JPH06210423A - Manufacture of cast parts whose surface layer part is made of high alloy - Google Patents

Manufacture of cast parts whose surface layer part is made of high alloy

Info

Publication number
JPH06210423A
JPH06210423A JP1948093A JP1948093A JPH06210423A JP H06210423 A JPH06210423 A JP H06210423A JP 1948093 A JP1948093 A JP 1948093A JP 1948093 A JP1948093 A JP 1948093A JP H06210423 A JPH06210423 A JP H06210423A
Authority
JP
Japan
Prior art keywords
alloy
surface layer
solid
layer part
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1948093A
Other languages
Japanese (ja)
Inventor
Seiro Hachiman
誠朗 八幡
Chisato Yoshida
千里 吉田
Kunio Kitamura
邦雄 北村
Yuichi Ando
優一 安堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leotec KK
Original Assignee
Leotec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leotec KK filed Critical Leotec KK
Priority to JP1948093A priority Critical patent/JPH06210423A/en
Publication of JPH06210423A publication Critical patent/JPH06210423A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the cast parts whose surface layer part is made of high alloy by holding the temperature of the die at the prescribed calculated value, and forming the parts at the machining speed higher than the prescribed value. CONSTITUTION:The alloy stock in the solid-liquid coexistent condition is supplied to a die which is held at the temperature as indicated in the inequality, and the casting is formed at the machining speed of >=0.5m/sec. The alloy stock is Fe-C alloy or Al-Si-Cu alloy. When the material in the solid-liquid coexistent condition is formed, the part in the vicinity of the surface is made of high alloy, while the inside where the solid phase is mixed is made low alloy. That means, in the case of the steel where the material contains C, the surface layer part is made of steel containing more C, and the inside is made of steel containing less C. When the material is Al alloy containing Si and Cu, the surface layer part is made of Al alloy containing more Si and Cu, while the inside is made of Al alloy containing less Si and Cu. When the temperature of the die is low, only the liquid phase of the surface layer part is rapidly solidified to make high alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐摩耗性が要求され
る歯車、カムなどに用いて好適な表層部が高合金の鋳造
部品の製造方法を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention proposes a method of manufacturing a cast part having a high alloy surface layer, which is suitable for use in gears, cams and the like which are required to have wear resistance.

【0002】[0002]

【従来の技術】歯車、カム等の部品は通常、塊状の鋼素
材を機械的加工をして製造されるが、この場合の部品の
内部と表層部は同様の成分組成である。したがって特に
強靱で耐摩耗性が要求される部品の場合には、その要求
に適応できる鋼材がないため、耐摩耗性が要求される表
層部のみを高合金化する、たとえば浸炭処理を施して表
層の炭素濃度を高めて硬くし、内部は鋼素材の炭素濃度
のままとして靱性を維持し、全体として強靱で耐摩耗性
の良い部品としている。しかしながら、上記浸炭処理は
長時間を要すること、浸炭層が薄く、この部分が摩耗す
ると急激に摩耗が進行することなどの問題がある。
2. Description of the Related Art Parts such as gears and cams are usually manufactured by mechanically working a block-shaped steel material. In this case, the inside of the parts and the surface layer have the same composition. Therefore, in the case of parts that are particularly tough and require wear resistance, there is no steel material that can meet those requirements, so only the surface layer that requires wear resistance is highly alloyed, for example, by carburizing the surface layer. The carbon content of the steel is increased to make it harder, and the toughness is maintained while maintaining the carbon content of the steel material inside, making it a tough and wear-resistant component as a whole. However, there are problems that the carburizing process requires a long time, the carburized layer is thin, and when this part is worn, the wear rapidly progresses.

【0003】一方、アルミ合金では表層部のみを高合金
化するような工業的な方法はない。
On the other hand, in the case of aluminum alloys, there is no industrial method for highly alloying only the surface layer.

【0004】[0004]

【発明が解決しようとする課題】この発明は、前記した
問題点を有利に解決しようとするもので、全く新らしい
手段として、固液共存状態からの鋳造による表層部がそ
の内部にくらべ高合金の鋳造部品の製造方法を提案する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems in an advantageous manner, and as a completely new means, the surface layer portion formed by casting from a solid-liquid coexisting state is higher in alloy than the surface layer portion inside. It is an object of the present invention to propose a method for manufacturing a cast component of.

【0005】[0005]

【課題を解決するための手段】この発明は、固液共存状
態の素材を金型へ供給して成形する際の冷却条件が、固
液混相状態における固相の分散状況に影響することを有
利に利用したものである。
According to the present invention, it is advantageous that the cooling condition at the time of supplying the material in the solid-liquid coexisting state to the mold to perform the molding affects the dispersion state of the solid phase in the solid-liquid mixed phase state. It was used for.

【0006】すなわち、この発明の要旨は、固液共存状
態の合金素材を下記式に示す温度(TK ) に保持した金
型へ供給し、加工速度 0.5 m/sec以上で成形することを
特徴とする表層部が高合金の鋳造部品の製造方法。
That is, the gist of the present invention is that an alloy material in a solid-liquid coexisting state is supplied to a mold held at a temperature (T K ) shown in the following formula and is molded at a processing speed of 0.5 m / sec or more. A method for manufacturing a cast part having a high alloy surface layer.

【数2】 である。[Equation 2] Is.

【0007】上記における合金素材をFe −C系合金、
またはAl −Si −Cu 系合金とするものであり、
The above alloy materials are Fe--C type alloys,
Or an Al-Si-Cu based alloy,

【0008】ここで、鋳造とは、一般に溶湯鍛造(正確
には鋳造)といわれる鍛造を含むものとする。
Here, the term "casting" includes forging generally called molten metal forging (to be exact, casting).

【0009】[0009]

【作用】この発明に至った経緯とその作用について述べ
る。固液共存状態の素材の金型による鋳造では、素材の
一部が溶融する温度まで加熱して成形する。このような
素材は、その一部が溶融した状態では網状に連結した固
相の隙間に液相が保持され全体として固体状で加熱位置
から金型まで移動させることができ、金型により大きな
力がかけられると網状の固相は破壊して細かい破片とな
り液相中に浮遊した固液混相状態となり液相と同様の流
動性となって金型キャビティ内へ充満させることができ
る。
The background of the invention and its operation will be described. In the casting of a material in a solid-liquid coexisting state with a die, the material is heated to a temperature at which a part of the material melts and is molded. In such a material, when a part of it is molten, the liquid phase is held in the interstices of the solid phases that are connected in a net shape, and the material is solid as a whole and can be moved from the heating position to the mold. When applied, the reticulated solid phase is broken into fine fragments, which becomes a solid-liquid mixed phase suspended in the liquid phase and has the same fluidity as the liquid phase, and can fill the mold cavity.

【0010】この方法では、溶湯鋳造にくらべ、低温で
成形でき、さらに凝固潜熱も少ないため金型に対する熱
負荷が少ない。このため、溶湯鋳造では金型の耐熱性の
制約上工業的にはダイカストできなかった鉄合金のダイ
カストが可能になる。
According to this method, compared with molten metal casting, it can be formed at a lower temperature, and since the solidification latent heat is also small, the heat load on the die is small. For this reason, it becomes possible to die cast iron alloys that could not be die cast industrially due to the heat resistance of the mold in molten metal casting.

【0011】このような固液共存状態からのダイカスト
を種々試みた結果下記に示す知見を得た。
As a result of various attempts at die casting from such a solid-liquid coexisting state, the following findings were obtained.

【0012】 固液共存状態の素材を金型内へ供給し
成形すると固液混相状態においてその表面近傍は液相の
みとなる。亜共晶の合金の場合は、固液共存状態で液相
が添加成分含有量の多い組成、固相が添加成分含有量の
少ない組成となるため、液相のみの表層部は高合金、固
相の混在する内部は低合金となる。すなわち、素材がC
を含む鋼の場合は表層部がC含有量の多い鋼、内部がC
含有量の少ない鋼となり、また、素材が Si 及び Cu を
含む Al 合金の場合には、表層部は Si 及びCu含有量が
多く、内部は Si 及びCu含有量が少ない Al 合金とな
る。
When a material in a solid-liquid coexisting state is supplied into a mold and molded, only the liquid phase exists in the vicinity of the surface in the solid-liquid mixed phase state. In the case of hypoeutectic alloys, in the solid-liquid coexistence state, the liquid phase has a composition with a large additive content, and the solid phase has a composition with a small additive content. The interior where the phases are mixed is a low alloy. That is, the material is C
In the case of steel containing, the surface layer is a steel with a high C content, and the inside is C
If the content is steel, and if the material is an Al alloy containing Si and Cu, the surface layer part has a large amount of Si and Cu contents, and the inside is an Al alloy with a low content of Si and Cu.

【0013】 金型温度が低い場合、上記した表層部
の液相だけの部分は金型に接するとともに早急に凝固す
る。このため表層部は高合金、内部は低合金の鋳造部品
が得られる。
When the mold temperature is low, the above-mentioned surface layer portion only in the liquid phase contacts the mold and solidifies rapidly. Therefore, a cast part having a high alloy in the surface layer and a low alloy in the inside can be obtained.

【0014】なお、金型温度が高い場合には、表層部の
液相のみの部分が金型に接してから凝固するまでに時間
がかかるので、この間に内部の固相の一部が表層部へ移
動するため表層部と内部との組成は均一化される。
When the mold temperature is high, it takes time for the liquid phase only portion of the surface layer portion to come into contact with the die and to solidify. To the inside, the composition of the surface layer portion and the inside is made uniform.

【0015】 金型の温度が低い場合加工速度(ダイ
カストでは:プランジャーの速度=射出速度、スクイズ
キャストでは:ポンチ(金型)の押込み速度)が遅すぎ
ると、成形完了前に材料の温度が下がって流動性が悪く
なり金型キャビティ内へ材料が充満しない。このような
知見により、固液共存状態での鋳造に適する固相率(0.
3 〜0.8 の範囲内で選定) となる温度での液相の成分組
成が目標値 (高合金成分組成) に等しくなる素材の成分
組成を状態図で選定し〔数2〕の温度(TK ) の金型を
用い加工速度0.5m/s以上で成形すれば、表層部が所望の
成分組成になる高合金の鋳造部品を得ることができる。
When the mold temperature is low If the processing speed (in die casting: plunger speed = injection speed, in squeeze casting: punch (mold) pushing speed) is too slow, the temperature of the material will be reduced before the completion of molding. The fluidity is lowered and the mold cavity is not filled with the material. Based on these findings, the solid phase ratio (0.
3 temperature range target value component composition of the liquid phase at a temperature at which the selection) in the 0.8 (selected in the state diagram of the composition of the equal material to high alloy component composition) [Equation 2] (T K By using the die of (1) and molding at a processing speed of 0.5 m / s or more, a high alloy cast part having a desired composition in the surface layer portion can be obtained.

【0016】なお、この方法で製造した鋳造部品は表面
から1mm程度までの表層部を高合金とすることができ
る。
The cast part manufactured by this method can have a high alloy in the surface layer portion up to about 1 mm from the surface.

【0017】[0017]

【実施例】【Example】

実施例1 4.5 mass% Cu のAl合金を 626℃ (固粗率:0.7 )の固
液共存域に加熱し、図1に示す寸法諸元のSKD61製の
金型へ供給して成形し、その成形状況、鋳造部品の金属
組織及び表層部(表面から深さ1mm以内) と内部の Cu
含有量などを調査した。
Example 1 An Al alloy containing 4.5 mass% Cu was heated to a solid-liquid coexistence region at 626 ° C. (solid roughness rate: 0.7), supplied to a mold made of SKD61 having the dimensions shown in FIG. Situation, metallographic structure of cast parts and surface layer (within 1mm depth from the surface) and Cu inside
The content was investigated.

【0018】ここに図1において、1は鋳造部品、2は
上金型、3は下金型であり、下金型3に素材を供給した
のち直ちに上金型2を押込み鋳造部品1を得る。
In FIG. 1, 1 is a casting part, 2 is an upper mold, 3 is a lower mold, and after the raw material is supplied to the lower mold 3, the upper mold 2 is immediately pushed to obtain a casting part 1. .

【0019】上記鋳造条件としては、上金型2の押込み
速度(加工速度)及び金型(上下金型2及び3)の温度
を変えて行ったもので、これらの条件と調査結果を表1
にまとめて示す。
As the casting conditions, the pushing speed (working speed) of the upper mold 2 and the temperatures of the molds (upper and lower molds 2 and 3) were changed, and these conditions and investigation results are shown in Table 1.
Are shown together.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように試料 No.1−1及
び1−2のこの発明の適合例は、材料は金型キャビティ
内へ充満し、表層部が添加成分(Cu)の含有量の多い高
合金の鋳造部品が得られているのに対し、試料 No.1−
3及び1−4の比較例は、加工速度が遅いため材料が金
型キャビティ内へ充満しなかったり、金型温度が高いた
め表層部と内部とが均一化された組織となり、表層部と
内部との成分組成が同様の値になっている。
As is clear from Table 1, in the conforming examples of the present invention of Sample Nos. 1-1 and 1-2, the material filled the mold cavity, and the surface layer portion contained the additive component (Cu). While many high alloy cast parts have been obtained, sample No. 1-
In Comparative Examples 3 and 1-4, the mold cavity was not filled with the material due to the low processing speed, and the mold temperature was high, so that the surface layer part and the inside had a uniform structure. The component compositions of and have similar values.

【0022】また試料 No.1−1の適合例及び試料 No.
1−3の比較例の金属組織写真をそれぞれ図2及び図3
に示すが、これら図からも明らかなように、適合例の図
2はその表層部は液相の凝固組織のみであるのに対し、
比較例の図3は表層部、内部共に液相と固液混相状態の
凝固組織となっている。なお、図2及び3において、白
く見える部分は固液共存状態で固相であった部分でCu
含有量が少なく、黒く見える部分は液相であった部分で
Cu 含有量が多い部分である。
In addition, the conformity example of sample No. 1-1 and sample No.
2 and 3 are metallographic photographs of Comparative Examples 1-3, respectively.
However, as is clear from these figures, the surface layer portion of FIG. 2 of the fitting example is only the solidified structure of the liquid phase,
FIG. 3 of the comparative example shows a solidified structure in a liquid phase and a solid-liquid mixed state both in the surface layer and inside. In FIGS. 2 and 3, the white portion is the solid phase in the solid-liquid coexisting state and is Cu.
The portion with a low content and appearing black is the liquid phase portion and the portion with a high Cu content.

【0023】実施例2 2.5mass %C−0.5mass %Si −0.5mass %Mn の合金
鋼を 1238 ℃ (固相率:0.5)の固液共存域に加熱し、10
0 ℃のCu −Cr −Zr 合金製の金型を用いてダイカス
トにより、図4(a),(b) に示す寸法諸元の鋳造部品を製
造し、その成形状況、鋳造部品の金属組織及び表層部
(表面から深さ1mm以内) とその内部のC、Si 及びMn
含有量などについて調査した。
Example 2 An alloy steel of 2.5 mass% C-0.5 mass% Si-0.5 mass% Mn was heated to a solid-liquid coexistence region at 1238 ° C. (solid phase ratio: 0.5), and was heated to 10
A die made of Cu-Cr-Zr alloy at 0 ° C was die-cast to produce a cast part having the dimensions shown in Figs. 4 (a) and 4 (b). Surface layer
(Within 1 mm from the surface) and C, Si and Mn inside
The content was investigated.

【0024】ここに、図4(a) において、1 は鋳造部
品、4 はゲート、5は湯道及び6はビスケットである。
なお、図4(b) は図4(a) の正面の説明図である。
In FIG. 4 (a), 1 is a cast part, 4 is a gate, 5 is a runner, and 6 is a biscuit.
4 (b) is an explanatory view of the front of FIG. 4 (a).

【0025】上記鋳造条件としては、射出速度(加工速
度)を変えて行ったもので、これらの条件と調査結果を
まとめて表2に示す。
As the casting conditions, the injection speed (processing speed) was changed, and these conditions and the survey results are summarized in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から明らかなように、試料No2−1及
び2−2のこの発明の適合例は金型キャビティ内へ材料
が充満したのに対し、試料No2−3の比較例は加工速度
が遅いため金型キャビティ内へ材料が充満していない。
また、試料No2−1の適合例の金属組織写真を図5に示
すが、表層部は液相の凝固組織、内部は固液混相状態の
凝固組織になっていて、表2に示すC、Si 及びMn 含
有量も内部にくらべ表層部が多くなっている。なお、こ
れらについては、試料No2−2の適合例、試料No2−3
の比較例ともに同様の傾向を示した。
As is clear from Table 2, in the sample Nos. 2-1 and 2-2 according to the present invention, the mold cavity was filled with the material, while in the sample No. 2-3, the comparative example had a processing speed. Since it is slow, the mold cavity is not filled with material.
Further, a metallographic photograph of a conforming example of Sample No. 2-1 is shown in FIG. 5, in which the surface layer has a solidified structure in a liquid phase and the inside has a solidified structure in a solid-liquid mixed phase. Also, the Mn content is larger in the surface layer portion than in the inside. In addition, about these, the conformity example of sample No2-2, sample No2-3
The comparative example showed the same tendency.

【0028】実施例3 9mass%Si −2mass%Cu のAl 合金を 551℃ (固相
率:0.5)の固液共存域に加熱し、250 ℃の前掲図1に示
した寸法のSKD61製の金型へ供給して加工速度 (上金
型2の押込み速度)を1m/s とし成形し、その成形状
況、鋳造部品の金属組織及び表層部 (表面から深さ1mm
以内) と内部のSi 及びCu 含有量を調査した。
Example 3 An Al alloy of 9 mass% Si -2 mass% Cu was heated to a solid-liquid coexistence region at 551 ° C. (solid phase ratio: 0.5) and heated to 250 ° C. and made of SKD61 gold having the dimensions shown in FIG. It is supplied to the mold and processed at a processing speed (indentation speed of the upper mold 2) of 1 m / s, the molding situation, the metallographic structure of the cast part and the surface layer (1 mm depth from the surface).
Within) and internal Si and Cu contents were investigated.

【0029】この鋳造条件としては、金型温度を変えて
行ったもので、それらの条件と調査結果を表3にまとめ
て示す。
As the casting conditions, the mold temperature was changed, and Table 3 shows the conditions and the survey results.

【0030】[0030]

【表3】 [Table 3]

【0031】表3から明らかなように、試料No3−1の
この発明の適合例は、表層部は液相の凝固組織で、Si
及びCu 含有量も内部にくらべ多くなっているのに対
し、試料No3−2の比較例は表層部と内部が均一化され
た固液共存状態の凝固組織を示し、Si 及びCu 含有量
も同様の値を示している。
As is apparent from Table 3, in the conforming example of the present invention of sample No. 3-1, the surface layer portion is a solidified structure in the liquid phase and Si
And Cu content are also larger than in the inside, the comparative example of Sample No. 3-2 shows a solidified structure in a solid-liquid coexisting state in which the surface layer part and the inside are made uniform, and the Si and Cu contents are also the same. Indicates the value of.

【0032】[0032]

【発明の効果】この発明によれば、固液共存状態の素材
からの鋳造に際し、金型温度と加工速度を限定すること
により、内部より表層部の方が高合金の鋳造部品を生産
性よく製造でき、広範囲の成分系に適用できるものであ
って、この発明による鋳造部品は、表層部の特性たとえ
ば耐摩耗性が要求される用途などに有利に用いることが
できる。
According to the present invention, when casting from a material in a solid-liquid coexisting state, by limiting the mold temperature and the processing speed, it is possible to improve the productivity of cast parts having a higher alloy in the surface layer than in the inside. Since it can be manufactured and can be applied to a wide range of component systems, the cast part according to the present invention can be advantageously used in applications where surface layer properties such as wear resistance are required.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた金型の寸法諸元を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing dimensional specifications of a mold used in Examples.

【図2】この発明の適合例の金属組織写真である。FIG. 2 is a photograph of a metal structure of a conforming example of the present invention.

【図3】比較例の金属組織写真である。FIG. 3 is a photograph of a metal structure of a comparative example.

【図4】(a) は、実施例で用いたダイカストによる鋳造
部品の寸法諸元を示す説明図である。(b) は、(a) の正
面図の説明である。
FIG. 4 (a) is an explanatory diagram showing dimensional specifications of a cast component by die casting used in the examples. (b) is a description of the front view of (a).

【図5】この発明の適合例の金属組織写真である。FIG. 5 is a metallographic photograph of a conforming example of the present invention.

【符号の説明】[Explanation of symbols]

1 鋳造部品 2 上金型 3 下金型 4 ゲート 6 湯道 7 ビスケット 1 Cast parts 2 Upper mold 3 Lower mold 4 Gate 6 Runway 7 Biscuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安堂 優一 千葉県千葉市中央区川崎町1番地 株式会 社レオテック内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuichi Ando 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固液共存状態の合金素材を下記式に示す
温度(TK ) に保持した金型へ供給し、加工速度 0.5 m
/s以上で成形することを特徴とする表層部が高合金の鋳
造部品の製造方法。 【数1】
1. An alloy material in a solid-liquid coexisting state is supplied to a mold maintained at a temperature (T K ) shown in the following formula, and a processing speed is 0.5 m.
A method for producing a cast part having a high alloy surface portion, characterized by being formed at a rate of / s or more. [Equation 1]
【請求項2】 合金素材がFe −C系合金であることを
特徴とする請求項1に記載の表層部が高合金の鋳造部品
の製造方法。
2. The method for manufacturing a cast component having a high alloy surface layer portion according to claim 1, wherein the alloy material is an Fe—C based alloy.
【請求項3】 合金素材が Al −Si−Cu系合金であるこ
とを特徴とする請求項1に記載の表層部が高合金の鋳造
部品の製造方法。
3. The method for producing a cast component having a high alloy surface layer portion according to claim 1, wherein the alloy material is an Al—Si—Cu alloy.
JP1948093A 1993-01-13 1993-01-13 Manufacture of cast parts whose surface layer part is made of high alloy Pending JPH06210423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1948093A JPH06210423A (en) 1993-01-13 1993-01-13 Manufacture of cast parts whose surface layer part is made of high alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1948093A JPH06210423A (en) 1993-01-13 1993-01-13 Manufacture of cast parts whose surface layer part is made of high alloy

Publications (1)

Publication Number Publication Date
JPH06210423A true JPH06210423A (en) 1994-08-02

Family

ID=12000511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1948093A Pending JPH06210423A (en) 1993-01-13 1993-01-13 Manufacture of cast parts whose surface layer part is made of high alloy

Country Status (1)

Country Link
JP (1) JPH06210423A (en)

Similar Documents

Publication Publication Date Title
MXPA06011720A (en) Master alloy for use in modifying copper alloy and casting method using the same.
EP0704543B1 (en) Slide member made of sintered aluminium alloy
US5413644A (en) Beryllium-containing alloys of magnesium
IL47001A (en) Process for heat treating metal alloys particularly aluminium-based alloys
KR100257722B1 (en) High abrasion resistant aluminum bronze alloy and sliding members using same
EP0317366A1 (en) Process for producing nodular cast iron
US3380820A (en) Method of making high iron content aluminum alloys
CN111057911A (en) Al-Bi monotectic alloy and preparation method thereof
JPS6237335A (en) Aluminum alloy having high corrosion resistance and strength
JP2003136223A (en) Method for molding semi-solidified metal molding and metal mold
JPH06210423A (en) Manufacture of cast parts whose surface layer part is made of high alloy
JPH1136030A (en) Aluminum alloy for piston, and manufacture of piston
JP3096176B2 (en) Solid-liquid coexistence zone die casting method of white cast iron
JP2002505375A (en) Method for producing continuous casting of sliding bearing aluminum alloy and continuous casting
US3369591A (en) Process for die casting and heat treating aluminum alloy and resulting products
JPH11279670A (en) Master alloy for regulating content of magnesium to be used at the time of recasting zinc alloy
JPS58125328A (en) Manufacture of forging
US3744997A (en) Metallurgical grain refinement process
US3203781A (en) Method of producing dispersion-hardened metal alloys
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JP3473214B2 (en) Forming method of semi-molten metal
JPH06210422A (en) Method for forming homogeneous structure of semi-solidifying metal
JPH01268830A (en) Manufacture of sic dispersion cast composite material
EP1452611B1 (en) Method of producing products made from carbide-reinforced, structural metal materials
US2768102A (en) Wrought nickel bronze