JPH062122Y2 - Infrared measurement mount device - Google Patents

Infrared measurement mount device

Info

Publication number
JPH062122Y2
JPH062122Y2 JP4923588U JP4923588U JPH062122Y2 JP H062122 Y2 JPH062122 Y2 JP H062122Y2 JP 4923588 U JP4923588 U JP 4923588U JP 4923588 U JP4923588 U JP 4923588U JP H062122 Y2 JPH062122 Y2 JP H062122Y2
Authority
JP
Japan
Prior art keywords
infrared
mirror
scanning mirror
biaxial
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4923588U
Other languages
Japanese (ja)
Other versions
JPH01152227U (en
Inventor
治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4923588U priority Critical patent/JPH062122Y2/en
Publication of JPH01152227U publication Critical patent/JPH01152227U/ja
Application granted granted Critical
Publication of JPH062122Y2 publication Critical patent/JPH062122Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は計測対象物の赤外線放射量を測定する赤外線
計測装置、特に航空機に搭載する赤外線計測マウント装
置に関するものである。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to an infrared measuring device for measuring the infrared radiation amount of a measuring object, and more particularly to an infrared measuring mount device mounted on an aircraft.

〔従来の技術〕[Conventional technology]

第6図は、例えば「軍事偵察用単一または双体収納概
念」(「Single or dual pod concepts fortactical re
connaissance」)(SPIE,561巻,pp52,1985)に示された
従来の赤外線計測装置を示す断面図であり、図におい
て、(1)は赤外線透過窓、(21)は赤外線透過窓(1)は透過
する赤外線を検出する赤外線検出装置、(22)は赤外線検
出装置(21)からの電気信号を処理する電子回路、(12)は
赤外線透過窓(1),赤外線検出装置(21)及び電子回路(2
2)を保持する筺体で、航空機に搭載されている。
Figure 6 shows, for example, "Single or dual pod concepts for tactical recon."
conaissance ") (SPIE, 561, pp52, 1985) is a cross-sectional view showing a conventional infrared measuring device, in which (1) is an infrared transparent window and (21) is an infrared transparent window (1). Is an infrared detection device for detecting the infrared rays that are transmitted, (22) is an electronic circuit that processes the electric signal from the infrared detection device (21), (12) is an infrared transmission window (1), the infrared detection device (21) and electronic Circuit (2
It is a housing that holds 2) and is installed in an aircraft.

次に動作について説明する。計測対象物から放射される
赤外線は赤外線透過窓(1)を透過して赤外線検出装置(2
1)で検出され電気信号に変換される。この電気信号を電
子回路(22)で赤外線放射量に換算することにより、計測
対象物から放射される赤外線放射量が計測される。
Next, the operation will be described. The infrared rays emitted from the object to be measured pass through the infrared transmission window (1) and the infrared detector (2
It is detected in 1) and converted into an electrical signal. By converting this electric signal into an infrared radiation amount by the electronic circuit (22), the infrared radiation amount emitted from the measurement object is measured.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

従来の赤外線計測装置は以上のように構成されているの
で、高速飛行する航空機に搭載した場合赤外線検出装置
(21)の視野範囲内に計測対象物が入るように、また、一
定の方向に入るように航空機で追尾することが必要で、
また、赤外線で撮像する赤外線カメラ及び赤外線のスペ
クトル計測する赤外線分析器の両方を赤外線検出装置と
して同時に用いることができず、取り換えて計測するこ
とが必要であった。
Since the conventional infrared measuring device is configured as described above, it is an infrared detecting device when mounted on an aircraft flying at high speed.
It is necessary to track with an aircraft so that the measurement object enters within the field of view of (21), and to enter in a certain direction,
Further, both the infrared camera for imaging with infrared rays and the infrared analyzer for measuring the spectrum of infrared rays cannot be used at the same time as the infrared detecting device, and it is necessary to replace them for measurement.

この考案は上記のような課題を解決するためになされた
もので、計測対象物を精度良く追尾できるとともに、赤
外線で撮像する赤外線カメラ及び赤外線のスペクトル計
測する赤外線分析器の両方を備え付けることができ、同
時計測ができる赤外線計測マウント装置を得ることを目
的とする。
This invention has been made to solve the above problems, and it is possible to accurately track an object to be measured, and to equip both an infrared camera for imaging with infrared rays and an infrared analyzer for measuring infrared spectrum. , The purpose is to obtain an infrared measurement mounting device capable of simultaneous measurement.

〔課題を解決するための手段〕[Means for Solving the Problems]

この考案に係る赤外線計測マウント装置は、赤外線透過
窓と赤外線検出装置(赤外線カメラと赤外線分析器)の
間に4枚の鏡を設け、このうちの2つの鏡を2軸回りに
駆動するようにし、かつ残りの2枚のうちの1つをハー
フミラーとしたものである。
An infrared measuring mount device according to the present invention is provided with four mirrors between an infrared transmitting window and an infrared detecting device (an infrared camera and an infrared analyzer), and two of these mirrors are driven around two axes. In addition, one of the remaining two pieces is a half mirror.

〔作用〕[Action]

この考案における赤外線計測マウント装置は、赤外線透
過窓からの入射赤外線を2軸回転駆動可能な2軸走査鏡
で反射させ、これを更に筺体に固定された折り返し鏡で
反射させてハーフミラーへ入射させ、半分を透過させ、
残り半分を反射させ、この反射光を2軸回転駆動可能な
2軸ポイント走査鏡で反射させ、この反射赤外線の上記
透過赤外線との一方を赤外線カメラに、他方を赤外線分
析器に入射させることにより、赤外線カメラと赤外線分
析器との双方を備え付け、これらによる計測を同時に行
うことができる。
In the infrared measuring mount device according to the present invention, the incident infrared light from the infrared transmitting window is reflected by a biaxial scanning mirror capable of biaxial rotation and is further reflected by a folding mirror fixed to the housing to be incident on a half mirror. , Half transparent,
The other half is reflected, the reflected light is reflected by a biaxial point scanning mirror that can be driven to rotate in two axes, and one of the reflected infrared light and the transmitted infrared light is made incident on an infrared camera and the other is made incident on an infrared analyzer. It is equipped with both an infrared camera and an infrared analyzer, and measurement by these can be performed simultaneously.

〔考案の実施例〕[Example of device]

以下、この考案の一実施例を図について説明する。第
1,2図において、(1)は赤外線を透過する赤外線透過
窓、(6)は2軸回りに駆動機構(11a),(11b)によりベア
リング(10a),(10b)で支持されて回転される2軸走査
鏡、(7)は赤外線を反射する折り返し鏡、(8)は赤外線の
50%を反射し50%を透過するハーフミラー、(9)は2軸走
査鏡(6)と同じくベアリング(10c),(10d)で支持され、
駆動機構(11c),(11d)((10d),(11d)は図示せず)によ
って2軸回りに駆動される2軸ポイント走査鏡、(10
a),(10b),(10c)はベアリング、(11a),(11b),(11c)
は駆動機構、(2)は赤外線透過窓(1)を透過し2軸走査鏡
(6)及び折り返し鏡(7)で反射されハーフミラー(8)を透
過してきた赤外線を撮像する赤外線カメラで、(4)は赤
外線カメラ(2)で検出された赤外線の電気信号を処理す
る赤外線カメラ用電子回路で、(3)はハーフミラー(8)で
反射され2軸ポイント走査鏡(9)で反射されてきた赤外
線をスペクトル計測する赤外線分析器、(5)は赤外線分
析器で検出された電気信号を処理する赤外線分析器用
電子回路、(12)は以上の構成品を支持・保持する筺体で
ある。
An embodiment of the present invention will be described below with reference to the drawings. In Figs. 1 and 2, (1) is an infrared transmitting window for transmitting infrared rays, and (6) is a rotation about two axes supported by bearings (10a) and (10b) by drive mechanisms (11a) and (11b). 2-axis scanning mirror, (7) is a folding mirror that reflects infrared rays, and (8) is an infrared ray mirror.
Half mirror that reflects 50% and transmits 50%, (9) is supported by bearings (10c) and (10d) as well as the biaxial scanning mirror (6),
A two-axis point scanning mirror driven by two drive mechanisms (11c) and (11d) ((10d) and (11d) are not shown), (10
a), (10b), (10c) are bearings, (11a), (11b), (11c)
Is a drive mechanism, (2) is a two-axis scanning mirror that transmits through the infrared transmission window (1)
(6) and an infrared camera that captures the infrared light reflected by the folding mirror (7) and transmitted through the half mirror (8), and (4) is an infrared camera that processes the electrical signal of the infrared light detected by the infrared camera (2). An electronic circuit for a camera, (3) an infrared analyzer for spectrally measuring infrared rays reflected by a half mirror (8) and reflected by a biaxial point scanning mirror (9), and (5) detected by an infrared analyzer 3 . An infrared analyzer electronic circuit for processing the generated electric signal, (12) is a housing that supports and holds the above components.

次に動作について説明する。Next, the operation will be described.

計測対象物から放射される赤外線の放射量,スペクトル
等を計測する場合、赤外線透過窓(1)を透過し2軸走査
鏡(6)及び折り返し鏡(7)で反射されハーフミラー(8)を
透過してきた赤外線は赤外線カメラ(2)で検出され赤外
線カメラ用電子回路(4)で処理される。この時赤外線カ
メラ(2)の視野内に映し出された像の図心と視野中心と
のズレも検出しこのズレ量(角度誤差)を駆動機構(11
a)により2軸走査鏡(6)を駆動させて、常に計測対象物
の方向に赤外線カメラ(2)が向くように制御される。一
方、計測対象物から放射される赤外線の約50%をハーフ
ミラー(8)で反射させ2軸ポイント走査鏡(9)を通って赤
外線分析器(3)で検出され赤外線分析器用電子回路(5)で
処理されるが、2軸ポイント走査鏡(9)を2軸回りに駆
動させることにより赤外線カメラ(2)の視野内で映し出
される計測対象物の任意の点の赤外線スペクトル計測が
行なえる。
When measuring the amount of infrared radiation emitted from the object to be measured, the spectrum, etc., the half mirror (8) is transmitted through the infrared transmission window (1) and reflected by the biaxial scanning mirror (6) and the folding mirror (7). The infrared rays that have passed through are detected by the infrared camera (2) and processed by the infrared camera electronic circuit (4). At this time, the deviation between the centroid of the image projected in the field of view of the infrared camera (2) and the center of the field of view is also detected, and this deviation amount (angle error) is detected.
By driving the biaxial scanning mirror (6) by a), the infrared camera (2) is controlled so as to always face the object to be measured. On the other hand, about 50% of the infrared rays emitted from the object to be measured is reflected by the half mirror (8), passes through the biaxial point scanning mirror (9), and is detected by the infrared analyzer (3). However, by driving the biaxial point scanning mirror (9) around the biaxial axis, it is possible to measure the infrared spectrum of an arbitrary point of the measuring object displayed in the visual field of the infrared camera (2).

なお、上記実施例では2枚の鏡を2軸の回りに駆動する
方式を示したが、(3)に示す他の実施例のように全体を
更にもう1軸(または2軸)の回りに駆動する。即ち旋
回輪軸受13、駆動機構14によって全体を駆動するこ
とによって、赤外線計測方向の範囲を広くするようにし
てもよい。
In the above embodiment, the method of driving the two mirrors around two axes is shown, but as in the other embodiment shown in (3), the whole mirror is further rotated around another axis (or two axes). To drive. That is, the range in the infrared measurement direction may be widened by driving the entire structure by the slewing wheel bearing 13 and the drive mechanism 14.

また、第1,2図に示した実施例では、4枚の鏡の中心
を同一平面内に配置しているが、第4,5図に示す更に
他の実施例のように同一平面内に配置しなくても支障は
ない。
Further, in the embodiment shown in FIGS. 1 and 2, the centers of the four mirrors are arranged in the same plane, but as in the other embodiments shown in FIGS. There is no problem even if it is not placed.

〔考案の効果〕[Effect of device]

以上のように、この考案によれば、4枚の鏡を用い、こ
のうち2枚の鏡を2軸回りに駆動するように構成したの
で、計測対象物を精度良く一定の状態にとらえ赤外線検
出器として赤外線カメラと赤外線分析器の2つが有効に
使え計測対象物の赤外線特性の計測が簡単に、精度良く
また早く(一度に)行なえる効果がある。
As described above, according to the present invention, four mirrors are used, and two of these mirrors are driven around two axes, so that the object to be measured is accurately detected in a constant state and infrared detection is performed. As an instrument, an infrared camera and an infrared analyzer can be effectively used, and there is an effect that the infrared characteristic of the measurement object can be measured easily, accurately and quickly (at one time).

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の一実施例による赤外線計測マウント
装置を示す断面側面図、第2図は2軸走査鏡(6)部の断
面正面図、第3図及び第4図はそれぞれこの考案の他の
実施例及び更に他の実施例による赤外線計測マウント装
置を示す断面側面図、第5図は第4図のV−V線におけ
る断面図、第6図は従来の赤外線計測マウント装置を示
す断面側面図である。 (1)は赤外線透過窓、(2)は赤外線カメラ、(3)は赤外線
分析器、(4)は赤外線カメラ用電子回路、(5)は赤外線分
析器用電子回路、(6)は2軸走査鏡、(7)は折り返し鏡、
(8)はハーフミラー、(9)は2軸ポイント走査鏡、(12)は
筺体である。 なお、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a sectional side view showing an infrared measuring mount device according to an embodiment of the present invention, FIG. 2 is a sectional front view of a biaxial scanning mirror (6), and FIGS. FIG. 5 is a sectional side view showing an infrared measuring mount device according to another embodiment and still another embodiment, FIG. 5 is a sectional view taken along line VV of FIG. 4, and FIG. 6 is a sectional view showing a conventional infrared measuring mount device. It is a side view. (1) infrared transmission window, (2) infrared camera, (3) infrared analyzer, (4) infrared camera electronic circuit, (5) infrared analyzer electronic circuit, (6) two-axis scanning Mirror, (7) is a folding mirror,
(8) is a half mirror, (9) is a biaxial point scanning mirror, and (12) is a housing. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】筺体に固定された赤外線透過窓と、 この赤外線透過窓を透過して入射した赤外線を反射させ
る2軸に回転駆動可能な2軸走査鏡と、 上記筺体に固定され上記2軸走査鏡で反射された赤外線
を更に反射させる折り返し鏡と、 この折り返し鏡で反射された赤外線の50%を透過させ、
残り50%を反射させるハーフミラーと、 このハーフミラーで反射された赤外線を更に反射させる
2軸に回転駆動可能な2軸ポイント走査鏡と、 上記ハーフミラーを透過した赤外線の通路、及び上記2
軸ポイント走査鏡で反射された赤外線の通路のいずれか
一方に設けられた赤外線カメラと、他方に設けられた赤
外線分析器とを備えた赤外線計測マウント装置。
1. An infrared transmissive window fixed to a housing, a biaxial scanning mirror which can be rotatably driven by two axes for reflecting infrared rays that have passed through the infrared transmissive window, and the biaxial scanning mirror fixed to the housing. A folding mirror that further reflects the infrared light reflected by the scanning mirror, and 50% of the infrared light reflected by this folding mirror is transmitted,
A half mirror that reflects the remaining 50%, a biaxial point scanning mirror that can be rotationally driven in two axes that further reflects the infrared light reflected by this half mirror, a path of the infrared light that has passed through the half mirror, and the above 2
An infrared measuring mount device comprising an infrared camera provided in either one of the paths of infrared rays reflected by an axial point scanning mirror, and an infrared analyzer provided in the other.
JP4923588U 1988-04-12 1988-04-12 Infrared measurement mount device Expired - Lifetime JPH062122Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4923588U JPH062122Y2 (en) 1988-04-12 1988-04-12 Infrared measurement mount device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4923588U JPH062122Y2 (en) 1988-04-12 1988-04-12 Infrared measurement mount device

Publications (2)

Publication Number Publication Date
JPH01152227U JPH01152227U (en) 1989-10-20
JPH062122Y2 true JPH062122Y2 (en) 1994-01-19

Family

ID=31275350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4923588U Expired - Lifetime JPH062122Y2 (en) 1988-04-12 1988-04-12 Infrared measurement mount device

Country Status (1)

Country Link
JP (1) JPH062122Y2 (en)

Also Published As

Publication number Publication date
JPH01152227U (en) 1989-10-20

Similar Documents

Publication Publication Date Title
WO1983000382A1 (en) Steering mechanism for a thermal imaging system and rangefinder therefor
JP4326946B2 (en) Scanning sensor system with multiple rotating telescope subassemblies
JPS6355020B2 (en)
US3854821A (en) Optical system for wide band light energy
US4560272A (en) Three-axis angle sensor
JPH062122Y2 (en) Infrared measurement mount device
JPH0560527A (en) Rotary optical image pickup device
EP0081651B1 (en) Three-axis angle sensor
KR960015008B1 (en) Prevention apparatus of disasters having fire detection means
RU2091843C1 (en) Optical image stabilizing device
GB2258315A (en) Wheel alignment measurement system
JPS62178208A (en) Optical chopper device
US20040136005A1 (en) Measuring specular reflectance of a sample
JPH0547052B2 (en)
JPS62257077A (en) Measuring apparatus
JPS61292122A (en) Scanning system for infrared image device
JPH1054699A (en) Inspection device for functions of airframe
JPH0628857Y2 (en) Infrared camera mirror drive mechanism
JP3118058B2 (en) Speed detector
JPH052177B2 (en)
JP3852596B2 (en) Target board and electro-optical device
SU862096A2 (en) Optical polarization device for probing atmosphere
JPH0443222B2 (en)
JPS63246614A (en) Quadruple-axis fixed star sensor
AU2002244507B2 (en) Measuring specular reflectance of a sample