JPH0621037A - Article including fine structure and manufacture thereof - Google Patents

Article including fine structure and manufacture thereof

Info

Publication number
JPH0621037A
JPH0621037A JP4173053A JP17305392A JPH0621037A JP H0621037 A JPH0621037 A JP H0621037A JP 4173053 A JP4173053 A JP 4173053A JP 17305392 A JP17305392 A JP 17305392A JP H0621037 A JPH0621037 A JP H0621037A
Authority
JP
Japan
Prior art keywords
article
fine structure
fin
water tank
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4173053A
Other languages
Japanese (ja)
Inventor
Motoo Nakano
元雄 中野
Hiroshi Nomura
浩 野村
Masaya Katayama
雅也 片山
Toshimi Ikeda
稔美 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4173053A priority Critical patent/JPH0621037A/en
Priority to US08/083,371 priority patent/US5652167A/en
Publication of JPH0621037A publication Critical patent/JPH0621037A/en
Priority to US08/820,359 priority patent/US5888633A/en
Priority to US09/071,991 priority patent/US6251743B1/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable manufacturing of an article with only one end fixed including a fine structure including a member such as a thin plate and a rod without deforming the members permanently by taking out the article after putting a cleaning water tank under a pressure which is lower than an atmospheric pressure after a cleaning process and by drying it thereafter. CONSTITUTION:An article is manufactured which includes a fine structure wherein a member whose shape is the same as another member with only one end fixed and one or both of other constituents regarded as a rigid body exist near another member. The manufacturing includes a cleaning process in a cleaning water tank 32 and a drying process thereafter. After the cleaning water tank 32 is put under a pressure which is lower than an atmospheric pressure after the cleaning process, the article is taken out and brought to the drying process. For example, a supporting substrate 31, which is put in the cleaning water tank 32, is put in a vacuum chamber 33 after etching for forming a fine structure which constitutes one of capacitor electrodes of a DRAM. Water of the water tank 32 is discharged while keeping vacuum and the fine structure is dried.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイスの微細
構造やマイクロマシンと呼ばれる微小な機械機構の微細
構造に関する。より詳しく言えば、本発明は、例えばD
RAMと呼ばれる半導体デバイスのキャパシタに見られ
るような、一方の端部が固定されそしてもう一方の端部
が支持されていない薄板あるいは細棒から構成される微
細構造を含んでなる物品と、そのような微細構造を含ん
でなる物品の製造方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine structure of a semiconductor device or a fine structure of a minute mechanical mechanism called a micromachine. More specifically, the present invention provides, for example, D
Articles comprising microstructures composed of thin plates or wands having one end fixed and the other end unsupported, such as found in capacitors for semiconductor devices called RAMs, and And a method of making an article comprising various microstructures.

【0002】[0002]

【従来の技術】先に言及したDRAMと呼ばれる半導体
デバイスのキャパシタは、非常に狭い領域内で一定の容
量を持つことを要求されるため、フィン構造等の立体三
次元構造を導入して必要なキャパシタ面積を確保する手
段が採られている。また、マイクロマシンの微小な機械
機構のうちにも、一方だけが固定された微細なフィンや
梁のようなものを持つ微細構造が取入れられることがあ
る。
2. Description of the Related Art A capacitor of a semiconductor device called a DRAM referred to above is required to have a certain capacitance in a very narrow area. Therefore, it is necessary to introduce a three-dimensional three-dimensional structure such as a fin structure. A means for securing the capacitor area is adopted. Further, among the minute mechanical mechanisms of the micromachine, a fine structure having fine fins or beams to which only one is fixed may be incorporated.

【0003】このような微細構造の一例として、DRA
M半導体デバイスの三次元キャパシタを図1の断面図に
示す。この図において、1は半導体基板、2,3はキャ
パシタ電極、4はキャパシタ絶縁膜である。
As an example of such a fine structure, DRA
A three-dimensional capacitor of the M semiconductor device is shown in the sectional view of FIG. In this figure, 1 is a semiconductor substrate, 2 and 3 are capacitor electrodes, and 4 is a capacitor insulating film.

【0004】次に、図1に示したキャパシタの製造工程
の概略を説明する。まず、図2(a)に示すように、半
導体基板10の上に絶縁膜11、キャパシタの水平電極
の一つとなる導電材料膜12、そして絶縁膜11′を順
次積層する。絶縁膜11,11′は、例えばSiO2
化学気相成長(CVD)で形成され、導電材料膜12は
例えばポリシリコンのCVDで形成される。
Next, an outline of the manufacturing process of the capacitor shown in FIG. 1 will be described. First, as shown in FIG. 2A, an insulating film 11, a conductive material film 12 which is one of horizontal electrodes of a capacitor, and an insulating film 11 'are sequentially laminated on a semiconductor substrate 10. The insulating films 11 and 11 'are formed by chemical vapor deposition (CVD) of SiO 2 , for example, and the conductive material film 12 is formed by CVD of polysilicon, for example.

【0005】次いで、積層した膜の一部に基板まで届く
穴を堀り、もう一度導電材料(ここではポリシリコン)
の膜13を堆積させる(図2(b))。このポリシリコ
ンは、穴の内部で水平電極用のポリシリコン膜12に接
続し、後にこれを支える支柱となる。
Next, a hole reaching the substrate is formed in a part of the laminated film, and the conductive material (polysilicon in this case) is used again.
The film 13 is deposited (FIG. 2B). This polysilicon will be connected to the polysilicon film 12 for the horizontal electrode inside the hole, and will later become a pillar for supporting this.

【0006】個々のキャパシタに分割するため、図2
(c)に示すように、各支柱を中心にキャパシタ部分を
残して積層部をエッチングする。
To divide into individual capacitors, FIG.
As shown in (c), the laminated part is etched with each pillar being the center, leaving the capacitor part.

【0007】次に、積層水平電極の間に残っている絶縁
膜11,11′をエッチングして除去し、一方の端部が
中心部の支柱に固定されていて他方の端部が支持されて
いない、キャパシタ電極の一方を構成する微細構造14
を残し、そして改めてキャパシタ絶縁膜15となる窒化
シリコン薄膜を化学気相成長させる(図2(d))。そ
して最後に、対向電極となるポリシリコン膜を形成し
て、図1に示す三次元構造のキャパシタを完成する。
Next, the insulating films 11 and 11 'remaining between the laminated horizontal electrodes are etched and removed, one end of which is fixed to the center pillar and the other end is supported. No microstructure 14 that constitutes one of the capacitor electrodes
Then, the silicon nitride thin film to be the capacitor insulating film 15 is chemically vapor-deposited again (FIG. 2D). Finally, a polysilicon film to be a counter electrode is formed to complete the capacitor having the three-dimensional structure shown in FIG.

【0008】上に説明した一連の製造工程において、図
2(d)に示された微細構造14を形成するため絶縁膜
11,11′をエッチングする際と、次の窒化シリコン
膜15形成の前処理の際には、薬液や洗浄のために水が
使用される。
In the series of manufacturing steps described above, when the insulating films 11 and 11 'are etched to form the fine structure 14 shown in FIG. 2D, and before the next silicon nitride film 15 is formed. During the treatment, water is used for chemicals and cleaning.

【0009】[0009]

【発明が解決しようとする課題】キャパシタ電極の支柱
を中心にキャパシタ部分を残して積層部をエッチングし
(図2(c)に示した状態)、次いで絶縁膜11,1
1′を取除いて、図2(d)に14で指示された一方の
キャパシタ電極の微細構造を観察すると、支柱21から
張出したフィン22の先端部分が、図3に示すように湾
曲して他のフィン22の先端部分や基板20と接触する
現象が認められることがある。この現象は、キャパシタ
が微細化して、フィン間隔やフィン厚が減少するに従っ
て現れやすくなる。こうしたフィン構造の湾曲と接触
は、キャパシタ面積の低下につながるため、これを排除
する必要がある。
The laminated portion is etched (the state shown in FIG. 2C), leaving the capacitor portion centered on the pillar of the capacitor electrode, and then the insulating films 11 and 1 are formed.
When 1'is removed and the fine structure of one capacitor electrode indicated by 14 in FIG. 2 (d) is observed, the tip portion of the fin 22 protruding from the pillar 21 is curved as shown in FIG. A phenomenon in which the fins 22 contact the tip portions of the fins 22 or the substrate 20 may be observed. This phenomenon is more likely to appear as the capacitor becomes finer and the fin spacing and fin thickness decrease. Such bending and contact of the fin structure leads to a reduction in the capacitor area, which needs to be eliminated.

【0010】また、マイクロマシンの同様の微細構造に
あっても、一方の端部だけを固定された薄板あるいは梁
等の湾曲や他の構成部材との接触は、そのマイクロマシ
ンの所期の目的の達成の障害となるため、やはり避けな
くてはならない。
Even in the same microstructure of a micromachine, the curvature of a thin plate or beam having only one end fixed or contact with other components achieves the intended purpose of the micromachine. It becomes a hindrance to and must be avoided.

【0011】本発明の目的は、一方の端部だけを固定さ
れた薄板や棒等の部材を含む微細構造を含んでなる物品
を、それらの部材を恒久的に変形させずに製造すること
を可能にする方法を提供することである。
It is an object of the present invention to manufacture an article comprising a microstructure including members such as thin plates and rods having only one end fixed, without permanently deforming those members. It is to provide a way to enable.

【0012】本発明のもう一つの目的は、製造過程で起
こる恒久的な変形を免れることが可能な、一方の端部だ
けを固定された薄板や棒等の部材を含む微細構造を含ん
でなる物品を提供することである。
Another object of the present invention comprises a microstructure including members such as thin plates and rods which are fixed only at one end and which can escape the permanent deformation that occurs during the manufacturing process. Providing an article.

【0013】[0013]

【課題を解決するための手段】本発明の微細構造を含ん
でなる物品の製造方法は、一方の端部だけを固定された
部材を含み、この部材に近接して、この部材と同じ形状
の他の部材及び剛体と見なせる別の構成物のうちの一方
又は両方が存在している微細構造を含んでなる物品を製
造する方法であって、洗浄水槽での洗浄工程とその後の
乾燥工程とを含む方法において、洗浄工程後に洗浄水槽
を大気圧より低い圧力下に置いてから物品を取出し、次
いでこれを乾燥工程にかけることを特徴とする。
SUMMARY OF THE INVENTION A method of making an article comprising a microstructure of the present invention includes a member having only one end fixed, and having a member having the same shape as the member in the vicinity of the member. What is claimed is: 1. A method of manufacturing an article comprising a microstructure in which one or both of another member and another component that can be regarded as a rigid body are present, which comprises a washing step in a washing water tank and a subsequent drying step. The method of including, characterized in that after the washing step, the washing water tank is placed under a pressure lower than atmospheric pressure, the article is taken out, and then the article is subjected to a drying step.

【0014】ここで言う「微細構造」とは、半導体デバ
イスやマイクロマシンの作製に利用されているような微
細加工技術を使って製造される、ミクロンあるいはサブ
ミクロンのオーダーの微小寸法の部材を含む構造を指称
する。
The term "fine structure" used herein refers to a structure including a member having a minute dimension on the order of micron or submicron, which is manufactured by using a microfabrication technique such as that used for manufacturing a semiconductor device or a micromachine. Is called.

【0015】本発明の微細構造を含んでなる物品の製造
方法では、上述の洗浄水槽での洗浄工程の後に、水槽を
大気圧より低い圧力下に置く代りに、表面張力が水より
小さく且つ水と相溶性の液体に物品を浸漬させてから物
品を乾燥させてもよい。
In the method for producing an article comprising the fine structure of the present invention, after the washing step in the washing water tank described above, the surface tension is smaller than that of water and The article may be dipped in a liquid that is compatible with and then dried.

【0016】上記の水と相溶性の液体としては、アセト
ン、エタノール、イソブチルアルコール等の有機溶剤、
あるいは界面活性剤を混入した水を使用することができ
る。半導体デバイスの微細構造の場合には、乾燥後直ち
に次の工程(例えば絶縁膜成長工程)に入るため、この
洗浄用液体に含まれるアルカリ金属、重金属等の不純物
の量は10ppb 以下に規制される。
The water-compatible liquid is an organic solvent such as acetone, ethanol or isobutyl alcohol,
Alternatively, water mixed with a surfactant can be used. In the case of a fine structure of a semiconductor device, since the next step (for example, an insulating film growth step) immediately follows drying, the amount of impurities such as alkali metal and heavy metal contained in this cleaning liquid is restricted to 10 ppb or less. .

【0017】上記の乾燥工程では、微細構造とこれを支
持する基板のうちの一方又は両方を選択的に加熱して乾
燥させることが有利である。この選択的加熱の手段とし
ては、レーザ光照射、赤外線照射、電子線照射、マイク
ロ波照射等を有利に利用することができる。
In the above drying step, it is advantageous to selectively heat and dry one or both of the fine structure and the substrate supporting the fine structure. Laser light irradiation, infrared irradiation, electron beam irradiation, microwave irradiation, or the like can be advantageously used as the means for this selective heating.

【0018】また、上記の乾燥工程において、微細構造
を支持する基板に超音波をかけることもできる。好まし
くは、1GHz 以上の超音波を使用する。
In the above drying step, ultrasonic waves can be applied to the substrate supporting the fine structure. Preferably, ultrasonic waves of 1 GHz or higher are used.

【0019】本発明の微細構造を含んでなる物品は、一
方の端部だけを固定された部材を含み、この部材に近接
して、この部材と同じ形状の他の部材及び剛体と見なせ
る構成物のうちの一方又は両方が存在している微細構造
を含んでなる物品であって、該部材の長さLが、この部
材に近接して剛体と見なせる構成物のみが存在する場合
には次式の関係
An article comprising the microstructure of the present invention comprises a member having only one end fixed, and a member which is proximate to this member and which can be regarded as another member having the same shape as this member and a rigid body. An article comprising a microstructure in which one or both of the following are present, where the length L of the member is such that there is only a structure in the vicinity of this member that can be considered as a rigid body: connection of

【0020】L<(2Edt3 /3P)1/4 但し、E:部材を構成する材料のヤング率 d:部材とこれに近接する構成物との距離 t:部材の厚さ P:部材にかかる外部圧力 を満たし、該部材に近接して同じ形状の他の部材が存在
している場合には次式の関係
L <(2Edt 3 / 3P) 1/4 where E: Young's modulus of the material constituting the member d: Distance between the member and the components adjacent thereto t: Thickness of the member P: Impact on the member When the external pressure is satisfied and another member of the same shape exists near the member, the relation of the following formula

【0021】L<(Ed′t3 /3P)1/4 但し、d′:部材間の距離 を満たすことを特徴とする。L <(Ed't 3 / 3P) 1/4 where d ′: distance between members is satisfied.

【0022】[0022]

【作用】一方の端部を固定された部材が製造過程で変形
して、他の部材の先端部分や基板と接触する現象の原因
は、水洗工程で使用される水にあるものと考えられる。
It is considered that the water used in the washing step is the cause of the phenomenon that the member having one end fixed is deformed during the manufacturing process and comes into contact with the tip portion of another member or the substrate.

【0023】図4は、水洗した後の乾燥途中にあるフィ
ン構造の先端部分を図示したものであって、隣接するフ
ィンの間に水が残っている状態を示している。この水の
液面は図に示すように凹面形状となっており、表面張力
の作用を考えると水の内部圧力p0 は外部圧力Pよりも
低くなっている。これをフィン部材の側から見れば、一
方の面は大気圧Pを受けており、他方の面は水と接触し
ているため水の内部圧力p0 に等しい圧力を受けてい
る。フィンの乾燥時に起こる変形は、フィンのそれぞれ
の面が受ける大気圧(外部圧力)と水の内部圧力との差
に由来するものと考えて説明することができる。
FIG. 4 shows the tip of the fin structure which is being dried after being washed with water, and shows a state in which water remains between the adjacent fins. The liquid surface of this water has a concave shape as shown in the figure, and the internal pressure p 0 of the water is lower than the external pressure P considering the effect of surface tension. When viewed from the fin member side, one surface receives the atmospheric pressure P, and the other surface receives the pressure equal to the internal pressure p 0 of the water because it is in contact with water. The deformation that occurs when the fins are dried can be explained by considering that the deformations are caused by the difference between the atmospheric pressure (external pressure) applied to each surface of the fins and the internal pressure of water.

【0024】対象とする微細構造のフィン状の部材にか
かる大気圧と水の内部圧力との差圧(ΔP)を、ラプラ
スの式に従い次のように計算する。 ΔP=γ(1/R1 +1/R2 ) ≒30気圧 但し、ここでは、R1 =−2.5×10-6cm(接触角=
0°を仮定し、フィン間隔dを5×10-6cmとする) 、
2 =−∞、また水の表面張力γは73 dyn/cmとす
る。
The differential pressure (ΔP) between the atmospheric pressure applied to the fin-shaped member having the target microstructure and the internal pressure of water is calculated according to the Laplace equation as follows. ΔP = γ (1 / R 1 + 1 / R 2 ) ≈30 atm However, here, R 1 = −2.5 × 10 −6 cm (contact angle =
Assuming 0 °, the fin spacing d is 5 × 10 -6 cm),
R 2 = −∞, and the surface tension γ of water is 73 dyn / cm.

【0025】このように、計算上は、水の表面張力によ
って発生する差圧は30気圧に達する可能性があるが、
実際には水の内部圧力が負になることはないので、差圧
が十分大きい場合においては、水の内部圧力はほとんど
零と見なされ、水と接触していない面にかかる外部圧力
のみがフィンに作用するものと考えることができる。そ
こで、外部圧力値を下げることができれば、フィンにか
かる圧力は減少し、フィンの湾曲を防止することができ
る。すなわち、本発明の方法において洗浄水槽を大気圧
より低い圧力下に置いてから物品を取出して乾燥工程に
かけることは、部材が受ける外部圧力を低下させる働き
をする。
Thus, in calculation, the differential pressure generated by the surface tension of water may reach 30 atmospheres,
In reality, the internal pressure of water never becomes negative, so when the differential pressure is large enough, the internal pressure of water is considered to be almost zero, and only the external pressure applied to the surface not in contact with water is Can be considered to act on. Therefore, if the external pressure value can be reduced, the pressure applied to the fins is reduced, and the fins can be prevented from bending. That is, in the method of the present invention, placing the washing water tank under a pressure lower than the atmospheric pressure and then taking out the article and subjecting it to the drying step serves to reduce the external pressure received by the member.

【0026】上記の式から明らかなように、隣接するフ
ィンの間に残っている液体の表面張力を低下させてやれ
ば、やはりフィンにかかる圧力を減少させることができ
る。すなわち、水洗後に、水よりも表面張力が小さくて
これと相溶性であって、そのためフィンの間に残存して
いる水と容易に置換可能な液体に物品を一旦浸漬させて
やれば、フィンにかかる圧力を有意に減少させることが
できる。
As is apparent from the above equation, if the surface tension of the liquid remaining between the adjacent fins is reduced, the pressure applied to the fins can be reduced. That is, after washing with water, once the article is immersed in a liquid that has a lower surface tension than water and is compatible with it, and that can easily replace the water remaining between the fins, Such pressure can be significantly reduced.

【0027】このような液体としてアセトン、エタノー
ル、イソブチルアルコールや、界面活性剤を混入した水
を使用すると、表面張力の値はおよそ20 dyn/cmとな
り、すなわち水の約1/4になる。この際、濡れ状況や
乾燥状況によってはΔPとして1気圧以下が期待でき、
フィンにかかる圧力を減少させることができる。すなわ
ち、本発明の方法において物品を表面張力が水より小さ
く且つ水と相溶性の液体に浸漬させることは、表面張力
の低下により微細構造の部材にかかる差圧を低下させる
のに役立つ。
When acetone, ethanol, isobutyl alcohol, or water mixed with a surfactant is used as such a liquid, the surface tension value becomes about 20 dyn / cm, that is, about 1/4 of water. At this time, depending on the wet and dry conditions, ΔP can be expected to be 1 atm or less,
The pressure on the fins can be reduced. That is, in the method of the present invention, immersing the article in a liquid having a surface tension smaller than that of water and compatible with water serves to reduce the differential pressure applied to the microstructured member due to the reduction of the surface tension.

【0028】図4のモデルでは、フィンの間に挟まれた
液面が凹面で安定していることを仮定しているが、外部
から適当なエネルギーを供給してこの液面を乱してやれ
ば、水の内部と外部の圧力差を大幅に減少させることが
期待できる。
In the model of FIG. 4, it is assumed that the liquid surface sandwiched between the fins is concave and stable, but if appropriate energy is supplied from the outside to disturb the liquid surface, It can be expected to greatly reduce the pressure difference between the inside and outside of water.

【0029】液面を乱す手法として、フィン材料あるい
は当該微細構造の支持基板に高密度のエネルギー線を照
射して急速に加熱する手法がある。フィン間隙の水は加
熱により急速に気化し、その際に生じる圧力で液面は振
動し、安定な凹面を形成することができなくなる。エネ
ルギー源としては、レーザ光線、赤外線、電子線、マイ
クロ波等を有利に使用することができる。
As a method of disturbing the liquid surface, there is a method of irradiating a fin material or a supporting substrate having the fine structure with a high-density energy beam to rapidly heat it. The water in the fin gap is rapidly vaporized by heating, and the pressure generated at that time vibrates the liquid surface, making it impossible to form a stable concave surface. Laser beams, infrared rays, electron beams, microwaves and the like can be advantageously used as the energy source.

【0030】液面を乱すエネルギーを供給するもう一つ
の方法として、微細構造の支持基板に超音波を作用させ
る方法がある。使用する超音波の周波数は十分高い方が
有利であり、一般には1GHz 以上の高周波数の超音波を
使用するのが好適である。より詳しく言えば、フィン間
隔の10倍程度の波長まで効果が期待でき、例えば5×
10-6cmのフィン間隔について言えば、超音波の好適な
周波数は3GHz 以上となる。
As another method of supplying energy that disturbs the liquid surface, there is a method of applying ultrasonic waves to a supporting substrate having a fine structure. It is advantageous that the frequency of the ultrasonic waves used is sufficiently high, and it is generally preferable to use ultrasonic waves having a high frequency of 1 GHz or higher. More specifically, an effect can be expected up to a wavelength of about 10 times the fin spacing, for example, 5 ×
For fin spacing of 10 -6 cm, the preferred frequency of ultrasound is 3 GHz and above.

【0031】このように、微細構造又はこれを支持する
基板に加熱エネルギー又は超音波エネルギーを供給する
ことは、フィンの間に挟まれた液面を乱してフィンの間
に存在する水の内部と外部の圧力差を大幅に低下させ
る。
As described above, supplying heating energy or ultrasonic energy to the fine structure or the substrate supporting the fine structure disturbs the liquid surface sandwiched between the fins and causes the inside of water existing between the fins to be disturbed. And greatly reduce the pressure difference between the outside.

【0032】乾燥過程においてフィンが圧力を受けて撓
んだとしても、その先端部が他のフィンの先端部又は支
持基板と接触しなければ、撓みの原因となった圧力の消
滅後にはフィンは元の状態に戻ることができる。そこ
で、フィンの厚さと支持部からの長さとが適切な関係の
範囲内にあれば、フィンが別のフィンや支持基板と接触
して変形したままになってしまう現象を回避することが
可能である。
Even if the fins bend under pressure during the drying process, the fins will not bend after the pressure causing the bending disappears, unless the tip of the fin contacts the tip of another fin or the supporting substrate. You can return to the original state. Therefore, if the thickness of the fin and the length from the supporting portion are within the range of an appropriate relationship, it is possible to avoid the phenomenon that the fin comes into contact with another fin or the supporting substrate and remains deformed. is there.

【0033】図5(a)は、支持基板に隣接したフィン
が圧力を受けて基板(この基板は剛体と見なすことがで
き、従ってこれは変形しない)の側へ変形する様子を模
式的に示す図である。この図で、圧力Pを受けた時のフ
ィンの撓み量Δは次式で求められる。(以下において
は、式を簡単にするため、フィンの幅wは1cmの単位長
さの幅であるとする。従って、以下に掲げる式にはフィ
ンの幅wは現れてこない)。
FIG. 5 (a) schematically shows how the fins adjacent to the supporting substrate are deformed toward the side of the substrate (which can be regarded as a rigid body and therefore it does not deform) under pressure. It is a figure. In this figure, the flexure amount Δ of the fin when the pressure P is received is calculated by the following equation. (In the following, to simplify the formula, the fin width w is assumed to be a unit length of 1 cm. Therefore, the fin width w does not appear in the formula given below).

【0034】Δ=PL4 /8EI=3PL4 /2Et3 但し、P=フィンに作用する圧力 L=フィンの長さ t=フィンの厚さ E=フィン材料のヤング率 I=断面二次モーメント なお、断面二次モーメントIは次式で与えられる。Δ = PL 4 / 8EI = 3PL 4 / 2Et 3 where P = pressure acting on the fin L = fin length t = fin thickness E = Young's modulus of fin material I = second moment of area , The moment of inertia of area I is given by the following equation.

【0035】[0035]

【数1】 [Equation 1]

【0036】この場合には、フィン幅wは撓み量には直
接関係しないので、フィンが基板へ接触しないための条
件は、撓み量がフィンと基板との距離dより小さいこ
と、すなわちΔ<dである。これをフィンの長さLにつ
いて書き直せば、次の関係式が得られる。 L<(2Edt3 /3P)1/4 (1)
In this case, since the fin width w is not directly related to the bending amount, the condition that the fin does not contact the substrate is that the bending amount is smaller than the distance d between the fin and the substrate, that is, Δ <d. Is. If this is rewritten for the length L of the fin, the following relational expression is obtained. L <(2Edt 3 / 3P) 1/4 (1)

【0037】次に、図5(b)に示すように隣接するフ
ィンの場合には、お互いが接近する向きに撓む可能性が
あり、従ってこの場合に許容される撓み量はフィン間隔
d′の1/2であり、やはりフィンの長さLについて書
き直せば次の関係式が得られる。 L<(Ed′t3 /3P)1/4 (2)
Next, as shown in FIG. 5 (b), in the case of adjacent fins, there is a possibility that they will bend toward each other. Therefore, the amount of bending allowed in this case is the fin spacing d '. 1/2, and again, if the length L of the fin is rewritten, the following relational expression is obtained. L <(Ed't 3 / 3P) 1/4 (2)

【0038】このように、(1)式又は(2)式を満足
するように設計された部材は、乾燥工程において部材に
外部圧力がかかったとしても隣りの部材又は支持基板と
接触するに至らず、恒久的な湾曲を回避する。
As described above, the member designed to satisfy the formula (1) or the formula (2) does not come into contact with the adjacent member or the supporting substrate even if external pressure is applied to the member in the drying step. Instead, avoid a permanent bend.

【0039】なお、(2)式は、隣り合う部材が異種材
料であって、すなわちヤング率を異にする場合にも、そ
れらのヤング率が極端に違わない限り近似的に適用する
ことができる。
The expression (2) can be approximately applied even when the adjacent members are different materials, that is, the Young's moduli are different, as long as the Young's moduli are not extremely different. .

【0040】[0040]

【実施例】次に、実施例により本発明を更に説明する。The present invention will be further described with reference to the following examples.

【0041】実施例1 シリコン基板を支持基板として、ポリシリコンのフィン
状微細構造を作製した。
Example 1 Using a silicon substrate as a support substrate, a fin-shaped fine structure of polysilicon was produced.

【0042】図2により先に説明した方法に従って、ス
ペーサーとしての絶縁膜としてSiO2 をCVD法で5
00Å堆積し、次いでフィン材料としてポリシリコンを
やはりCVD法で500Å堆積し、更に500ÅのSi
2 膜を堆積させた。次に、これらの膜の一部に基板ま
で届く口径0.5μmの穴をあけ、そしてもう一度ポリ
シリコンを500Å堆積させた。
In accordance with the method described above with reference to FIG. 2, SiO 2 is used as an insulating film as a spacer by the CVD method.
00 Å is deposited, then 500 Å of polysilicon is also deposited as a fin material by the CVD method, and 500 Å of Si is further deposited.
An O 2 film was deposited. Next, a hole having a diameter of 0.5 μm was drilled in a part of each of these films to reach the substrate, and polysilicon was again deposited to 500 μm.

【0043】次いで、あけた穴を中心として、フィン長
0.7μm、1.2μm及び2.0μmの3種類の部分
を残すように堆積膜をエッチングした。続いてスペーサ
ー絶縁膜のSiO2 を希釈したフッ酸溶液でエッチング
除去して、フィン状微細構造を作製した。
Next, the deposited film was etched so that three types of portions having fin lengths of 0.7 μm, 1.2 μm and 2.0 μm were left around the drilled hole. Subsequently, SiO 2 of the spacer insulating film was removed by etching with a diluted hydrofluoric acid solution to form a fin-shaped fine structure.

【0044】エッチング浴から取出した微細構造を支持
する基板を水洗槽に移して洗浄後、水槽から引き出して
大気中で乾燥させた。乾燥後のフィンの湾曲の有無を顕
微鏡で観察した結果を表1に示す。
The substrate supporting the fine structure taken out from the etching bath was transferred to a water washing tank, washed, and then taken out from the water tank and dried in the atmosphere. Table 1 shows the results of observing with a microscope whether the fins were curved after drying.

【0045】[0045]

【表1】 [Table 1]

【0046】この例の微細構造は複数フィン構造であっ
て、隣接するフィンの双方が変形する可能性があるか
ら、隣り合うフィンどうしが先端部で接触して恒久的に
湾曲したままになってしまうフィン長の境界値は(2)
式より計算され、それによればその境界値は1.37μ
mとなる(P=1気圧とする)。表1によれば、フィン
の湾曲率がフィン長がこの境界値よりずっと短い0.7
μmで0%、境界値よりわずかに短いだけの1.2μm
で43%であるのに対して、フィン長が境界値より長い
2.0μmでの湾曲率は100%であることが分る。す
なわち、水洗処理でフィンが湾曲しないようにするに
は、少なくとも(2)式を満足する構造パラメータを選
択する必要があることが分り、(2)式の有効性が確認
できた。
Since the fine structure of this example is a multi-fin structure and both of the adjacent fins may be deformed, adjacent fins contact each other at their tips and remain permanently curved. The boundary value of the fin length is (2)
Calculated from the formula, the boundary value is 1.37μ
m (P = 1 atm). According to Table 1, the fin curvature is 0.7 where the fin length is much shorter than this boundary value.
0% at μm, 1.2 μm just slightly shorter than the boundary value
It is found that the bending ratio is 43%, whereas the curvature rate at 2.0 μm, where the fin length is longer than the boundary value, is 100%. That is, it was found that at least structural parameters satisfying the formula (2) had to be selected in order to prevent the fins from bending during the water washing treatment, and the validity of the formula (2) was confirmed.

【0047】実施例2 フィン状微細構造の水洗工程までを実施例1と同じ工程
を経て実施後、図6に示すように支持基板31を水洗槽
32に入れたまま真空チャンバー33内に入れ、そして
真空ポンプでチャンバー内圧を0.3気圧まで下げた。
この減圧状態を保持したまま排水ポンプで水槽の水を排
出して、微細構造を乾燥させた。乾燥後のフィンの湾曲
状況を観察した結果を表2に示す。
Example 2 After the steps up to the step of washing the fin-shaped fine structure through the same steps as in Example 1, as shown in FIG. 6, the supporting substrate 31 was put in the vacuum chamber 33 while being kept in the washing tank 32. Then, the internal pressure of the chamber was reduced to 0.3 atm with a vacuum pump.
While maintaining this depressurized state, the water in the water tank was discharged by the drainage pump to dry the fine structure. The results of observing the curved state of the fins after drying are shown in Table 2.

【0048】[0048]

【表2】 [Table 2]

【0049】この場合に(2)式から計算されるフィン
長の境界値は1.81μmである(P=0.3気圧とす
る)。このことは、フィン長1.2μmでの湾曲率が0
%と大幅に改善されているのに、フィン長2.0μmで
は湾曲率が相変らず100%のままであった事実とよく
符合している。
In this case, the boundary value of the fin length calculated from the equation (2) is 1.81 μm (P = 0.3 atm). This means that the curvature rate is 0 when the fin length is 1.2 μm.
%, Which is significantly improved, but it is in good agreement with the fact that the curvature rate remains 100% at the fin length of 2.0 μm.

【0050】実施例3 フィン状微細構造の水洗工程までを実施例1と同じ工程
で実施後、支持基板をアセトン槽に移し、1時間放置し
てから取出して乾燥させた。乾燥後のフィンの湾曲状況
を観察して表3に示す結果を得た。
Example 3 The steps up to the step of washing the fin-shaped microstructure with water were carried out in the same steps as in Example 1, the supporting substrate was transferred to an acetone bath, left for 1 hour, taken out, and dried. The curved state of the fin after drying was observed and the results shown in Table 3 were obtained.

【0051】[0051]

【表3】 [Table 3]

【0052】表3に示した結果を表1の結果と比較して
みると、フィン長1.2μmでの湾曲率が有意に改善さ
れていることが分る。
Comparing the results shown in Table 3 with the results shown in Table 1, it can be seen that the curvature rate at the fin length of 1.2 μm is significantly improved.

【0053】実施例4 フィン状微細構造の水洗工程までを実施例1と同様に行
った後、洗浄水槽から引き出した支持基板に、パルス照
射が可能なルビーレーザ(波長6900Å)を直ちに照
射した。ここでは、2cm四方の面積に0.5J/パルス
のエネルギーを1回だけ照射した。レーザ照射領域のフ
ィンの湾曲状況を観察して得た結果を表4に示す。
Example 4 After the steps up to the step of washing the fin-shaped fine structure with water were performed in the same manner as in Example 1, the supporting substrate pulled out from the washing water tank was immediately irradiated with a pulsed ruby laser (wavelength 6900Å). Here, an area of 2 cm square was irradiated with energy of 0.5 J / pulse only once. Table 4 shows the results obtained by observing the curved state of the fins in the laser irradiation region.

【0054】[0054]

【表4】 [Table 4]

【0055】レーザ照射により基板のシリコンウェーハ
上の水分を急激に蒸発させたことで、表1に示した結果
と対比してフィン長1.2μmでの湾曲したフィンが明
らかに減少していることが分る。
By rapidly evaporating the water on the silicon wafer of the substrate by the laser irradiation, the number of curved fins at the fin length of 1.2 μm was clearly reduced as compared with the results shown in Table 1. I understand.

【0056】[0056]

【発明の効果】以上説明したように、本発明によれば、
一方の端部だけを固定して支持された部材を含む微細構
造を含んでなる物品を、それらの部材を恒久的に変形さ
せることなく製造することが可能になる。本発明は、半
導体デバイスやマイクロマシン等の微細構造を含んでな
る物品に適用することができ、それらの発展に資するこ
と大である。
As described above, according to the present invention,
It becomes possible to manufacture an article that comprises a microstructure that includes members that are fixedly supported only at one end, without permanently deforming those members. INDUSTRIAL APPLICABILITY The present invention can be applied to articles including fine structures such as semiconductor devices and micromachines, and greatly contributes to their development.

【図面の簡単な説明】[Brief description of drawings]

【図1】DRAMにおけるフィン構造キャパシタの模式
断面図である。
FIG. 1 is a schematic cross-sectional view of a fin structure capacitor in a DRAM.

【図2】図1に示したフィン構造キャパシタの製造工程
を説明する模式断面図であって、(a)は絶縁膜と導電
材料膜とを積層したところを示す図、(b)は支柱及び
上層のフィンとなる導電材料膜を堆積したところを示す
図、(c)はキャパシタ部分を除いて積層部をエッチン
グしたところを示す図、そして(d)は形成したフィン
構造の周囲に新たに絶縁膜を成長させたところを示す図
である。
2A and 2B are schematic cross-sectional views illustrating a manufacturing process of the fin structure capacitor illustrated in FIG. 1, in which FIG. 2A is a diagram showing a laminated insulating film and a conductive material film, and FIG. A diagram showing a conductive material film to be an upper fin is deposited, (c) is a diagram showing a laminated portion excluding the capacitor portion, and (d) is a new insulation around the formed fin structure. It is a figure showing a place where a film was grown.

【図3】形成したフィンの乾燥後の湾曲を例示する模式
断面図である。
FIG. 3 is a schematic cross-sectional view illustrating the curvature of the formed fin after drying.

【図4】フィンの間に残存する水の表面張力によりフィ
ンに作用する圧力を説明する図である。
FIG. 4 is a diagram illustrating a pressure acting on a fin due to surface tension of water remaining between the fins.

【図5】圧力を受けて撓むフィン構造を説明する図であ
って、(a)は支持基板の側へ変形するフィン構造を説
明する図、(b)は隣接するフィンが互いに接近する向
きに変形するのを説明する図である。
5A and 5B are diagrams illustrating a fin structure that bends under pressure, FIG. 5A illustrates a fin structure that deforms toward a support substrate, and FIG. 5B illustrates a direction in which adjacent fins approach each other. It is a figure explaining what transforms into.

【図6】実施例2における減圧下での乾燥を説明する模
式図である。
FIG. 6 is a schematic diagram illustrating drying under reduced pressure in Example 2.

【符号の説明】[Explanation of symbols]

1…半導体基板 2,3…キャパシタ電極 4…キャパシタ絶縁膜 10…半導体基板 11,11′…絶縁膜 12,13…導電材料膜 14…微細構造 15…絶縁膜 20…基板 21…支柱 22…フィン 31…支持基板 32…水洗槽 33…真空チャンバ DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2, 3 ... Capacitor electrode 4 ... Capacitor insulating film 10 ... Semiconductor substrate 11, 11 '... Insulating film 12, 13 ... Conductive material film 14 ... Microstructure 15 ... Insulating film 20 ... Substrate 21 ... Strut 22 ... Fin 31 ... Support substrate 32 ... Washing tank 33 ... Vacuum chamber

フロントページの続き (72)発明者 池田 稔美 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内Front page continuation (72) Inventor Tomi Ikeda 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一方の端部だけを固定された部材を含
み、この部材に近接して、この部材と同じ形状の他の部
材及び剛体と見なせる別の構成物のうちの一方又は両方
が存在している微細構造を含んでなる物品を製造する方
法であって、洗浄水槽での洗浄工程とその後の乾燥工程
とを含む方法において、洗浄工程後に洗浄水槽を大気圧
より低い圧力下に置いてから物品を取出し、次いでこれ
を乾燥工程にかけることを特徴とする、微細構造を含ん
でなる物品の製造方法。
1. A member including a member fixed only at one end, and adjacent to the member, one or both of another member having the same shape as the member and another component that can be regarded as a rigid body. A method for producing an article comprising a microstructure, comprising a washing water tank washing step and a subsequent drying step, wherein the washing water tank is placed under a pressure lower than atmospheric pressure after the washing step. A process for producing an article comprising microstructures, characterized in that the article is removed from the article and then subjected to a drying step.
【請求項2】 一方の端部だけを固定された部材を含
み、この部材に近接して、この部材と同じ形状の他の部
材及び剛体と見なせる別の構成物のうちの一方又は両方
が存在している微細構造を含んでなる物品を製造する方
法であって、洗浄水槽での洗浄工程とその後の乾燥工程
とを含む方法において、物品を表面張力が水より小さく
且つ水と相溶性の液体に浸漬させてから乾燥させること
を特徴とする、微細構造を含んでなる物品の製造方法。
2. A member including only one end fixed thereto, and adjacent to this member, one or both of another member having the same shape as this member and another component which can be regarded as a rigid body. A method for producing an article comprising a fine structure, comprising a washing step in a washing water tank and a subsequent drying step, wherein the article has a surface tension lower than that of water and is compatible with water. A method for producing an article comprising a microstructure, which comprises immersing the article in water and then drying the article.
【請求項3】 微細構造とこれを支持する基板のうちの
一方又は両方を選択的に加熱して乾燥させることを特徴
とする、請求項1又は2記載の方法。
3. The method according to claim 1, wherein one or both of the microstructure and the substrate supporting the microstructure are selectively heated and dried.
【請求項4】 一方の端部だけを固定された部材を含
み、この部材に近接して、この部材と同じ形状の他の部
材及び剛体と見なせる構成物のうちの一方又は両方が存
在している微細構造を含んでなる物品であって、該部材
の長さLが、この部材に近接して剛体と見なせる構成物
のみが存在する場合には次式の関係 L<(2Edt3 /3P)1/4 但し、E:部材を構成する材料のヤング率 d:部材とこれに近接する構成物との距離 t:部材の厚さ P:部材にかかる外部圧力 を満たし、該部材に近接して同じ形状の他の部材が存在
している場合には次式の関係 L<(Ed′t3 /3P)1/4 但し、d′:部材間の距離 を満たすことを特徴とする微細構造を含んでなる物品。
4. A member including a member fixed only at one end, and adjacent to this member, one or both of another member having the same shape as this member and a structure regarded as a rigid body are present. In the case of an article including a fine structure in which the length L of the member is close to this member and there is only a structure that can be regarded as a rigid body, the following relation L <(2Edt 3 / 3P) 1/4 However, E: Young's modulus of the material forming the member d: Distance between the member and the components adjacent thereto t: Thickness of the member P: Sufficient external pressure applied to the member and close to the member When other members of the same shape are present, the relation L <(Ed′t 3 / 3P) 1/4 where d ′: distance between members An article comprising.
JP4173053A 1992-06-30 1992-06-30 Article including fine structure and manufacture thereof Withdrawn JPH0621037A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4173053A JPH0621037A (en) 1992-06-30 1992-06-30 Article including fine structure and manufacture thereof
US08/083,371 US5652167A (en) 1992-06-30 1993-06-29 Method of liquid treatment of micro-structures comprising structural members liable to be bent
US08/820,359 US5888633A (en) 1992-06-30 1997-03-12 Micro-structures having structural members capable of withstanding permanent bend
US09/071,991 US6251743B1 (en) 1992-06-30 1998-05-05 Method of liquid treatment of microstructures comprising bendable structural members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4173053A JPH0621037A (en) 1992-06-30 1992-06-30 Article including fine structure and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0621037A true JPH0621037A (en) 1994-01-28

Family

ID=15953346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4173053A Withdrawn JPH0621037A (en) 1992-06-30 1992-06-30 Article including fine structure and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0621037A (en)

Similar Documents

Publication Publication Date Title
US10814490B2 (en) Targets and processes for fabricating same
Morrison et al. Ferroelectric nanotubes
US7744947B2 (en) Method of forming carbon nanotube on semiconductor substrate, method of forming semiconductor metal wire using the same, and method of fabricating inductor using the same
US5013693A (en) Formation of microstructures with removal of liquid by freezing and sublimation
US20060183330A1 (en) Laser assisted chemical etching method for release of microscale and nanoscale devices
WO2007044035A2 (en) Patterning by energetically-stimulated local removal of solid-condensed-gas layers and solid state chemical reactions produced with such layers
CN114408905A (en) Controllable preparation and transfer method of self-supporting two-dimensional material
CN112062084A (en) High-resolution silicon-based hollow cantilever probe and preparation method thereof
JPH0621037A (en) Article including fine structure and manufacture thereof
KR101191981B1 (en) semiconductor nanowires array and manufacturing method thereof
US6251743B1 (en) Method of liquid treatment of microstructures comprising bendable structural members
US6986838B2 (en) Nanomachined and micromachined electrodes for electrochemical devices
JP2008041648A (en) Substrate for mass spectrometric analysis, and method of manufacturing substrate for mass spectrometric analysis
TWI267897B (en) Substrate with anti-reflection layer and its manufacturing method
US6406637B1 (en) Thin film-planar structure and method for producing the same
US20050069687A1 (en) Apparatus and method for making a tensile diaphragm with a compressive region
JP2001168081A (en) Etching method and manufacturing method of structure
JP3813592B2 (en) SPM sensor manufacturing method
KR101220522B1 (en) Manufacturing method of silicon nanowires array using porous multilayer metal film
KR101213969B1 (en) A method of fabricating nano-scaled structure with uneven surface
US20060115965A1 (en) Ion implanted microscale and nanoscale device method
JP3805228B2 (en) Method for manufacturing electron-emitting device
CN100399543C (en) Method for mfg. cross array structure orgnaic devices by self-assembling technique
JP2007231391A (en) Film deposition method onto substrate and device production method
JPH0766191B2 (en) Device fabrication method using non-planar surface lithography

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831