JPH06211977A - Production of hydroxyl-terminated aromatic polycarbonate resin - Google Patents

Production of hydroxyl-terminated aromatic polycarbonate resin

Info

Publication number
JPH06211977A
JPH06211977A JP595193A JP595193A JPH06211977A JP H06211977 A JPH06211977 A JP H06211977A JP 595193 A JP595193 A JP 595193A JP 595193 A JP595193 A JP 595193A JP H06211977 A JPH06211977 A JP H06211977A
Authority
JP
Japan
Prior art keywords
added
terminal
ammonia
polymerization
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP595193A
Other languages
Japanese (ja)
Inventor
Mitsuhiko Tamura
光彦 田村
Isao Akihara
勲 秋原
Masaru Ota
勝 太田
Kenichi Sugimoto
賢一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP595193A priority Critical patent/JPH06211977A/en
Publication of JPH06211977A publication Critical patent/JPH06211977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain an arom. polycarbonate resin having phenolic hydroxyl groups at the molecular terminals by subjecting a dihydric phenol and phosgene to interfacial polymn. and stopping the reaction by adding ammonia in the polymn. step when the attempted mol.wt. is reached. CONSTITUTION:This poIycarbonate resin is obtd. by subjecting a dihydric phenol and phosgene to interfacial polymn. and stopping the reaction by adding ammonia at the polymn. step when the attempted mol.wt. is reached. Ammonia is added when the viscosity-average mol.wt. of the resulting polycarbonate reaches 5,000-100,000. The amt. of ammonia added is 0.2-50mol, pref. 1-10mol, based on 1mol of remaining chloroformate groups.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は末端にフェノール性水酸
基を有する芳香族ポリカーボネート樹脂の製造方法に関
するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing an aromatic polycarbonate resin having a phenolic hydroxyl group at a terminal.

【0002】[0002]

【従来の技術】水及び水不混和性有機溶媒系においてホ
スゲンと二価フェノールを縮合して芳香族ポリカーボネ
ートを製造する際に、末端停止剤として一価のフェノー
ルを存在させることにより任意の分子量のポリカーボネ
ートを製造できることは一般に知られる(シュネル著
「ポリカーボネートの化学と物理」p.39ジョン・ウ
ィリー出版1964年)。この様な方法によって得られ
たポリカーボネート樹脂の末端基のほとんどは停止剤と
して用いた一価のフェノールの残基になるので、通常は
反応性を有しない。
2. Description of the Related Art When phosgene and a dihydric phenol are condensed in water and a water-immiscible organic solvent system to produce an aromatic polycarbonate, the presence of a monohydric phenol as an end-capping agent causes the formation of an arbitrary molecular weight. It is generally known that polycarbonates can be produced (Schnell, "Chemistry and Physics of Polycarbonates" p. 39 John Willie Publishing 1964). Most of the terminal groups of the polycarbonate resin obtained by such a method are the residues of the monohydric phenol used as the terminating agent, and thus are not usually reactive.

【0003】一方、末端に反応し得る官能基を有するポ
リカーボネートはブロック共重合体の原料として注目さ
れ、反応性の高い水酸基を末端に有するポリカーボネー
トの製造方法が望まれていた。また、ポリマーアロイの
分野においても、反応性を有するポリカーボネートをポ
リアミド、ポリエステル等に導入することによって、熱
安定性、耐衝撃性を改善できる事が知られる(島岡典
昭,工業材料1990,38,38.保坂範夫,プラス
チックスエージ1991,147.)。
On the other hand, a polycarbonate having a functional group capable of reacting at the terminal has attracted attention as a raw material for a block copolymer, and a method for producing a polycarbonate having a highly reactive hydroxyl group at the terminal has been desired. Also in the field of polymer alloys, it is known that thermal stability and impact resistance can be improved by introducing a reactive polycarbonate into polyamide, polyester, etc. (Noriaki Shimaoka, Industrial Materials 1990, 38 , 38). Norio Hosaka, Plastic Swage 1991, 147.).

【0004】しかし、末端が水酸基であるポリカーボネ
ートの製法に関しては、pHを10乃至12に維持する
オリゴマーの製造法(特公平2−29064)、反応性
の異なる2つの水酸基を有する末端停止剤を用いる方法
(特開平2−245022)、脂肪族ジオール類とのエ
ステル交換を行う方法(特開昭61−272230)、
水酸基をその保護基となる末端停止剤を用いて保護し、
重合終了後に脱保護する方法(特開昭63−30803
4)等が知られているが、pHのコントロールによる方
法では高分子量のポリカーボネート生成が困難であり、
保護基を用いた方法は製造工程が複雑になる為に実用的
でない。脂肪族水酸基を導入する方法も耐熱性や強度等
の物性低下や共重合の際の反応性低下が問題になる。す
なわち、末端に水酸基を有する所望の分子量の芳香族ポ
リカーボネートを一段階で製造する方法は知られていな
かった。
However, regarding the method for producing a polycarbonate having a hydroxyl group at the terminal, a method for producing an oligomer for maintaining the pH at 10 to 12 (Japanese Patent Publication No. 2-29064) and a terminal stopper having two hydroxyl groups having different reactivity are used. Method (JP-A-2-245022), method of transesterification with aliphatic diols (JP-A-61-272230),
Protect the hydroxyl group with a terminal terminator that serves as the protective group,
Method of deprotection after completion of polymerization (Japanese Patent Laid-Open No. 63-30803)
4) and the like are known, but it is difficult to produce a high-molecular weight polycarbonate by the method of controlling the pH,
The method using a protecting group is not practical because the manufacturing process becomes complicated. The method of introducing an aliphatic hydroxyl group also poses a problem that the physical properties such as heat resistance and strength are deteriorated and the reactivity during copolymerization is deteriorated. That is, a method for producing an aromatic polycarbonate having a desired molecular weight having a hydroxyl group at a terminal in one step has not been known.

【0005】[0005]

【発明が解決しようとする課題】本発明は、およそ20
乃至400量体の任意の重合度を有し末端にフェノール
性水酸基を有する芳香族ポリカーボネートの製造方法を
提供するものである。
SUMMARY OF THE INVENTION The present invention provides about 20
The present invention provides a method for producing an aromatic polycarbonate having an arbitrary degree of polymerization of 400 to 400 mer and having a phenolic hydroxyl group at the terminal.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意検討の
結果、ホスゲンと二価フェノール類を原料にして界面重
合法でポリカーボネートを製造する際、粘度平均分子量
が5000乃至100000の任意の重合度に達した時
点でアンモニアを添加し、重合を停止する方法により末
端に水酸基を有する高重合度のポリカーボネートが得ら
れることを見い出した。
Means for Solving the Problems As a result of intensive investigations by the present inventors, when a polycarbonate is produced by an interfacial polymerization method using phosgene and a dihydric phenol as raw materials, any polymerization having a viscosity average molecular weight of 5,000 to 100,000 is performed. It was found that a polycarbonate with a high degree of polymerization having a hydroxyl group at the terminal can be obtained by the method of adding ammonia when the temperature reaches a certain level and stopping the polymerization.

【0007】すなわち、本発明の要旨は、二価のフェノ
ール類とホスゲンとから界面重合法により芳香族ポリカ
ーボネート樹脂を製造するにあたり、重合過程で目的の
分子量に達した時点でアンモニアを添加し、重合反応を
停止することを特徴とする末端に水酸基を有する芳香族
ポリカーボネート樹脂の製造方法に存する。以下、本発
明を詳細に説明する。本発明では、水及び水不混和性有
機溶媒中二価フェノールとホスゲンとを重縮合する界面
重合法を用いる。
That is, the gist of the present invention is that when an aromatic polycarbonate resin is produced from a dihydric phenol and phosgene by an interfacial polymerization method, ammonia is added at the time when a desired molecular weight is reached in the polymerization process to carry out the polymerization. A method for producing an aromatic polycarbonate resin having a hydroxyl group at the terminal is characterized by stopping the reaction. Hereinafter, the present invention will be described in detail. In the present invention, an interfacial polymerization method of polycondensing dihydric phenol and phosgene in water and a water-immiscible organic solvent is used.

【0008】本発明でいう水不混和性有機溶媒として
は、ベンゼン、トルエン、キシレン等の芳香族炭化水
素、アニソール、ジフェニルエーテル等の芳香族エーテ
ル、クロロベンゼン、ジクロロベンゼン等のハロゲン化
芳香族炭化水素、ジクロロメタン、クロロホルム、1,
2−ジクロロエタン、1,1,2−トリクロロエチレン
等のハロゲン化炭化水素を挙げる事が出来るが、この中
でジクロロメタンが最も好ましい。原料モノマーである
二価のフェノール系化合物としては、通常一般式(1)
で表されるビスフェノール類が用いられる。
Examples of the water-immiscible organic solvent used in the present invention include aromatic hydrocarbons such as benzene, toluene and xylene, aromatic ethers such as anisole and diphenyl ether, and halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene. Dichloromethane, chloroform, 1,
Halogenated hydrocarbons such as 2-dichloroethane and 1,1,2-trichloroethylene can be mentioned, with dichloromethane being most preferred. The divalent phenolic compound that is a raw material monomer is usually represented by the general formula (1)
The bisphenols represented by are used.

【0009】[0009]

【化1】 [Chemical 1]

【0010】上記の一般式中、X1 及びX2 は水素、ハ
ロゲン、低級アルキル基であり、Zは炭素数9以下の直
鎖あるいは分岐アルキレン基またはO,S,CO,SO
2 で示される結合を意味する。代表的な化合物としては
4,4′−ジヒドロキシビフェニル、ビス(4−ヒドロ
キシフェニル)メタン、ビス(4−ヒドロキシフェニ
ル)エーテル、ビス(4−ヒドロキシフェニル)ケト
ン、ビス(4−ヒドロキシフェニル)スルフィド、ビス
(4−ヒドロキシフェニル)スルホン、2,2−ビス
(4−ヒドロキシフェニル)プロパン、1,1−ビス
(4−ヒドロキシフェニル)シクロヘキサン及びこれら
の芳香環上の水素をハロゲンまたはメチル基等の炭化水
素基に置換した化合物が挙げられる。
In the above general formula, X 1 and X 2 are hydrogen, halogen or a lower alkyl group, and Z is a linear or branched alkylene group having 9 or less carbon atoms or O, S, CO, SO.
Means a bond represented by 2 . Typical compounds are 4,4'-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) sulfide, Bis (4-hydroxyphenyl) sulfone, 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane and hydrogenation of these aromatic rings by halogenation or methylation of a methyl group or the like. The compound substituted by the hydrogen group is mentioned.

【0011】本発明の最初の工程では、二価のフェノー
ル系化合物を溶解した苛性アルカリ水溶液に水不混和性
有機溶媒とホスゲンを導入して低重合度のポリカーボネ
ートオリゴマーを得る。得られたクロロホーメート末端
を有するポリカーボネートオリゴマーは、重縮合により
更に高分子量化することが可能である。オリゴマーの製
造とその後の重合は続けて行うことも可能であり、一旦
オリゴマーの有機溶媒溶液を水相と分液し、次いでこれ
に新たなアルカリ水溶液を加えて重合を進めることも可
能である。
In the first step of the present invention, a water-immiscible organic solvent and phosgene are introduced into a caustic aqueous solution in which a divalent phenolic compound is dissolved to obtain a polycarbonate oligomer having a low degree of polymerization. The obtained polycarbonate oligomer having a chloroformate terminal can have a higher molecular weight by polycondensation. It is also possible to continuously carry out the production of the oligomer and the subsequent polymerization, and it is also possible to once separate the organic solvent solution of the oligomer from the aqueous phase, and then add a new alkaline aqueous solution to proceed with the polymerization.

【0012】重合の際、水相の苛性アルカリ濃度は0.
1乃至10規定、好ましくは0.5〜5規定に調製す
る。苛性アルカリの濃度が低過ぎると重合は進行しない
し、高過ぎるとポリマーの加水分解が進行する。また、
オリゴマーの全ての末端基が苛性アルカリと反応した後
も0.1〜0.5規定の苛性アルカリが残る様に過剰の
苛性アルカリを用いる。分液性や反応槽の大きさを考慮
すると水相の量は有機相に対して10〜50容量%とな
ることが好ましい。
During the polymerization, the caustic concentration of the aqueous phase is 0.
It is adjusted to 1 to 10 N, preferably 0.5 to 5 N. If the concentration of caustic is too low, the polymerization will not proceed, and if it is too high, the hydrolysis of the polymer will proceed. Also,
Excess caustic is used so that 0.1 to 0.5 normal caustic remains after all the terminal groups of the oligomer have reacted with caustic. Considering the liquid separation property and the size of the reaction tank, the amount of the aqueous phase is preferably 10 to 50% by volume with respect to the organic phase.

【0013】反応温度、圧力は特に限定されないが、重
合の反応速度を考慮すると0〜100℃の温度で行うこ
とが望ましい。到達する分子量を制御する為、通常は無
触媒で重合を行うが、反応速度を早める為に界面活性触
媒を用いることも可能である。界面活性触媒にはトリメ
チルアミン、トリエチルアミン、トリ(n−ブチル)ア
ミン、ピリジン、N,N−ジエチルアニリン等の三級ア
ミンや塩化ベンジルトリメチルアンモニウム等のアンモ
ニウム塩が考えられるが、中でも入手し易く取扱いが容
易なトリエチルアミンが好ましい。
The reaction temperature and pressure are not particularly limited, but it is desirable to carry out the reaction at a temperature of 0 to 100 ° C. considering the reaction rate of the polymerization. In order to control the molecular weight to reach, polymerization is usually carried out without a catalyst, but it is also possible to use a surface-active catalyst to accelerate the reaction rate. As the surface-active catalyst, tertiary amines such as trimethylamine, triethylamine, tri (n-butyl) amine, pyridine, N, N-diethylaniline and ammonium salts such as benzyltrimethylammonium chloride can be considered, but they are easily available and are easy to handle. The easy triethylamine is preferred.

【0014】本発明では、ポリマーの粘度平均分子量が
5000〜100000の目的の重合度に達した時点で
アンモニアを添加することにより、分子量は殆ど変えず
に末端に水酸基を有する芳香族ポリカーボネートが得ら
れる。アンモニアの使用量は残存するクロロホーメート
基に対して0.2〜50倍モル当量、好ましくは等モル
〜10倍モル当量である。尚、アンモニアの添加方法は
特に制限はなく、ガス状で添加することも可能だが、水
溶液として添加するのが取扱い上好ましい。
In the present invention, when the viscosity average molecular weight of the polymer reaches the desired degree of polymerization of 5,000 to 100,000, ammonia is added to obtain an aromatic polycarbonate having a hydroxyl group at the terminal without changing the molecular weight. . The amount of ammonia used is 0.2 to 50 times molar equivalent, preferably equimolar to 10 times molar equivalent, based on the remaining chloroformate group. The method of adding ammonia is not particularly limited, and it may be added in the form of gas, but it is preferable to add it as an aqueous solution in terms of handling.

【0015】アンモニアを添加してからは、5分〜5時
間撹拌を続けて反応が完結するまで水酸基を生成させる
ことが好ましい。反応の終了時点で、水相を分離除去す
るか残存アルカリが完全に中和され酸性を呈するまで酸
を加える。この時用いる酸として塩酸、硫酸、硝酸、燐
酸等の無機酸類や酢酸、蓚酸等の有機酸類が挙げられ
る。
After adding ammonia, it is preferable to continue stirring for 5 minutes to 5 hours to form hydroxyl groups until the reaction is completed. At the end of the reaction, the aqueous phase is separated off and acid is added until the residual alkali is completely neutralized and acidic. Examples of the acid used at this time include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid and oxalic acid.

【0016】ポリマーの単離は通常の方法に従って行わ
れる。即ち、有機相を脱塩水で繰り返し洗浄した後、溶
媒を除去してポリマー固形物を得る。末端水酸基の量を
調節したい場合は、4−(t−ブチル)フェノール等の
単官能フェノール化合物を末端停止剤として使用するこ
とができる。この場合は重合時に単官能フェノールを添
加した後、目的分子量に到達した時点でアンモニアを添
加する。
Isolation of the polymer is carried out according to conventional methods. That is, after repeatedly washing the organic phase with demineralized water, the solvent is removed to obtain a polymer solid. When it is desired to control the amount of terminal hydroxyl groups, a monofunctional phenol compound such as 4- (t-butyl) phenol can be used as a terminal stopper. In this case, after the monofunctional phenol is added during the polymerization, ammonia is added when the target molecular weight is reached.

【0017】本発明の方法により、末端にフェノール性
水酸基を有するポリカーボネート樹脂を所望の分子量
で、しかも簡便な方法により取得することができる。
By the method of the present invention, it is possible to obtain a polycarbonate resin having a phenolic hydroxyl group at the terminal with a desired molecular weight and by a simple method.

【0018】[0018]

【実施例】以下に、本発明を実施例により具体的に説明
するが、本発明はその要旨を逸脱しない限りこれら実施
例により何ら限定されるものではない。尚、以下の実施
例で得られたポリマーの性状分析は、下記の方法で行っ
た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples without departing from the gist thereof. The properties of the polymers obtained in the following examples were analyzed by the following methods.

【0019】1.粘度平均分子量 ポリマーをジクロロメタン溶媒中に約6g/lの濃度に
なるよう溶解し、20℃の恒温水槽中でウベローデ型粘
度計を用いて粘度を測定した。粘度の分子量換算は以下
に示すシュネルの式に従った。
1. Viscosity average molecular weight The polymer was dissolved in a dichloromethane solvent to a concentration of about 6 g / l, and the viscosity was measured using a Ubbelohde viscometer in a constant temperature water bath at 20 ° C. The molecular weight conversion of viscosity was in accordance with Schnell's formula shown below.

【0020】[0020]

【数1】Mv=51400×〔η〕1.205 [Equation 1] Mv = 51400 × [η] 1.205

【0021】2.末端クロロホーメート基の定量 クロロホーメート基の残存量に応じポリマーをジクロロ
メタン溶媒中に0.05乃至5g/lの濃度まで溶解
し、4−(ニトロベンジル)ピリジンを0.8g/lの
濃度となる様に添加して発色させる。得られた着色溶液
の440nmでの吸光度を測定して、0.2乃至20μ
eq/lのクロロ蟻酸フェニル標準液の吸光度から得ら
れたファクターを使ってクロロホーメート基量に換算し
た。
2. Quantification of terminal chloroformate group The polymer was dissolved in a dichloromethane solvent to a concentration of 0.05 to 5 g / l according to the residual amount of the chloroformate group, and 4- (nitrobenzyl) pyridine was added at a concentration of 0.8 g / l. To add color so that the color develops. The absorbance of the obtained colored solution at 440 nm was measured to be 0.2 to 20 μm.
Using the factor obtained from the absorbance of eq / l phenyl chloroformate standard solution, it was converted to the amount of chloroformate groups.

【0022】3.末端水酸基の定量 末端基の残存量に応じてポリマーを約1v%酢酸酸性の
ジクロロメタン溶媒に0.05〜5g/lの濃度で溶解
し、四塩化チタンを約1v%の濃度となる様に添加す
る。得られた着色溶液の480nmでの吸光度を測定し
て20乃至120μeq/lのビスフェノールA標準液
の吸光度から得られたファクターを使って水酸基量に換
算した。
3. Quantification of terminal hydroxyl group Depending on the residual amount of the terminal group, the polymer is dissolved in a dichloromethane solvent of about 1 v% acetic acid at a concentration of 0.05 to 5 g / l, and titanium tetrachloride is added to a concentration of about 1 v%. To do. The absorbance at 480 nm of the obtained colored solution was measured and converted into the amount of hydroxyl groups using the factor obtained from the absorbance of the bisphenol A standard solution of 20 to 120 μeq / l.

【0023】4.分子量分布 Mw/Mn ポリマーをテトラヒドロフラン溶媒中に5g/dlの濃
度で溶解し、ゲルパーミエーションクロマトグラフ(4
0℃の恒温槽中、TSKゲルカラム、溶離液テトラヒド
ロフラン)を用いて単分散ポリスチレン換算で求めた。 5.核磁気共鳴スペクトル( 1H−NMR) ポリマー約30mgを重クロロホルム約5mlに溶解し
た試料を内径5mmの測定管に入れて日本電子α−40
0(400MHz、スキャン32回)にて測定した。δ
値の基準にはテトラメチルシランを用い、0ppmとし
た。
4. Molecular weight distribution Mw / Mn The polymer was dissolved in a tetrahydrofuran solvent at a concentration of 5 g / dl, and the gel permeation chromatograph (4
It was determined in terms of monodisperse polystyrene using a TSK gel column and eluent tetrahydrofuran) in a constant temperature bath at 0 ° C. 5. Nuclear magnetic resonance spectrum ( 1 H-NMR) A sample prepared by dissolving about 30 mg of a polymer in about 5 ml of deuterated chloroform was placed in a measuring tube having an inner diameter of 5 mm, and JEOL α-40 was used.
The measurement was performed at 0 (400 MHz, 32 scans). δ
Tetramethylsilane was used as the standard for the value and was set to 0 ppm.

【0024】6.赤外スペクトル(IR) 日本分光FT/IR−7000を用いポリマー濃度が約
5wt%のジクロロメタン溶液を隙間が0.2mmのN
aClセルに入れ400〜4000cm-1での測定を行
った。
6. Infrared spectrum (IR) JASCO FT / IR-7000 was used to prepare a dichloromethane solution having a polymer concentration of about 5 wt% and N having a gap of 0.2 mm.
It was placed in an aCl cell and the measurement was carried out at 400 to 4000 cm -1 .

【0025】(オリゴマーの調製)2,2−(4−ヒド
ロキシフェニル)プロパン20.3g/時、ハイドロサ
ルファイトナトリウム23mg/時、水酸化ナトリウム
7.3g/時、脱塩水124g/時の流量で内容積10
0mlの撹拌槽に導入して35℃で撹拌溶解した後、ポ
リテトラフルオロエチレン(PTFE)でライニングさ
れた内径6mm、長さ125cmの管型反応器にホスゲ
ン9.9g/時、ジクロロメタン67.2g/時と共に
導入した。得られたオリゴマー溶液は分液して下層の有
機相を重合に用いた。オリゴマー濃度は27wt%であ
り、末端クロロホーメート基1985μeq/g、末端
水酸基998μeq/gを有していた。
(Preparation of Oligomer) 2,2- (4-hydroxyphenyl) propane 20.3 g / hour, sodium hydrosulfite 23 mg / hour, sodium hydroxide 7.3 g / hour, demineralized water 124 g / hour. Inner volume 10
After introducing into a 0 ml stirring tank and stirring and dissolving at 35 ° C., phosgene 9.9 g / hour and dichloromethane 67.2 g in a tubular reactor having an inner diameter of 6 mm and a length of 125 cm lined with polytetrafluoroethylene (PTFE). / Introduced with time. The resulting oligomer solution was separated and the lower organic phase was used for polymerization. The oligomer concentration was 27 wt%, and it had a terminal chloroformate group of 1985 μeq / g and a terminal hydroxyl group of 998 μeq / g.

【0026】(実施例−1)3段の2枚タービン翼(d
/D=0.5、下2段は45°かき下げ)を備えた2リ
ットルセパラブルフラスコ中に上記のオリゴマー溶液9
52mlとジクロロメタン588mlを加えてオリゴマ
ーの濃度を16重量%に希釈した。フラスコの内温を3
0℃に保持して2.5規定の苛性ソーダ水溶液460m
lを加え、1000rpmで2時間撹拌した。(尚、こ
の時点でサンプリングして35重量%塩酸を加えて重合
反応を停止させ、このものの分子量及び末端基濃度を測
定した。この結果を、アンモニア添加前の値とした。)
(Embodiment 1) Three-stage two-blade blade (d
/D=0.5, the lower two stages are scraped by 45 °) into a 2 liter separable flask equipped with the above oligomer solution 9
52 ml and dichloromethane 588 ml were added to dilute the oligomer concentration to 16% by weight. Set the inner temperature of the flask to 3
Keeping at 0 ℃, 2.5N aqueous caustic soda solution 460m
1 was added, and the mixture was stirred at 1000 rpm for 2 hours. (At this point, sampling was performed and 35% by weight of hydrochloric acid was added to terminate the polymerization reaction, and the molecular weight and the terminal group concentration of this product were measured. The results were taken as values before addition of ammonia.)

【0027】その後、28重量%アンモニア水溶液を4
0ml添加し、さらに30分間撹拌を続けた後35重量
%塩酸を約70ml加えた。20分後に撹拌を停止し、
静置分液した。下層の有機相を抜き出して約600ml
の脱塩水を加え撹拌・洗浄を行った。この操作を2回繰
り返し中性となった有機相を蒸溜塔を備えた小型ニーダ
ーを用いて70℃で撹拌し、溶媒を除去して粉化した。
得られた粉体は120℃の通風乾燥器中で12時間乾燥
した。乾燥した粉体の粘度平均分子量は16400であ
り、末端にクロロホーメート基を0.01μeq/gと
水酸基172μeq/gを有し、分子量分布(Mw/M
n)は2.88であった。 1H−NMRでは水酸基のピ
ークがδ値4.8ppmに現れ、IRではカルボニル基
の吸収が1775cm-1に確認された。尚、アンモニア
添加前の粘度平均分子量は16000、末端クロロホー
メート基198μeq/g、末端水酸基5μeq/gで
あった。これらの結果を表−1に示した。
Thereafter, a 28% by weight aqueous ammonia solution was added to 4 parts.
0 ml was added, and stirring was continued for another 30 minutes, and then about 70 ml of 35 wt% hydrochloric acid was added. Stop stirring after 20 minutes,
The solution was allowed to stand still for partitioning. Approximately 600 ml by extracting the lower organic phase
Demineralized water was added and the mixture was stirred and washed. This operation was repeated twice, and the neutral organic phase was stirred at 70 ° C. using a small kneader equipped with a distillation column to remove the solvent and pulverize.
The obtained powder was dried in a ventilation dryer at 120 ° C for 12 hours. The dried powder has a viscosity average molecular weight of 16400, a terminal chloroformate group of 0.01 μeq / g and a hydroxyl group of 172 μeq / g, and a molecular weight distribution (Mw / M
n) was 2.88. In 1 H-NMR, a peak of hydroxyl group appeared at a δ value of 4.8 ppm, and in IR, absorption of a carbonyl group was confirmed at 1775 cm -1 . The viscosity average molecular weight before addition of ammonia was 16000, the terminal chloroformate group was 198 μeq / g, and the terminal hydroxyl group was 5 μeq / g. The results are shown in Table 1.

【0028】(実施例−2〜3)実施例−1に準じて反
応操作を行った。但し、アンモニア水を加える迄の重合
時間を3時間(実施例−2)及び3時間30分(実施例
−3)に延ばして到達する粘度平均分子量を各々220
00、27000に変えた。生成ポリマーの物性を表−
1にまとめた。
(Examples 2 to 3) The reaction operation was carried out according to Example 1. However, the polymerization time until the addition of aqueous ammonia was extended to 3 hours (Example-2) and 3 hours 30 minutes (Example-3), and the viscosity average molecular weights reached were 220 and 220, respectively.
Changed to 00, 27,000. Table of physical properties of the produced polymer
Summarized in 1.

【0029】(実施例−4〜5)実施例−1に準じて重
合を行った際、添加するアンモニア水溶液の量を4ml
(実施例−4)及び2ml(実施例−5)に変えたとこ
ろ、生成する水酸基の量にも減少が見られた。生成ポリ
マーの分析値を表−1にまとめた。 (実施例−6)実施例−1に準じて重合を行った後、反
応を終了する際に加える35重量%塩酸の量を150m
lに変えた。過剰の塩酸を加えても末端水酸基の量に変
化は見られなかった。ポリマー分析値を表−1にまとめ
た。
(Examples 4 to 5) When polymerization was carried out according to Example 1, the amount of the aqueous ammonia solution added was 4 ml.
When the amount was changed to (Example-4) and 2 ml (Example-5), the amount of hydroxyl groups produced was also decreased. The analytical values of the produced polymer are summarized in Table 1. (Example-6) After polymerization was carried out in the same manner as in Example-1, the amount of 35% by weight hydrochloric acid added at the end of the reaction was 150 m.
changed to l. No change was observed in the amount of terminal hydroxyl groups even if excess hydrochloric acid was added. The polymer analysis values are summarized in Table 1.

【0030】(比較例−1)6枚タービン翼を備えた内
容積1リットルのセパラブルフラスコ中に、前述のオリ
ゴマー溶液476mlとジクロロメタン293mlを加
えて濃度を16重量%に希釈した。フラスコの内温を3
0℃に保持して2.5規定の苛性ソーダ水溶液230m
lを加え、1200rpmで撹拌した。40分後にトリ
メチルアミン0.53gを加え更に20分間撹拌を続け
た後、35重量%塩酸を約30ml加えて5分間撹拌し
てから撹拌を止めた。静置分液後、下層の有機相を取り
出して約300mlの脱塩水を加え10分間撹拌・洗浄
した。この操作を2回繰り返した後、中性となった有機
相を蒸溜塔を備えた小型ニーダー中で70℃、70rp
mで撹拌して粉化した。得られたポリカーボネート粉体
は120℃の通風乾燥器中で12時間乾燥した。粉体の
粘度平均分子量は26400であり、末端にはクロロホ
ーメート基0.24μeq/g、水酸基107μeq/
gを有していた。トリメチルアミン添加前の粘度平均分
子量は8200であり、末端のクロロホーメート基55
9μeq/g、水酸基35μeq/gであった。
(Comparative Example-1) In a separable flask having an internal volume of 1 liter and equipped with 6 turbine blades, 476 ml of the above oligomer solution and 293 ml of dichloromethane were added to dilute the concentration to 16% by weight. Set the inner temperature of the flask to 3
230m of 2.5N caustic soda solution kept at 0 ℃
1 was added and stirred at 1200 rpm. After 40 minutes, 0.53 g of trimethylamine was added, and the stirring was continued for another 20 minutes. Then, about 30 ml of 35 wt% hydrochloric acid was added and the mixture was stirred for 5 minutes, and then the stirring was stopped. After the stationary separation, the lower organic phase was taken out, about 300 ml of demineralized water was added, and the mixture was stirred and washed for 10 minutes. After repeating this operation twice, the neutralized organic phase was placed in a small kneader equipped with a distillation column at 70 ° C. and 70 rp.
Milled by stirring at m. The obtained polycarbonate powder was dried for 12 hours in a ventilation dryer at 120 ° C. The powder had a viscosity average molecular weight of 26400, a terminal chloroformate group of 0.24 μeq / g and a hydroxyl group of 107 μeq / g.
had g. The viscosity average molecular weight before addition of trimethylamine was 8200, and the terminal chloroformate group 55
It was 9 μeq / g and hydroxyl group was 35 μeq / g.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明の方法により比較的簡単な方法に
よって末端に水酸基を有する所望の分子量のポリカーボ
ネートを製造することが可能となる。末端に水酸基を有
するポリカーボネートは反応性に富み、ブロック共重合
体等のポリマーアロイの原料として有用である。
According to the method of the present invention, it becomes possible to produce a polycarbonate having a desired molecular weight having a hydroxyl group at the terminal by a relatively simple method. Polycarbonates having hydroxyl groups at the ends are highly reactive and are useful as raw materials for polymer alloys such as block copolymers.

フロントページの続き (72)発明者 杉本 賢一 北九州市八幡西区黒崎城石1番1号 三菱 化成株式会社黒崎工場内Front page continued (72) Inventor Kenichi Sugimoto 1-1 Kurosaki Shiroishi, Hachimansai-ku, Kitakyushu City Mitsubishi Kasei Co., Ltd. Kurosaki Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二価のフェノール類とホスゲンとから界
面重合法により芳香族ポリカーボネート樹脂を製造する
にあたり、重合過程で目的の分子量に達した時点でアン
モニアを添加し、重合反応を停止することを特徴とする
末端に水酸基を有する芳香族ポリカーボネート樹脂の製
造方法。
1. When producing an aromatic polycarbonate resin from a dihydric phenol and phosgene by an interfacial polymerization method, ammonia is added to stop the polymerization reaction at the time when a desired molecular weight is reached in the polymerization process. A method for producing an aromatic polycarbonate resin having a hydroxyl group at a terminal.
【請求項2】 請求項1の方法において、ポリカーボネ
ートの粘度平均分子量が5000〜100000に達し
た時点でアンモニアを添加することを特徴とする請求項
1記載の芳香族ポリカーボネート樹脂の製造方法。
2. The method for producing an aromatic polycarbonate resin according to claim 1, wherein ammonia is added when the viscosity average molecular weight of the polycarbonate reaches 5,000 to 100,000.
JP595193A 1993-01-18 1993-01-18 Production of hydroxyl-terminated aromatic polycarbonate resin Pending JPH06211977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP595193A JPH06211977A (en) 1993-01-18 1993-01-18 Production of hydroxyl-terminated aromatic polycarbonate resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP595193A JPH06211977A (en) 1993-01-18 1993-01-18 Production of hydroxyl-terminated aromatic polycarbonate resin

Publications (1)

Publication Number Publication Date
JPH06211977A true JPH06211977A (en) 1994-08-02

Family

ID=11625208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP595193A Pending JPH06211977A (en) 1993-01-18 1993-01-18 Production of hydroxyl-terminated aromatic polycarbonate resin

Country Status (1)

Country Link
JP (1) JPH06211977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446472B1 (en) * 1997-09-04 2004-12-03 주식회사 삼양사 Preparation method of branched polycarbonate resin using water-soluble branching agent instead of organic branching agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446472B1 (en) * 1997-09-04 2004-12-03 주식회사 삼양사 Preparation method of branched polycarbonate resin using water-soluble branching agent instead of organic branching agent

Similar Documents

Publication Publication Date Title
RU2551370C2 (en) Method of producing highly polymerised aromatic polycarbonate resin
EP3406648B1 (en) Polyester-polycarbonate copolymer and method for producing same
KR101896019B1 (en) Polycarbonate copolymer and method for preparing the same
JPH02222417A (en) Polydiorganosiloxane/polycarbonate block co-condensation product based on dihydroxydiphenylcycloalkane
AU608877B2 (en) Polycarbonate production
JP2006503157A (en) Polycarbonate manufacturing method
CA1051589A (en) Phase boundary process for the preparation of aromatic polycarbonates using a chlorinated aromatic hydrocarbon as the polymer solvent
JPH0662753B2 (en) Hydroquinone-bisphenol cyclic copolycarbonate and process for producing the same
CA1127795A (en) Method for manufacture of aromatic polyester-polycarbonate
JPS6330524A (en) Branched polycarbonate containing methylene-bis-naphthalene compound and its production
WO2012019424A1 (en) A method of melt transesterification for preparing a polycarbonate
JPH06211977A (en) Production of hydroxyl-terminated aromatic polycarbonate resin
JPS6335620A (en) Branched polycarbonate and its production
CA2096937A1 (en) Process for the preparation of arylcyclobutene terminated condensation polymers
TWI680996B (en) Method for manufacturing polycarbonate-polyorganosiloxane copolymer
US5037942A (en) Continuous motionless mixer reactor process for the production of branched polycarbonate
JP4212985B2 (en) Method for producing polycarbonate resin
KR920010146B1 (en) Flame-proof polycarbonate containing units deriving from halogenated macrocyclic compounds
WO1998046662A1 (en) Synthesis of polycarbonates using co¿2?
JPS6215223A (en) Branched polycarbonate and its production
JP2018197279A (en) Aromatic polycarbonate oligomer solid
JP3687690B2 (en) Polymer type flame retardant and resin composition
JPS6330929B2 (en)
JPH0118939B2 (en)
CA2035958A1 (en) Halogenated copolycarbonates having improved end group selectivity and resistance to degradation