtration residue was similar.
(実施例4)[0014]図6と同条件で、被吸着イオ
ンを銅あるいはコバルトとした場合のpHと吸着率の関
係を図8に示す。この場合のpHと瀘液および瀘過残渣
の色調の関係は図7と全く同様であった。図8によれ
ば、青色色素が瀘紙上に殆ど残留しないpH2および6
付近の場合にはもちろん、瀘紙上に青色色素が顕著に残
留するpH3〜4.5の場合にも銅とコバルトはすべて
瀘液中に残ることが分かる。(Example 4) [0014] FIG. 8 shows the relationship between pH and adsorption rate when the ions to be adsorbed were copper or cobalt under the same conditions as in FIG. In this case, the relationship between the pH and the color tones of the filtrate and the filtration residue was exactly the same as in FIG. According to FIG. 8, pH 2 and 6 at which blue dye hardly remains on the filter paper
It can be understood that copper and cobalt are all left in the filtrate when the pH is 3 to 4.5 where the blue dye remarkably remains on the filter paper in the vicinity.
(実施例5)[0015]スピルリナからpH6〜7に
おいて水溶性青色色素などを溶出させた瀘過残渣60m
gを各イオン含有水溶液に添加し、その他の条件は図1
と同じにして実験した場合の希土類、銅あるいはコバル
トの吸着率を図9に示す。これによると、希土類の吸着
率にはpH3〜4.5のピークは認められない。(Example 5) [0015] A filtration residue 60 m in which a water-soluble blue dye or the like was eluted from Spirulina at pH 6 to 7.
g was added to each ion-containing aqueous solution, and other conditions are shown in FIG.
FIG. 9 shows the adsorption rates of rare earth elements, copper or cobalt in the same experiment. According to this, the peak of pH 3 to 4.5 is not observed in the adsorption rate of rare earth.
(実施例6)[0016]サマリウムおよびコバルトイ
オンがそれぞれ12mg/l存在するように調製した混
合塩化水溶液にスピルリナあるいはクロレラを添加して
図1と同条件で吸着実験を行った結果を図10に示す。
pH3〜4.5においてサマリウムがコバルトイオンに
対して良く選択吸着されていることが分かる。(Example 6) [0016] Spirulina or chlorella was added to a mixed chloride aqueous solution prepared so that each of samarium and cobalt ions was present at 12 mg / l, and an adsorption experiment was conducted under the same conditions as in FIG. Show.
It can be seen that samarium is well selectively adsorbed to cobalt ions at pH 3 to 4.5.
[発明の効果][0017]本発明により、希土類イオ
ンをpH3〜4.5において選択吸着する方法とその吸
着剤を供給することができ、特に希土類のリサイクル資
源の活用に役立つものと思われる。EFFECTS OF THE INVENTION [0017] According to the present invention, it is possible to supply a method for selectively adsorbing rare earth ions at pH 3 to 4.5 and an adsorbent therefor, which is considered to be particularly useful for utilization of rare earth recycling resources.
図1,2,3,4はそれぞれサマリウム、ネオジム、イ
ットリウム、ランタンイオンの各種藻類による吸着率
を、pH横軸に対比して示したグラフである。図5はス
ピルリナを水でスラリー化した場合のpHと瀘液の色を
示す写真である。図6はスピルリナから水で抽出された
青色色素による希土類イオンの吸着率を、pH横軸に対
比して示したグラフである。図7はスピルリナ青色色素
によって各pHでサマリウムイオンを吸着させたのちに
瀘過したものの瀘液と瀘紙残留物の色を示す写真であ
る。図8はスピルリナ青色色素による銅あるいはコバル
トイオンの吸着率をpH横軸に対比して示したグラフで
ある。図9はスピルリナから青色色素などの水溶成分を
溶出させた瀘過残渣による希土類、銅あるいはコバルト
イオンの吸着率をpH横軸に対比して示したグラフであ
る。図10はスピルリナあるいはクロレラによるサマリ
ウムおよびコバルトの混合塩化物水溶液からのサマリウ
ムの選択吸着実験の結果を示す。図11はフィコシアニ
ンの構造式である。各図中の藻類など吸着体の記号は次
のとおりである。 CV…クロレラ SP…スピルリナ UN…わかめ
LS…こんぶ AX…陰イオン交換樹脂(オルガノ製、CG−400
I) CX…陽イオン交換樹脂(オルガノ製、CG−120
I)1, 2, 3, and 4 are graphs showing the adsorption rates of samarium, neodymium, yttrium, and lanthanum ions by various algae in comparison with the horizontal axis of pH. FIG. 5 is a photograph showing the pH and the color of the filtrate when spirulina was slurried with water. FIG. 6 is a graph showing the adsorption rate of rare earth ions by the blue pigment extracted with water from Spirulina in comparison with the horizontal axis of pH. FIG. 7 is a photograph showing the colors of the filtrate and the residue of the paper filter after the samarium ion was adsorbed at each pH by the spirulina blue dye and then filtered. FIG. 8 is a graph showing the adsorption rate of copper or cobalt ions by the Spirulina blue dye in comparison with the horizontal axis of pH. FIG. 9 is a graph showing the adsorption rate of rare earth, copper or cobalt ions by the filtration residue obtained by eluting a water-soluble component such as blue pigment from Spirulina, in comparison with the horizontal axis of pH. FIG. 10 shows the results of the selective adsorption experiment of samarium from a mixed chloride aqueous solution of samarium and cobalt by Spirulina or Chlorella. FIG. 11 is a structural formula of phycocyanin. The symbols of adsorbents such as algae in each figure are as follows. CV ... Chlorella SP ... Spirulina UN ... Wakame LS ... Konbu AX ... Anion exchange resin (Organo, CG-400
I) CX ... Cation exchange resin (Organo, CG-120)
I)
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年12月10日[Submission date] December 10, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図面の簡単な説明】[Brief description of drawings]
【図1】は各藻類によるサマリウムの吸着率を示すグラ
フである。FIG. 1 is a graph showing the adsorption rate of samarium by each alga.
【図2】は各藻類によるネオジムの吸着率を示すグラフ
である。FIG. 2 is a graph showing the adsorption rate of neodymium by each alga.
【図3】は各藻類によるイットリウムの吸着率を示すグ
ラフである。FIG. 3 is a graph showing the adsorption rate of yttrium by each alga.
【図4】は各藻類によるランタンの吸着率を示すグラフ
である。FIG. 4 is a graph showing the adsorption rate of lanthanum by each alga.
【図5】はスピルリナを水でスラリー化した場合のpH
と瀘液の青色の濃さを示す。図中の下部の数字はpHを
示し、斜線の密度は瀘液の青色の濃さを表す。FIG. 5 shows the pH when spirulina is slurried with water.
And shows the blue color of the filtrate. The numbers in the lower part of the figure represent pH, and the density of the diagonal lines represents the blue density of the filtrate.
【図6】はスピルリナから水で抽出された青色色素によ
る希土類イオンの吸着率をpH横軸に対比して示したグ
ラフである。FIG. 6 is a graph showing the adsorption rate of rare earth ions by a blue pigment extracted with water from Spirulina in comparison with the horizontal axis of pH.
【図7】はスピルリナ青色色素によって各pHでサマリ
ウムイオンを吸着させたものの瀘液と瀘紙残留物の青色
の濃さを示す。図中の下部の数字はpHを示し、各斜線
の密度は瀘液あるいは瀘紙残留物の青色の濃さを示す。FIG. 7 shows the blue strength of the filtrate and the residue of the filter paper of samarium ion adsorbed by Spirulina blue dye at each pH. The numbers in the lower part of the figure indicate pH, and the density of each hatched line indicates the dark blue color of the filtrate or filter paper residue.
【図8】はスピルリナ青色色素による銅あるいはコバル
トイオンの吸着率をpH横軸に対比して示したグラフで
ある。FIG. 8 is a graph showing the adsorption rate of copper or cobalt ions by Spirulina blue dye in comparison with the horizontal axis of pH.
【図9】はスピルリナから青色色素などの水溶成分を溶
出させた瀘過残渣による希土類、銅あるいはコバルトイ
オンの吸着率をpH横軸に対比して示したグラフであ
る。FIG. 9 is a graph showing the adsorption rate of rare earth, copper or cobalt ions by a filtration residue obtained by eluting a water-soluble component such as blue pigment from Spirulina, in comparison with the horizontal axis of pH.
【図10】はスピルリナあるいはクロレラによるサマリ
ウムおよびコバルトの混合塩化物水溶液からのサマリウ
ムの選択吸着実験の結果を示す。FIG. 10 shows the results of a selective adsorption experiment of samarium from a mixed chloride aqueous solution of samarium and cobalt by Spirulina or Chlorella.
【図11】はフィコシアニンの構造式である。各図中の
藻類など吸着体の記号は次のとおりである。 CV…クロレラ SP…スピルリナ UN…わかめ LS…こんぶ AXR…陰イオン交換樹脂(オルガノ製、CG−400
I) CXR…陽イオン交換樹脂(オルガノ製、CG−120
I)FIG. 11 is a structural formula of phycocyanin. The symbols of adsorbents such as algae in each figure are as follows. CV ... Chlorella SP ... Spirulina UN ... Wakame LS ... Konbu AXR ... Anion exchange resin (Organo, CG-400
I) CXR ... Cation exchange resin (Organo, CG-120)
I)
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図5[Name of item to be corrected] Figure 5
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図5】 [Figure 5]
【手続補正3】[Procedure 3]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図7[Name of item to be corrected] Figure 7
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図7】 [Figure 7]
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22B 3/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22B 3/20
Claims (1)
をpH5〜7の水で浸出固液分離することによって得た
水溶性成分を希土類イオン水溶液に添加し、pHを3〜
4.5に調整し、不溶残分に希土類を吸着させること特
徴とする希土類の選択吸着回収法。[Claim 1] A water-soluble component obtained by leaching solid-liquid separation of chlorella, spirulina or spirulina with water having a pH of 5 to 7 is added to a rare earth ion aqueous solution to adjust the pH to 3 to.
A method for selectively adsorbing and recovering rare earths, which comprises adjusting to 4.5 and adsorbing rare earths on an insoluble residue.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30918392A JPH06212309A (en) | 1992-10-06 | 1992-10-06 | Method for recovering rare-earth elements by selective adsorption |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30918392A JPH06212309A (en) | 1992-10-06 | 1992-10-06 | Method for recovering rare-earth elements by selective adsorption |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06212309A true JPH06212309A (en) | 1994-08-02 |
Family
ID=17989933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30918392A Pending JPH06212309A (en) | 1992-10-06 | 1992-10-06 | Method for recovering rare-earth elements by selective adsorption |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06212309A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8512544B2 (en) | 2009-06-18 | 2013-08-20 | Hitachi Chemical Company, Ltd. | Metal collection method and metal collection device |
EP2813585A1 (en) * | 2013-06-14 | 2014-12-17 | B.R.A.I.N. Biotechnology Research And Information Network AG | Process of isolating rare earth elements |
JP2017503516A (en) * | 2014-01-27 | 2017-02-02 | ユニヴァーシティ オヴ ニューカッスル アポン タインUniversity Of Newcastle Upon Tyne | Improved phycocyanin synthesis |
WO2018003599A1 (en) * | 2016-06-28 | 2018-01-04 | Dicライフテック株式会社 | Colorant material, and process for producing colorant material |
CN110607443A (en) * | 2019-10-14 | 2019-12-24 | 中铝广西有色稀土开发有限公司 | Method for recovering rare earth from ionic rare earth ore leaching solution |
-
1992
- 1992-10-06 JP JP30918392A patent/JPH06212309A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8512544B2 (en) | 2009-06-18 | 2013-08-20 | Hitachi Chemical Company, Ltd. | Metal collection method and metal collection device |
EP2813585A1 (en) * | 2013-06-14 | 2014-12-17 | B.R.A.I.N. Biotechnology Research And Information Network AG | Process of isolating rare earth elements |
WO2014198830A1 (en) * | 2013-06-14 | 2014-12-18 | B.R.A.I.N. Biotechnology Research And Information Network Ag | Process of isolating rare earth elements |
JP2017503516A (en) * | 2014-01-27 | 2017-02-02 | ユニヴァーシティ オヴ ニューカッスル アポン タインUniversity Of Newcastle Upon Tyne | Improved phycocyanin synthesis |
WO2018003599A1 (en) * | 2016-06-28 | 2018-01-04 | Dicライフテック株式会社 | Colorant material, and process for producing colorant material |
CN110607443A (en) * | 2019-10-14 | 2019-12-24 | 中铝广西有色稀土开发有限公司 | Method for recovering rare earth from ionic rare earth ore leaching solution |
CN110607443B (en) * | 2019-10-14 | 2021-09-10 | 中铝广西有色稀土开发有限公司 | Method for recovering rare earth from ionic rare earth ore leaching solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
El Ouardi et al. | The recent progress of ion exchange for the separation of rare earths from secondary resources–A review | |
US4167481A (en) | Process for the removal of metals from solution | |
US4599175A (en) | Process for separating and purifying metallic elements by displacement chromatography | |
CN104498714A (en) | Method for removing iron, aluminum, calcium and titanium impurities from scandium-containing solution | |
Fryxell et al. | Design and synthesis of chelating diamide sorbents for the separation of lanthanides | |
US4131645A (en) | Iodine recovery process | |
US4888053A (en) | Chloride leaching of iron-based, heavy metal-containing sludges | |
CN107913662B (en) | Magnetic iron/lanthanum composite arsenic removal adsorption material and preparation method thereof | |
CN108504860B (en) | Method for separating iron and scandium in red mud acid leaching solution | |
JPH06212309A (en) | Method for recovering rare-earth elements by selective adsorption | |
CN102674589A (en) | Treatment method of N-phosphonomethyl aminodiacetic acid wastewater | |
CN117339992B (en) | Method for removing rare earth elements in polluted soil in situ based on magnetic material | |
José et al. | Pre-concentration and partial fractionation of rare earth elements by ion exchange | |
CN110306071A (en) | A kind of method for extraction and purification of dysprosia | |
CN109692650A (en) | The adsorbent and preparation method thereof of arsenite ion in efficient removal water | |
CN101723527B (en) | recycling method of oxalic acid and hydrochloric acid from hydrochloric acid waste liquid produced by mining rare-earth metal | |
US6846470B2 (en) | Methods for producing indium-containing aqueous solutions containing reduced amounts of metal impurities | |
CN103351070B (en) | Method for treating glyphosate waste water | |
JPH10128313A (en) | Method for removing heavy metal from photographic waste solution | |
CN110302744A (en) | A kind of Metallurgical Waste Water magnetic nanometer adsorbent and preparation method thereof | |
CN103359789B (en) | Preparation method of bismuth subcarbonate | |
CN110422902A (en) | A kind of preparation method for mixing titanium birnessite of efficient process antimony waste water | |
JPH11235595A (en) | Treatment of boron-containing waste water | |
US5925256A (en) | Method for eliminating iron from a photographic effluent | |
CN110605093B (en) | Method for efficiently recycling various wastes |