JPH0621179B2 - Method for producing porous polymeric material for artificial muscle - Google Patents

Method for producing porous polymeric material for artificial muscle

Info

Publication number
JPH0621179B2
JPH0621179B2 JP2163235A JP16323590A JPH0621179B2 JP H0621179 B2 JPH0621179 B2 JP H0621179B2 JP 2163235 A JP2163235 A JP 2163235A JP 16323590 A JP16323590 A JP 16323590A JP H0621179 B2 JPH0621179 B2 JP H0621179B2
Authority
JP
Japan
Prior art keywords
artificial muscle
freezing
producing
muscle
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2163235A
Other languages
Japanese (ja)
Other versions
JPH0453843A (en
Inventor
鈴木  誠
雅彦 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2163235A priority Critical patent/JPH0621179B2/en
Publication of JPH0453843A publication Critical patent/JPH0453843A/en
Publication of JPH0621179B2 publication Critical patent/JPH0621179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、人工筋肉の材料の製造方法に関するもので
あり、ロボットや医療機器、義肢等の駆動源たる小型ア
クチュエータとして利用し得る。
TECHNICAL FIELD The present invention relates to a method for producing a material for artificial muscle, and can be used as a small actuator that is a drive source for robots, medical equipment, artificial limbs, and the like.

[従来の技術] ある種の高分子材料は、浸される環境溶液を、酸−アル
カリ、或いは水−アルコール、或いは水−アセトン等の
ように交換すると可逆的に伸縮する性質をもつ。このよ
うな高分子材料はメカノケミカル材料と称され、ソフト
で軽い小型高効率アクチュエータとしての応用が期待さ
れており、例えば特願昭60−254042(特公昭6
3−10192)、特願昭60−254043(特公昭
63−10193)等がある。
[Prior Art] Certain polymeric materials have the property of reversibly expanding and contracting when the environment solution to be immersed is replaced with acid-alkali, water-alcohol, water-acetone, or the like. Such a polymer material is called a mechanochemical material, and is expected to be applied as a small and highly efficient actuator that is soft and light. For example, Japanese Patent Application No. 60-254042 (Japanese Patent Publication No.
3-10192) and Japanese Patent Application No. 60-254043 (Japanese Patent Publication No. 63-10193).

[発明が解決しようとする課題] メカノケミカル材料においては、応答性と出力密度(単
位体積当りの出力)の向上をはかることが、従来から大
きな課題である。
[Problems to be Solved by the Invention] With respect to mechanochemical materials, it has been a major problem to improve responsiveness and output density (output per unit volume).

応答性については、環境溶液との接触面積を増加させる
べく、材料は細繊維状若しくは薄膜状に形成されるが、
これらの材料を束ねて人工筋肉として用いようとすると
きには材料同士が密着してしまい、環境溶液を交換した
ときの溶液の浸透性が悪く、応答性は未だ充分とはいえ
ない。
Regarding the responsiveness, the material is formed into a fine fiber shape or a thin film shape in order to increase the contact area with the environmental solution,
When these materials are bundled and used as an artificial muscle, the materials come into close contact with each other, the permeability of the solution when the environmental solution is exchanged is poor, and the responsiveness is still insufficient.

この応答性の問題を解決するために、メカノケミカル材
料を単に細繊維状若しくは薄膜状に形成するのでなく
て、更に、多数の貫通孔を材料のほぼ全面に均一に分散
形成することが考えられる。これにより束ねた材料の内
層まで環境溶液を浸透させ得る。
In order to solve this responsiveness problem, it is considered that not only the mechanochemical material is formed into a fine fiber shape or a thin film shape, but also a large number of through holes are uniformly dispersed and formed on almost the entire surface of the material. . This allows the environmental solution to penetrate to the inner layers of the bundled material.

しかし一方、多数の貫通孔を形成すれば、材料の強度が
低下し、出力密度が低下する恐れがある。
On the other hand, however, if a large number of through holes are formed, the strength of the material may be reduced and the output density may be reduced.

この発明は上記の如き事情に鑑みてなされたものであっ
て、環境溶液を交換したときの溶液の浸透効果をあげる
に充分な大きさの孔径の貫通孔を細繊維状若しくは薄膜
状のメカノケミカル材料にほぼ均一に分布させて形成す
ることができ、従って、応答速度を人工筋肉として適用
し得るに充分に速くすることができ、かつ人工筋肉の使
用目的によって孔径の大きさと孔壁部分の力学的特性を
コントロールして必要な伸縮性と強度を保有させること
ができる人工筋肉用多孔性高分子材料の製造方法を提供
することを目的とするものである。
The present invention has been made in view of the circumstances as described above, and a through-hole having a pore size large enough to enhance the permeation effect of the solution when the environmental solution is exchanged is formed into a fine fibrous or thin film mechanochemical. It can be formed by being almost evenly distributed in the material, so the response speed can be made sufficiently fast to be applied as an artificial muscle, and the size of the pore diameter and the mechanics of the pore wall part can be changed depending on the purpose of use of the artificial muscle. It is an object of the present invention to provide a method for producing a porous polymer material for artificial muscle, which is capable of controlling the physical properties and retaining the required elasticity and strength.

[課題を解決するための手段] この目的に対応して、この発明の人工筋肉用多孔性高分
子材料の製造方法は、ポリビニルアルコールと高分子電
解質との混合水溶液を、凍結させてから常温で解凍する
凍結・解凍過程を2回以上繰返す人工筋肉用多孔性高分
子材料の製造方法において、前記凍結する直前の被凍結
物の温度降下速度を前記人工筋肉用多孔性高分子材料に
形成されるべきマクロ孔の孔径の大小に応じて前記孔径
が大きいほど遅くなるように調整することを特徴として
いる。
[Means for Solving the Problems] To solve this problem, the method for producing a porous polymeric material for artificial muscle of the present invention is a method in which a mixed aqueous solution of polyvinyl alcohol and a polymer electrolyte is frozen at room temperature. In the method for producing a porous polymer material for artificial muscle, which comprises repeating the freeze / thaw process for thawing twice or more, the temperature drop rate of the frozen object immediately before freezing is formed in the porous polymer material for artificial muscle. It is characterized in that the larger the hole diameter, the slower it is adjusted according to the size of the macro hole.

[作用] このように構成された人工筋肉用多孔性高分子材料の製
造方法においては、混合溶液は凍結・解凍過程を2回以
上繰返される。凍結するときに相分離が起り、水分が凝
集した凝集域が形成され、一方、その周囲では高分子化
合物の濃度が上昇する。これを解凍して再び凍結する
と、相分離が更に進み、水分の凝集域が拡大し、その周
囲では高分子化合物の濃度が更に上昇する。こうして凍
結・解凍過程を、2回以上好ましくは10回程度以上繰
返すと、水分の凝集域は孔となり、孔の回りには孔壁が
形成される。
[Operation] In the method for producing the porous polymer material for artificial muscle configured as described above, the mixed solution is repeatedly frozen and thawed twice or more. When it freezes, phase separation occurs, and an aggregation region where water is aggregated is formed, while the concentration of the polymer compound increases around it. When this is thawed and frozen again, phase separation proceeds further, the aggregation region of water expands, and the concentration of the polymer compound further increases around it. When the freezing / thawing process is repeated twice or more, preferably about ten times or more, the water agglomeration region becomes pores, and pore walls are formed around the pores.

ここで重要なこは各凍結・解凍過程において、凍結直前
の温度降下速度は、形成しようとする人工筋肉用多孔性
高分子材料の使用目的に応じて遅速を調整されることで
ある。
What is important here is that in each freezing / thawing process, the rate of temperature decrease immediately before freezing is adjusted depending on the purpose of use of the porous polymer material for artificial muscle to be formed.

すなわち、荷重がかかった状態で収縮して負荷等を駆動
する目的に使用する場合は、大きな収縮力をすなわち機
械的強度を望むほど、また初期応答性がよいことを望む
ほど、前記凍結直前の温度降下速度を遅く(小さく)さ
れる。
That is, when used for the purpose of driving a load or the like by contracting under a load, a large contracting force, that is, mechanical strength, and a good initial responsiveness are desired. The temperature drop rate is slowed down (decreased).

これは、凍結速度が遅くなるにつれ、凍結後の材料中の
相分離がよりよく進行して1つ1つの水分の凝集域がよ
りよく拡大し、同時にその凝集域の周囲の高分子を含む
部分は濃度がより高くなるため架橋が促進され易くな
り、連通気泡のフォーム状から次第に密な壁を形成する
からだと考えられる。従って凍結した材料を解凍したと
き、水分の凝集域は孔となり、その孔径は温度降下速度
が小さいほど、大きくなり、かつ孔の周囲には温度降下
速度が小さいほど緻密な孔壁が形成される。その結果初
期応答性のよい、荷重がかかったときの収縮率の高い、
強度のあるメカノケミカルな人工筋肉用多孔性高分子材
料が形成される。
This is because as the freezing rate slows down, the phase separation in the material after freezing progresses better and the aggregation region of each water expands better, and at the same time, the portion containing macromolecules around the aggregation region. It is considered that because the concentration is higher, the cross-linking is easily promoted, and the foamed shape of the communicating cells gradually forms a dense wall. Therefore, when the frozen material is thawed, the water agglomeration region becomes pores, and the pore diameter becomes larger as the temperature decrease rate becomes smaller, and a denser pore wall is formed around the pores as the temperature decrease rate becomes smaller. . As a result, good initial responsiveness, high contraction rate when a load is applied,
A strong mechanochemical porous polymer material for artificial muscle is formed.

荷重がかからない状態での収縮率が大きいことを望むほ
ど、またその動作の完了までの時間が短いことを望むほ
ど(このような用途としてはセンサー、ディスプレイ材
料等が考えらる)、凍結直前の温度降下速度は速く(大
きく)される。
The more you want the shrinkage rate to be high when there is no load, and the shorter it takes to complete the operation (sensors, display materials, etc. may be considered for such applications), The temperature drop rate is increased (increased).

この場合は、凍結・解凍を繰返すことにより、孔が多数
形成されるが相分離があまり進まず各孔は孔径が小さく
なる。また、孔壁はそれほど緻密な層にならないため、
出来た材料中に環境溶液の浸透の遅い部分がなく、平衡
に達するまでの時間は比較的短くなり、動作の完了は孔
径が大きく場合より速くなる。また、荷重がかからない
状態での収縮性は孔径が大きい場合よりよくなる。
In this case, by repeating freezing and thawing, a large number of pores are formed, but phase separation does not proceed so much and each pore has a small pore diameter. Also, since the hole wall does not become a very dense layer,
There is no slow penetration of the environmental solution in the resulting material, the time to reach equilibrium is relatively short, and the operation is completed faster than with larger pore sizes. In addition, the shrinkability under no load is better than that when the pore size is large.

[実施例] 以下、この発明の詳細を一実施例を示す図面について説
明する。
[Embodiment] Hereinafter, details of the present invention will be described with reference to the drawings illustrating an embodiment.

第1図はこの発明の人工筋肉用多孔性高分子材料の製造
方法を示す説明図である。
FIG. 1 is an explanatory view showing a method for producing a porous polymer material for artificial muscle of the present invention.

まず、原料である混合水溶液2を用意する。混合水溶液
2はポリビニルアルコールと高分子電解質の混合水溶液
であって、ここに、高分子電解質としては (I)酸性高分子電解質と塩基性の高分子電解質のうち
一方 (II)酸性高分子電解質と塩基性高分子電解質の両方 の2通りが考えられ、各場合について所定のモル比で混
合する(前記特願昭60−254042、特願昭60−
254043参照)。
First, the mixed aqueous solution 2 as a raw material is prepared. The mixed aqueous solution 2 is a mixed aqueous solution of polyvinyl alcohol and a polyelectrolyte, and here, as the polyelectrolyte, one of (I) an acidic polyelectrolyte and a basic polyelectrolyte (II) an acidic polyelectrolyte Two types of basic polyelectrolytes are considered, and in each case they are mixed at a predetermined molar ratio (the above-mentioned Japanese Patent Application Nos. 60-254042 and 60-60).
254043).

混合水溶液2としては良く撹拌した、好ましくは良く撹
拌して更に後述する養生を行ったものを使用し、薄膜成
形用の型内に密封する。このような型を実現する方法と
しては、例えば、2枚のガラス板の間に、成形しようと
する薄膜の膜厚分の高さ(例えば110μm)のスペー
サを介してキャスティングする方法、をとることができ
る。
As the mixed aqueous solution 2, a well-stirred, preferably well-stirred one that has been further cured is used, and the mixture is sealed in a mold for thin film formation. As a method of realizing such a mold, for example, a method of casting between two glass plates via a spacer having a height (for example, 110 μm) corresponding to the thickness of the thin film to be molded can be adopted. .

これに、凍結・解凍過程を2回以上好ましくは10回程
度繰返す。このとき凍結は例えば温度降下速度が−0.
001℃/秒〜−100℃/秒になるように零下10℃
乃至零下270℃の環境下で放置して行う。しかし−1
000℃/秒でも使用可能と考えられる。このような低
下を得るためには例えば液体窒素、液体ヘリウム等を使
用することができる。また解凍は例えば常温下で放置し
て行い、その後乾燥して人工筋肉用多孔性材料を得るも
のである。
The freeze / thaw process is repeated twice or more, preferably about 10 times. At this time, freezing has a temperature decrease rate of −0.
10 ° C below zero so that 001 ° C / sec to -100 ° C / sec
Or, it is performed by leaving it in an environment of 270 ° C. below zero. But -1
It is considered that it can be used even at 000 ° C / sec. To obtain such a decrease, for example, liquid nitrogen, liquid helium or the like can be used. The thawing is performed, for example, by leaving it at room temperature and then drying to obtain a porous material for artificial muscle.

ここで、本発明の重要なポイントは、各回の凍結の直前
の被凍結物の温度降下速度の遅・速を、人工筋肉用多孔
性材料に形成されるべき孔のうち径の大きいマクロ孔の
孔径の大・小に応じて調整し、孔径が大きい程各回の凍
結の直前の温度降下速度を遅くすることである。
Here, an important point of the present invention is that the slow / fast temperature drop rate of the frozen object immediately before freezing of each time is determined by the macropores having large diameters among the pores to be formed in the porous material for artificial muscle. It is to adjust according to the size of the pore size, and the larger the pore size, the slower the temperature drop rate immediately before each freezing.

後述する実験により、凍結の直前の被凍結物の温度降下
速度が遅いほど結果として人工筋肉用多孔性材料に形成
されるマクロ孔の孔径が大きくなり、これによって初期
応答性が向上し、またそのマクロ孔の孔壁の壁は孔径が
大きいほど緻密になって荷重がかかった状態での収縮力
が大きくなり、すなわち機械的強度が大きくなることが
わかっており、また凍結の直前の被凍結物の温度降下速
度が速いほど、人工筋肉用多孔性材料の荷重がかからな
い状態での伸縮性が向上し、動作の完了が速くなること
がわかっているので、人工筋肉用多孔性材料の使用目的
に応じて凍結直前の温度降下速度を選択する。
According to the experiment described below, the slower the temperature drop rate of the frozen object immediately before freezing, the larger the pore size of the macropores formed in the porous material for artificial muscle as a result, which improves the initial responsiveness. It is known that the larger the hole diameter of the macropores, the denser the pore wall and the greater the contraction force under load, that is, the greater the mechanical strength. It is known that the faster the temperature drop rate of, the better the stretchability of the porous material for artificial muscle when no load is applied, and the faster the completion of the operation. Accordingly, the temperature decrease rate immediately before freezing is selected.

[実験例] (1)混合水溶液2の組成 ポリビニルアルコール(製品名クラレ117H,分子量
74,800,ケン化度99.6%以上)と、ポリアク
リル酸(製品名SP2,分子量約170,000)、ポ
リアリルアミン塩酸塩(日東紡製,分子量約60,00
0)をそれぞれ1.74:0.245:0.26のベー
スモル比で混合し、良く撹拌する。
[Experimental example] (1) Composition of mixed aqueous solution 2 Polyvinyl alcohol (product name Kuraray 117H, molecular weight 74,800, saponification degree 99.6% or more) and polyacrylic acid (product name SP2, molecular weight about 170,000) , Polyallylamine hydrochloride (Nitto Boseki, molecular weight about 60,000
0) are mixed in a base molar ratio of 1.74: 0.245: 0.26, respectively, and stirred well.

(2)養生条件 養生とは、所定の温度範囲に保ちつつ所定時間放置する
過程をいうものとし、ここでは養生の温度として25
℃、養生の時間は11日間とした。この養生条件を選定
した根拠は第6図に示すように、この養生条件のとき生
成ゲルの出力密度が最大となるからである。ここに第6
図は、ゲル化する際に1軸延伸を施し、一方向に弾性を
高めた材料において実験した結果を示しており、拘束方
向とは延伸方向に荷重を加えた場合で、垂直方向とは延
伸方向と垂直に荷重を加えた場合の特性である。
(2) Curing condition Curing refers to a process of keeping the temperature within a predetermined temperature range for a predetermined time. Here, the curing temperature is 25
The temperature and the curing time were 11 days. The reason for selecting this curing condition is that, as shown in FIG. 6, the output density of the produced gel is maximum under this curing condition. 6th here
The figure shows the results of an experiment in which the material was uniaxially stretched during gelation and the elasticity was increased in one direction. The restraining direction is the case where a load is applied in the stretching direction, and the vertical direction is the stretching direction. This is the characteristic when a load is applied perpendicularly to the direction.

(3)上記(1),(2)を満たす混合水溶液2を厚さ
110μmのスペーサを介して0.8mm厚さの2枚のガ
ラス板で挟み厚さ10μmのポリ塩化ビニリデンフィル
ムで密封したものに対して凍結・解凍過程を行うのであ
るが、凍結直前の温度降下速度を変えるために次のA,
B,Cの3つの凍結方法を用いた。
(3) A mixed aqueous solution 2 satisfying the above (1) and (2) sandwiched between two 0.8 mm-thick glass plates through a 110-μm-thick spacer and sealed with a 10 μm-thick polyvinylidene chloride film. The freezing and thawing process is carried out for the following. In order to change the temperature drop rate immediately before freezing, the following A,
Three freezing methods of B and C were used.

A:40μm厚みのポリエチレン袋に入れ零下50℃に
冷却したエタノールに投入して凍結 B:2mm厚みのシリコンゴム板で作った 60mm×35mm×95mmの箱に入れ、−50℃の冷凍庫
内で凍結 C:厚さ4mmの同原料のゲルに包埋して零下50℃の冷
凍庫内で凍結 上記の各々の方法で凍結し、常温で解凍する、凍結・解
凍過程を10回繰返してゲルを作製した。凍結・解凍の
繰返し回数として10回を選択したのは、本来更に回数
を増す方が強い材料となるのだが、それぞれの作製法を
比較する上で最低必要と考えられるこの数を選んだ(第
7図参照)。このとき各々原液中に熱電対(銅−コンス
タンタン50μm径)を差込み温度を測定したところ凍
結直前の温度降下速度は、 A:−3.78[℃/秒] B:−7.66×10-2[℃/秒] C;−3.29×10-2[℃/秒] であった(第8図参照)。
A: Put it in a polyethylene bag with a thickness of 40 μm and freeze it in ethanol cooled to 50 ° C below zero. B: Make a 2 mm thick silicon rubber plate into a 60 mm × 35 mm × 95 mm box and freeze it in a freezer at -50 ° C. C: embedded in a gel of the same material having a thickness of 4 mm and frozen in a freezer at 50 ° C. below zero, and frozen by each of the above methods, and thawed at room temperature. The freeze-thaw process was repeated 10 times to prepare a gel. . The reason that 10 times was selected as the number of times of freezing and thawing was originally intended to be stronger if the number of times was further increased, but this number that was considered to be the minimum necessary for comparing each production method was selected (No. (See Fig. 7). At this time, when a thermocouple (copper-constantan 50 μm diameter) was inserted into each undiluted solution and the temperature was measured, the temperature drop rate immediately before freezing was: A: −3.78 [° C./sec] B: −7.66 × 10 − 2 [° C./sec] C; −3.29 × 10 −2 [° C./sec] (see FIG. 8).

これらのゲルの微細構造を調べるため、ゲル膜の微小片
を液体窒素のスラッシュ(slush)に入れて急速に
凍結し、これを−15℃に保ち真空ポンプで減圧し、1
晩かけて水分を昇華させ乾燥した。この際にゲルのサイ
ズはA,B,Cそれぞれ元の72%,65%,70%に
収縮した。
To investigate the microstructure of these gels, the gel film pieces were placed in liquid nitrogen slush and rapidly frozen, kept at -15 ° C and depressurized with a vacuum pump.
The water was sublimated and dried overnight. At this time, the size of the gel shrank to 72%, 65% and 70% of the original sizes of A, B and C, respectively.

これを金蒸着して得たSEM写真におけるA,B,Cの
各々のマクロ孔の孔径は、Aはほぼ1μm以下、Bはほ
ぼ1〜2μm、Cはほぼ2μm以上となっていて、凍結
直前の温度降下の遅・速にマクロ孔の孔径の大・小が対
応していて、凍結直前の温度降下速度が遅いほど孔径が
大きくなることがわかった。
In the SEM photograph obtained by depositing this on gold, the macropores of A, B, and C each have a pore diameter of A of approximately 1 μm or less, B of approximately 1 to 2 μm, and C of approximately 2 μm or more. It was found that the size of the macropores corresponded to the slow and fast temperature drop, and the slower the temperature drop rate immediately before freezing, the larger the pore size.

これらマクロ孔構造の相違によってもたらされるゲルの
特性を第2図、第3図、第4図及び第5図に示す。
The characteristics of the gel caused by these differences in macropore structure are shown in FIGS. 2, 3, 4, and 5.

第2図は平衡収縮率に達するまでの収縮率の経時変化を
荷重1kg/cm2をかけた場合について示したものであ
り、このようにして達した平衡収縮率を、荷重の大きさ
を種々変化させた場合について示したのが、第3図であ
る。
Fig. 2 shows the change over time in the contraction rate until the equilibrium contraction rate is reached when a load of 1 kg / cm 2 is applied. FIG. 3 shows the case of changing.

第3図によれば、荷重をかけない場合は凍結直前の温度
降下速度の速いほど収縮率が大きく、荷重がかかるとそ
の傾向は逆転し、凍結直前の温度降下速度の遅いほど収
縮率が大きくなり、凍結直前の温度降下速度の一番遅い
Cは荷重の増加に伴う収縮率の減少が少ないことがわか
る。
According to FIG. 3, when no load is applied, the shrinkage rate increases as the temperature drop rate immediately before freezing increases, and the tendency reverses when a load is applied, and the shrinkage rate increases as the temperature drop rate immediately before freezing decreases. Therefore, it can be seen that C, which has the slowest temperature drop rate immediately before freezing, has a small decrease in shrinkage rate with an increase in load.

第4図はゲル膜に加えた引張応力と歪の関係を示す。第
4図によれば凍結直前の温度降下速度が遅いほど歪が小
さく、弾力性にすぐれるすなわち高弾性率となることが
わかる。
FIG. 4 shows the relationship between tensile stress applied to the gel film and strain. According to FIG. 4, it can be seen that the slower the temperature drop rate immediately before freezing, the smaller the strain and the better the elasticity, that is, the higher elastic modulus.

第3図、第4図から、凍結直前の温度降下速度が遅いほ
ど剛くて弾性率が大きいゲルになることがわかる。
It can be seen from FIGS. 3 and 4 that the slower the temperature drop rate immediately before freezing is, the stiffer the gel becomes and the larger the elastic modulus is.

更に第5図はアセトン注入時からの収縮過程の時間変化
を示す。これは荷重をかけていない場合の時間応答であ
る。
Further, FIG. 5 shows the time change of the contraction process after the injection of acetone. This is the time response without loading.

収縮過程の初期にはCの応答性が良い。The responsiveness of C is good at the beginning of the contraction process.

これは、Cの孔径の大きいことによって初期応答が良く
なっていることを示す。
This shows that the large initial pore size of C improves the initial response.

反面、第5図では収縮過程の終期にはCの応答性が悪く
なっている。これはCの緻密部の応答が遅かったためと
と考えられる。緻密部の偏在が少ない場合には収縮過程
の終期の応答性も向上すると考えられる。
On the other hand, in FIG. 5, the responsiveness of C deteriorates at the end of the contraction process. It is considered that this is because the response of the dense portion of C was slow. It is considered that the responsiveness at the final stage of the contraction process is improved when the uneven distribution of the dense parts is small.

[発明の効果] 以上の説明から明らかな通り、この発明によれば、環境
溶液を交換したときの溶液の浸透効果をあげるに充分な
大きさの孔径の貫通孔を細繊維状若しくは薄膜状のメカ
ノケミカル材料にほぼ均一に分布させて形成することが
でき、従って、応答速度(初期、及び終期)を人工筋肉
として適用し得るに充分に速くすることができ、かつ人
工筋肉の使用目的によってすなわち荷重下の収縮性を目
的とするか荷重をかけない状態での収縮性を目的とする
かによって孔径の大きさと孔壁部分の力学的特性をコン
トロールして必要な伸縮性と強度を保有させることがで
きる人工筋肉用多孔性高分子材料の製造方法を得ること
ができる。
[Effects of the Invention] As is clear from the above description, according to the present invention, through-holes having a pore size large enough to enhance the permeation effect of the solution when the environmental solution is exchanged are formed into a fine fiber shape or a thin film shape. It can be formed in a mechanochemical material by being almost evenly distributed, and therefore the response speed (initial and final) can be made sufficiently fast to be applied as an artificial muscle, and depending on the purpose of using the artificial muscle, Controlling the size of the hole diameter and the mechanical properties of the wall of the hole depending on whether the contraction under load or the contraction under no load is intended to ensure the necessary elasticity and strength. It is possible to obtain a method for producing a porous polymer material for artificial muscle which is capable of

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例に係わる人工筋肉用多孔性
高分子材料の製造方法を示す説明図、第2図は1kg/cm
2の荷重をかけた状態で人工筋肉用多孔性高分子材料の
試料をアセトンに浸してからの時間と収縮率の関係を示
すグラフ、第3図は試料にかけた荷重と平衡収縮率の関
係を示すグラフ、第4図は試料に加えた応力と歪の関係
を示すグラフ、第5図は試料の収縮過程の時間変化を示
すグラフ、第6図は試料にかけた荷重と出力密度の関係
を拘束方向と垂直方向とについて示す図、第7図は荷重
と収縮率の関係を凍結・解凍過程の回数別に示すグラ
フ、第8図はA,B,Cの凍結時の時間と温度の関係を
示す図である。
FIG. 1 is an explanatory view showing a method for producing a porous polymer material for artificial muscle according to an embodiment of the present invention, and FIG. 2 is 1 kg / cm.
Graph showing while applying a second load to the specimen of the artificial muscle for porous polymer material the relation between time and shrinkage from immersed in acetone, to FIG. 3 the relationship of the load and the equilibrium shrinkage ratio obtained by multiplying the sample The graph shown in FIG. 4, FIG. 4 is a graph showing the relationship between stress and strain applied to the sample, FIG. 5 is a graph showing the time change of the contraction process of the sample, and FIG. 6 is the constraint on the relationship between the load applied to the sample and the output density. Direction and vertical direction, FIG. 7 is a graph showing the relationship between load and shrinkage ratio by the number of freeze / thaw processes, and FIG. 8 shows the relationship between time and temperature during freezing of A, B and C. It is a figure.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08L 33/02 LHR 7921−4J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C08L 33/02 LHR 7921-4J

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ポリビニルアルコールと高分子電解質との
混合水溶液を、凍結させてから常温で解凍する凍結・解
凍過程を2回以上繰返す人工筋肉用多孔性高分子材料の
製造方法において、前記凍結する直前の被凍結物の温度
降下速度を前記人工筋肉用多孔性高分子材料に形成され
るべきマクロ孔の孔径の大小に応じて前記孔径が大きい
ほど遅くなるように調整することを特徴とする人工筋肉
用多孔性高分子材料の製造方法
1. A method for producing a porous polymer material for artificial muscle, which comprises freezing a mixed aqueous solution of polyvinyl alcohol and a polyelectrolyte and thawing at room temperature, and repeating the freezing / thawing process twice or more. The artificially characterized in that the temperature drop rate of the immediately preceding frozen object is adjusted to be slower as the pore size is larger, depending on the size of the macropores to be formed in the porous polymer material for artificial muscle. Method for producing porous polymeric material for muscle
【請求項2】前記凍結する直前の被凍結物の前記温度降
下速度は−0.01℃/秒以下−100℃/秒以上であ
ることを特徴とする特許請求の範囲第1項記載の人工筋
肉用多孔性高分子材料の製造方法
2. The artificial body according to claim 1, wherein the temperature decrease rate of the frozen object immediately before freezing is −0.01 ° C./sec or less and −100 ° C./sec or more. Method for producing porous polymeric material for muscle
【請求項3】第1回目の前記凍結・解凍過程の前に前記
混合水溶液を密閉状態で常温に保つ養生過程を含むこと
を特徴とする特許請求の範囲第1項記載の人工筋肉用多
孔性高分子材料の製造方法
3. The porosity for artificial muscle according to claim 1, further comprising a curing step of keeping the mixed aqueous solution at room temperature in a sealed state before the first freeze / thaw step. Method for producing polymer material
JP2163235A 1990-06-21 1990-06-21 Method for producing porous polymeric material for artificial muscle Expired - Lifetime JPH0621179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2163235A JPH0621179B2 (en) 1990-06-21 1990-06-21 Method for producing porous polymeric material for artificial muscle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2163235A JPH0621179B2 (en) 1990-06-21 1990-06-21 Method for producing porous polymeric material for artificial muscle

Publications (2)

Publication Number Publication Date
JPH0453843A JPH0453843A (en) 1992-02-21
JPH0621179B2 true JPH0621179B2 (en) 1994-03-23

Family

ID=15769905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2163235A Expired - Lifetime JPH0621179B2 (en) 1990-06-21 1990-06-21 Method for producing porous polymeric material for artificial muscle

Country Status (1)

Country Link
JP (1) JPH0621179B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552115A (en) * 1986-02-06 1996-09-03 Steris Corporation Microbial decontamination system with components porous to anti-microbial fluids
US6268405B1 (en) * 1999-05-04 2001-07-31 Porex Surgical, Inc. Hydrogels and methods of making and using same
US20030015825A1 (en) * 2000-02-03 2003-01-23 Toshimasa Sugie Spongy moldings comprising water-soluble polymeric material and method of controlling pores thereof
EP2757964B1 (en) 2011-05-26 2016-05-04 Cartiva, Inc. Tapered joint implant and related tools
AU2016243660B2 (en) 2015-03-31 2020-11-12 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
WO2016161025A1 (en) 2015-03-31 2016-10-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
AU2016248062B2 (en) 2015-04-14 2020-01-23 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods

Also Published As

Publication number Publication date
JPH0453843A (en) 1992-02-21

Similar Documents

Publication Publication Date Title
JPH04506638A (en) polymer material
Dinu et al. Ice-templated hydrogels based on chitosan with tailored porous morphology
US11274185B2 (en) Production of porous materials by the expansion of polymer gels
KR101537565B1 (en) Claylinked polymer gels in new physical forms, methods for their formation and uses thereof
US3812224A (en) Process for the production of porous polymeric materials
JPH0621179B2 (en) Method for producing porous polymeric material for artificial muscle
KR20160079629A (en) Polymer gel, and method of preparing the same
JP5468185B1 (en) Non-drying polymer hydrogel
US11660431B2 (en) Combined osmotic and hydrogel cervical dilators and method of making same
US4753761A (en) Method for production of expansible macromolecular material and porous macromolecular membrane
Duan et al. Tendon-inspired anti-freezing tough gels
KR101846053B1 (en) Hydrophilic silicone composite and method of manufacturing the same
JP2010149024A (en) Method of manufacturing microcapsule, microcapsule and optical sheet and skin material
KR102585893B1 (en) Reconstructed hydrogel and preparing method of the same
JP2626697B2 (en) Preparation of thermosensitive gel
CN109054273B (en) Double-network hydrogel and preparation method thereof
JPH0398632A (en) Separation membrane and separation method
US4717800A (en) Expansible macromolecular material and porous macromolecular membrane
Kato et al. Studies of Gel Structure and Thermal Deswelling on Poly (N-isopropylacrylamide) Gel Treated by Freeze-Drying
JPS62115064A (en) Production of shrinkable high-molecular material
JPS6329891B2 (en)
JPS62115063A (en) Production of reversibly stretchable high-molecular material
JPH0621180B2 (en) Manufacturing method of porous polymer membrane for artificial muscle
JP2519971B2 (en) Method for producing temperature-responsive porous gel
CN108503883B (en) Preparation method of degradable high-expansion sponge

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term