JPH06209644A - Method of vegetation with semipermeable membrane - Google Patents

Method of vegetation with semipermeable membrane

Info

Publication number
JPH06209644A
JPH06209644A JP5008165A JP816593A JPH06209644A JP H06209644 A JPH06209644 A JP H06209644A JP 5008165 A JP5008165 A JP 5008165A JP 816593 A JP816593 A JP 816593A JP H06209644 A JPH06209644 A JP H06209644A
Authority
JP
Japan
Prior art keywords
water
membrane
soil
salt
semipermeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5008165A
Other languages
Japanese (ja)
Inventor
Shinobu Inanaga
忍 稲永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5008165A priority Critical patent/JPH06209644A/en
Publication of JPH06209644A publication Critical patent/JPH06209644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To carry out vegetation of agricultural products in soil of salt accumulation at a low cost without requiring execution of large-scale facilities by utilizing underground water having a high salt content in soil of salt accumulation, effectively desalting the underground water and feeding crops. CONSTITUTION:A method of vegetation wherein a semipermeable membrane which permeates water or steam but substantially rejects water-soluble salts is laid between a water layer and water absorbing roots of plants.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩集積土壌などの高塩
分の水分を含む土壌での農業生産および緑化の方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for agricultural production and revegetation in soil containing high salt water such as salt accumulating soil.

【0002】[0002]

【従来の技術】近年、乾燥地域や半乾燥地域を中心に、
不用意な畑地灌漑による土壌の塩類化の進行が世界各地
で問題視されてきており、塩集積土壌の面積は年ととも
に増加しつつあると見られる。塩集積土壌の増加は、塩
分を含んだ水の灌漑、過灌漑や用水路よりの漏水などに
基づく地下水の上昇と乾燥地特有の激しい土面蒸発に起
因している。土壌の塩類化が作物生産の現場で問題にな
るのは、乾燥地域や半乾燥地域に限られるものではな
く、湿潤地域でも、地下水位の高い場所で周囲から塩類
濃度の高い水が侵入するような箇所ではつねに起こる問
題であり、また、わが国のように施設園芸栽培の発達し
たところでは、降雨遮断・多肥栽培のもとで土壌からの
水可溶性塩類の溶脱が抑制される結果、土壌の塩類化が
問題になる。このような、塩集積土壌において農業生産
を行なうためにこれまで提案、実施されている方法とし
ては、1) 地下水の低下と除塩を目的とした暗渠の設
置、2)作土直下に空隙の多い資材を埋設する方法、3)
太陽熱などを利用して高塩分水をいったん精製し、その
水を灌漑に用いる方法、が知られている。
2. Description of the Related Art Recently, mainly in arid and semi-arid areas,
The progress of soil salinization due to careless upland irrigation has been regarded as a problem all over the world, and the area of salt-accumulated soil seems to be increasing with the years. The increase in salt-accumulated soil is due to irrigation of water containing salt, rise in groundwater due to overirrigation and leakage from irrigation channels, and severe soil surface evaporation peculiar to drylands. The problem of soil salinization in crop production is not limited to arid and semi-arid areas, and even in humid areas, water with high salt concentration may enter from surrounding areas at high groundwater levels. This is a problem that always occurs in the areas where the soil is cultivated.In addition, as in Japan, where horticultural cultivation has been developed, leaching of water-soluble salts from the soil is suppressed under rainfall interception and high fertilizer cultivation. Salinization becomes a problem. The following methods have been proposed and implemented for agricultural production in such salt-accumulated soils: 1) installation of a culvert for the purpose of reducing groundwater and desalination, 2) formation of a void directly under the soil. How to bury many materials, 3)
A method is known in which high salinity water is once purified by using solar heat and the water is used for irrigation.

【0003】[0003]

【発明が解決しようとする課題】塩集積土壌において農
業生産を行なうためには、塩集積土壌中の高塩分の地下
水を利用し、かつこれを除塩して作物に供給する方法
が、乾燥地域や半乾燥地域などの灌漑水の供給が充分な
地域ではとくに望ましい。しかしながら、上述の公知例
においては、1)、3)は、施設の建設に莫大な施行費を要
するものであり、2)では、作土層の過乾を招き易いなど
の問題がある。したがって、本発明の目的は、大規模な
施設の施行を必要とせずに、塩集積土壌中の高塩分の地
下水を利用し、かつこれを効果的に除塩して作物に供給
し、塩集積土壌での農作物等の植生を低コストで行なう
方法を提供することである。
In order to carry out agricultural production on salt-accumulated soil, a method of utilizing groundwater having a high salinity in the salt-accumulated soil and desalting it to supply to crops is a dry area. Especially desirable in areas with sufficient irrigation water supply, such as the semi-arid area. However, in the above-mentioned publicly known examples, 1) and 3) require enormous execution costs to construct the facility, and 2) has a problem that the soil layer is likely to be overdried. Therefore, an object of the present invention is to utilize high-salt groundwater in salt-accumulated soil without supplying a large-scale facility, and to effectively remove this salt to supply it to crops. It is to provide a method for vegetation such as crops in soil at low cost.

【0004】[0004]

【課題を解決するための手段】上記目的に鑑み、鋭意検
討した結果、本発明者は、水または水蒸気を透過し、水
可溶性塩類を実質上透過しない半透膜を、水分層と植物
の吸水根の間に配することにより、例えば塩集積土壌中
などの高塩分の水分から、水可溶性塩類を含まない水分
のみを植物の吸水根に供給することが可能となり、通常
の条件では、植物が成育しえない高塩分の水分存在下の
環境において、植物の成育が可能であることを見出し
た。
Means for Solving the Problems In view of the above object, as a result of intensive studies, the present inventors have found that a semipermeable membrane that is permeable to water or water vapor and substantially immiscible with water-soluble salts is used to absorb water between a water layer and plants. By arranging between the roots, it becomes possible to supply only the water containing no water-soluble salts to the water-absorbing roots of the plant, for example, from the water of high salinity in the salt-accumulated soil, and under normal conditions, the plant It was found that plants can grow in an environment where high salt water cannot grow.

【0005】本発明において、水または水蒸気を透過
し、水可溶性塩類を透過しない半透膜とは、膜の片側に
水可溶性塩類を溶解した水溶液を配置し、膜の両面に温
度差、圧力差などを与えることにより、膜のもう一方の
側より水可溶性塩類を溶解した水溶液のうちの水または
水蒸気のみが透過し、水可溶性塩類が透過しない半透膜
である。本発明において、水可溶性塩類が実質上透過し
ない半透膜とは、水可溶性塩類が全く透過しない膜を意
味するのではなく、後述する溶質透過係数B(cm/s)が、
5×10-4以下であるような、水可溶性塩類を含む水溶
液を透過させた場合に、透過液の水可溶性塩類濃度が減
少する塩分排除特性を示す半透膜をいう。このような半
透膜としては、圧力差により水可溶性塩類の水溶液より
水のみを透過する逆浸透膜や、水可溶性塩類の水溶液よ
り水蒸気のみを透過する水蒸気透過膜があげられる。
In the present invention, a semipermeable membrane that is permeable to water or water vapor and impermeable to water-soluble salts means that an aqueous solution in which water-soluble salts are dissolved is arranged on one side of the membrane, and a temperature difference and a pressure difference are present on both sides of the membrane. Is a semipermeable membrane in which only water or water vapor in the aqueous solution in which water-soluble salts are dissolved is permeated from the other side of the membrane and water-soluble salts are not permeated. In the present invention, a semipermeable membrane that is substantially impermeable to water-soluble salts does not mean a membrane that is completely impermeable to water-soluble salts, but has a solute permeability coefficient B (cm / s) described later,
It is a semipermeable membrane that exhibits salt exclusion characteristics in which the concentration of water-soluble salts in the permeate decreases when an aqueous solution containing water-soluble salts of 5 × 10 −4 or less is permeated. Examples of such a semipermeable membrane include a reverse osmosis membrane that allows only water to permeate from an aqueous solution of water-soluble salts due to a pressure difference, and a water vapor permeable membrane that allows only water vapor to permeate from an aqueous solution of water-soluble salts.

【0006】本発明において、逆浸透膜とは、逆浸透法
により海水またはカン水淡水化などの脱塩プロセスに用
いられる半透膜である。逆浸透法は、溶液中の溶媒のみ
を透過する性質を持つ半透膜(逆浸透膜)を介して供給
液側に浸透圧以上の圧力をかけることによって半透膜を
通して溶媒を取り出す分離技術である。本発明の植生工
法の場合、逆浸透法の原理が、高塩分の水分から水可溶
性塩類を含まない水分を植物の吸水根へ供給するように
働いているとは一概に言えないが、逆浸透膜の高い塩排
除特性が有効に作用している。
In the present invention, the reverse osmosis membrane is a semipermeable membrane used for desalination processes such as desalination of seawater or sewage by the reverse osmosis method. The reverse osmosis method is a separation technology in which the solvent is taken out through the semipermeable membrane by applying a pressure higher than the osmotic pressure to the supply liquid side through the semipermeable membrane (reverse osmosis membrane) that has the property of allowing only the solvent in the solution to permeate. is there. In the case of the vegetation method of the present invention, the principle of the reverse osmosis method cannot be said to be working to supply water containing no water-soluble salts from the water of high salinity to the water-absorbing roots of the plant, but reverse osmosis The high salt rejection properties of the membrane work well.

【0007】本発明において、本用途に好適な逆浸透膜
の水分透過性と塩分の排除特性の指標としては、下記式
で与えられる膜の純水透過係数AおよびNaClの溶質
透過係数Bが用いられる。
In the present invention, the pure water permeation coefficient A of the membrane and the solute permeation coefficient B of NaCl given by the following formulas are used as the indexes of the water permeability and the salt removal property of the reverse osmosis membrane suitable for this application. To be

【0008】 純水透過係数A( g/cm2 ・s・atm)=F/(ΔP−Δ
π)×119.6 ×10-5 溶質透過係数B(cm/s)=(100−R)/R×F×115.
7 ×10-5 ここで、F:膜の造水量(m/m・日)、R:膜の
NaCl排除率(%)、ΔP:圧力差(kg/cm2 ) 、Δ
π:浸透圧差(kg/cm2 ) であり、通常の逆浸透法による
食塩水溶液の透過実験より実験的に求められる。
Pure water permeation coefficient A (g / cm 2 · s · atm) = F / (ΔP-Δ
π) × 119.6 × 10 −5 Solute permeability coefficient B (cm / s) = (100−R) / R × F × 115.
7 × 10 −5 where F: amount of water produced by the membrane (m 3 / m 2 · day), R: NaCl rejection of the membrane (%), ΔP: pressure difference (kg / cm 2 ), Δ
π: osmotic pressure difference (kg / cm 2 ), which can be experimentally determined by a common reverse osmosis method for permeation of a saline solution.

【0009】本発明において、本用途に好適な逆浸透膜
としては、純水透過係数A( g/cm2・s ・atm)について
は、1×10-5以上である膜が水分供給特性に優れてお
り、好ましい。また、溶質透過係数B(cm/s)が、5×1
-4以下である膜が塩分排除特性に優れており、好まし
い。
In the present invention, as a reverse osmosis membrane suitable for this application, a membrane having a pure water permeability coefficient A (g / cm 2 · s · atm) of 1 × 10 −5 or more has a moisture supply characteristic. Excellent and preferable. The solute permeability coefficient B (cm / s) is 5 × 1
A film having a particle size of 0 -4 or less is excellent in salt exclusion property and is preferable.

【0010】本発明において、逆浸透膜の具体例として
は、非対称膜の場合、酢酸セルロース系やポリアミド系
の膜が分離性能,耐久性,耐薬品性に優れるため、とく
に好ましい。また、複合膜としては、多孔質支持体層の
上に形成される機能層として、ポリエーテル系,芳香族
ポリアミド系、脂肪族ポリアミド系,ポリエチレンイミ
ン系、ポリ酸化エチレン、などが挙げられ、この中でも
薄膜化することにより透過性能を向上させた場合でも阻
止性能に優れ、さらに、耐薬品性などの点でも架橋ポリ
アミドを用いることが好ましい。多孔質支持体層の好ま
しい高分子としては、ポリスルホン、ポリエーテルスル
ホン、ポリフェニレンスルフィドスルホン、ポリフェニ
レンスルホンなどの芳香族ポリスルホン系素材、酢酸セ
ルロース、エチルセルロース、セルロースなどのセルロ
ース系素材、ポリアクリロニトリル、ポリプロピレン、
ポリエチレンなどのポリオレフィン系素材、ポリフッ化
ビニリデン、ポリテトラフルオロエチレンなどの含フッ
素高分子系素材、ポリアミド系素材ないしはポリイミド
系素材などを用いることができるが、この中でも、透過
性が十分であること、孔径の制御が容易であることから
芳香族ポリスルホン系素材が好ましく用いられる。該支
持体層の強度をさらに上げるために、該支持体層の下に
ポリエチレン、ポリプロピレンなどのポリオレフィン
類、ポリエチレンテレフタレートなどのポリエステル
類、ナイロンなどのポリアミド類、天然繊維などを主成
分とする公知の織物または不織布などの補強層を有して
いることが好ましい。
In the present invention, as a specific example of the reverse osmosis membrane, in the case of an asymmetric membrane, a cellulose acetate type or polyamide type membrane is particularly preferable because it is excellent in separation performance, durability and chemical resistance. Further, in the composite membrane, examples of the functional layer formed on the porous support layer include polyether-based, aromatic polyamide-based, aliphatic polyamide-based, polyethyleneimine-based, and polyethylene oxide. Above all, it is preferable to use a crosslinked polyamide in view of excellent blocking performance even when the permeation performance is improved by thinning the film, and also in view of chemical resistance. As the preferred polymer of the porous support layer, polysulfone, polyether sulfone, polyphenylene sulfide sulfone, aromatic polysulfone material such as polyphenylene sulfone, cellulose acetate, ethyl cellulose, cellulose-based material such as cellulose, polyacrylonitrile, polypropylene,
Polyolefin-based materials such as polyethylene, polyvinylidene fluoride, fluorine-containing polymer-based materials such as polytetrafluoroethylene, polyamide-based materials or polyimide-based materials can be used, but among these, sufficient permeability, An aromatic polysulfone-based material is preferably used because it is easy to control the pore size. In order to further increase the strength of the support layer, there are publicly known underlayers of the support layer containing polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polyamides such as nylon, and natural fibers as main components. It is preferable to have a reinforcing layer such as a woven fabric or a non-woven fabric.

【0011】本発明において、水蒸気透過膜とは、水可
溶性塩類の水溶液より水蒸気のみを透過する膜である。
水蒸気透過膜の場合、膜の疎水性や非多孔性のために、
水溶液の透過は阻止され、水分は水蒸気となって膜を透
過し、植物に供給されることになる。
In the present invention, the water vapor permeable membrane is a membrane that allows only water vapor to permeate from an aqueous solution of a water-soluble salt.
In the case of a water vapor permeable membrane, due to the hydrophobic and non-porous nature of the membrane,
The permeation of the aqueous solution is blocked, and the water becomes water vapor, permeates the membrane, and is supplied to the plant.

【0012】本用途に好適な水蒸気透過膜としては、膜
の水蒸気透過係数が、0.5(g/m2・atm ・24hr)以上
であるものが好ましい。
As a water vapor permeable membrane suitable for this application, a water vapor transmission coefficient of the membrane is preferably 0.5 (g / m 2 · atm · 24 hr) or more.

【0013】このような機能を有する膜としては、水を
透過させずに、水蒸気のみを透過させる公知の疎水性多
孔膜や気体透過性複合膜が好適である。疎水性多孔膜の
具体例としては、ポリエチレン,ポリプロピレン,ポリ
テトラフルオロエチレン,ポリフッ化ビニリデン,ポリ
4メチルペンテン等を溶融製膜または湿式製膜すること
により得られる疎水性多孔膜が好ましい。これらの疎水
性多孔膜の孔径として、5μm以下であるものが、水溶
液の阻止特性に優れており、とくに好ましい。
As a membrane having such a function, a known hydrophobic porous membrane or a gas permeable composite membrane which allows only water vapor to pass through without water permeation is suitable. As a specific example of the hydrophobic porous membrane, a hydrophobic porous membrane obtained by melt-casting or wet-casting polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, poly-4-methylpentene, or the like is preferable. Those having a pore size of 5 μm or less in these hydrophobic porous membranes are particularly preferable because they have excellent aqueous solution blocking properties.

【0014】また、気体透過性複合膜は、先の逆浸透膜
の複合膜と同様の多孔性支持体層に、高分子均質層を形
成した膜である。多孔質支持体層の上に形成される高分
子均質層の具体例としては、ポリオルガノシロキサン、
架橋型ポリオルガノシロキサン、ポリオルガノシロキサ
ン/ポリカーボネート共重合体、ポリオルガノシロキサ
ン/ポリフェニレン共重合体、ポリオルガノシロキサン
/ポリスチレン共重合体、ポリトリメチルシリルプロピ
ン、ポリ4メチルペンテン、などが挙げられる。この中
でも、機械的強度が高く、水蒸気透過性が高いという点
で、架橋型ポリジメチルシロキサンが最も好ましい。こ
の架橋型ポリジメチルシロキサンは、製法によって得ら
れる薄膜の性能が異なり、特開昭60- 257803,特開昭62
-216624,特開昭62-216623 に記載されている製法に従
って、得られた架橋型ポリジメチルシロキサンの薄膜が
気体透過性に優れ、ピンホールが少ないため好ましい。
The gas-permeable composite membrane is a membrane in which a polymer homogeneous layer is formed on the same porous support layer as the reverse osmosis membrane composite membrane. Specific examples of the polymer homogeneous layer formed on the porous support layer include polyorganosiloxane,
Examples thereof include crosslinked polyorganosiloxane, polyorganosiloxane / polycarbonate copolymer, polyorganosiloxane / polyphenylene copolymer, polyorganosiloxane / polystyrene copolymer, polytrimethylsilylpropyne, and poly-4-methylpentene. Among these, crosslinked polydimethylsiloxane is most preferable in terms of high mechanical strength and high water vapor permeability. This cross-linked polydimethylsiloxane differs in the performance of the thin film obtained depending on the production method, and is disclosed in JP-A-60-257803 and JP-A-62-62803.
The thin film of the crosslinked polydimethylsiloxane obtained according to the production method described in JP-A-216624 / 62-216623 is preferable because it has excellent gas permeability and few pinholes.

【0015】本発明において、半透膜を、水分層と植物
の吸水根の間に配する方法としては、シート状の半透膜
を土壌の表層に埋設し、その上で植物を成育させる方法
やカップ状または袋状に成型した半透膜中に土壌と植物
を入れ、それを土壌の表層に埋設する方法などが挙げら
れるが、特に限定されるものではない。また、半透膜の
みでは、植物の成育に充分な水分が供給しにくい場合や
供給される水分の蒸発速度が極めて早い場合には、半透
膜の近傍の土壌に吸水性ゲルよりなる保水剤等を混合し
たり、土壌表面をフィルムなどにより被覆することも可
能である。また、土壌の塩分濃度がとくに濃い場合に
は、本発明とあわせて、塩分を吸収する植物(クリーミ
ング・クロップ)を共生させるにより土壌の塩分を低減
させる方法を用いることも有効である。
In the present invention, a method of arranging the semipermeable membrane between the water layer and the water-absorbing root of the plant is to embed a sheet-shaped semipermeable membrane in the surface layer of soil and grow the plant on it. Examples include, but are not limited to, a method in which soil and plants are put in a semipermeable membrane molded in a cup shape or a bag shape and embedded in the surface layer of the soil. Also, if the semipermeable membrane alone does not provide sufficient water for plant growth or if the rate of evaporation of the supplied water is extremely high, a water retention agent consisting of a water-absorbent gel in the soil near the semipermeable membrane. It is also possible to mix the above, or to cover the soil surface with a film or the like. When the salt concentration of soil is particularly high, it is effective to use a method of reducing salt content of soil by coexisting with a salt-absorbing plant (creaming crop) together with the present invention.

【0016】以下の実施例によって更に詳細に説明する
が、本発明はこれら実施例により何ら限定されるもので
はない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0017】[0017]

【実施例】【Example】

実施例1〜4 上部直径12cm、下部直径10cm、深さ3cmの中
深皿4号の容器底部に水または所定濃度の食塩水を入
れ、その上に機能層が食塩水に接するようにして東レ株
式会社製逆浸透膜UTC−60(純水透過係数A:1.
6×10-4(g/m2・atm ・24hr) 、NaClの溶質透過
係数B:2.9×10-4(cm/s)、15cm×15cm)
を固定し、さらにその上に160gの水田土壌(1mmメッ
シュのふるいで粒径をそろえたもの、含水率0.8%)
を置き、温度23度下で放置した。26時間後、水田土
壌の重量を秤量した。結果は、表1に示すように、いず
れの実験でも、逆浸透膜UTC−60を介して20g 以上
の水分が水田土壌に供給された。
Examples 1 to 4 Water or saline solution having a predetermined concentration was put in the bottom of a medium-deep dish No. 4 having an upper diameter of 12 cm, a lower diameter of 10 cm, and a depth of 3 cm, and the functional layer was contacted with the saline solution on the Toray. Reverse osmosis membrane UTC-60 (Pure water permeation coefficient A: 1.
6 × 10 −4 (g / m 2 · atm · 24 hr), NaCl solute permeability coefficient B: 2.9 × 10 −4 (cm / s), 15 cm × 15 cm)
Was fixed, and 160 g of paddy soil (on which the particle size was adjusted with a 1 mm mesh sieve, water content 0.8%)
Was placed and left at a temperature of 23 degrees. After 26 hours, the paddy soil was weighed. As a result, as shown in Table 1, in all the experiments, 20 g or more of water was supplied to the paddy soil through the reverse osmosis membrane UTC-60.

【0018】[0018]

【表1】 実施例5〜12 上部直径12cm、下部直径10cm、深さ3cmの中
深皿4号の容器底部に水または所定濃度の食塩水を入
れ、その上に機能層が食塩水に接するようにして東レ株
式会社製逆浸透膜UTC−60(15cm×15cm)
を固定し、さらにその上に140gの水田土壌(含水率2.
3%)を置き、この土壌にオオムギ、ビートの種子(1
皿あたり3粒)を播き、温度23〜28度下で放置し
た。所定日数後、発芽個体数を数えて発芽率を算出した
結果を、表2に示した。
[Table 1] Examples 5 to 12 To the bottom of the container of medium-deep dish No. 4 having a diameter of the upper part of 12 cm, the lower part of the diameter of 10 cm and the depth of 3 cm, water or a saline solution having a predetermined concentration was placed, and the functional layer was contacted with the saline solution. Reverse osmosis membrane UTC-60 (15cm x 15cm)
Was fixed, and 140 g of paddy soil (water content 2.
3%) and place barley and beet seeds (1
3 seeds per dish) were sown and left at a temperature of 23 to 28 degrees. The results of calculating the germination rate by counting the number of germinated individuals after a predetermined number of days are shown in Table 2.

【0019】[0019]

【表2】 比較例1 UTC−60膜の代わりに濾紙を用いて実施例6〜12
と同様の方法で発芽実験を行なったが、食塩濃度100
mM〜600mMではいずれも全く発芽は認められなかっ
た。
[Table 2] Comparative Example 1 Examples 6 to 12 using filter paper instead of the UTC-60 membrane.
A germination experiment was conducted in the same manner as in, but the salt concentration was 100
No germination was observed at any of mM to 600 mM.

【0020】[0020]

【発明の効果】本発明の植生工法は、乾燥地等の塩集積
土壌での農業生産について、下記のような効果を発揮す
る。
EFFECTS OF THE INVENTION The vegetation method of the present invention exhibits the following effects for agricultural production on salt-accumulated soil such as dry land.

【0021】(1)大規模な施設の施行を必要や過大な
エネルギー源を必要とせずに、乾燥地等の塩集積土壌で
の農業生産が可能となる。
(1) Agricultural production on salt-accumulated soil such as dry land is possible without requiring the implementation of a large-scale facility or an excessive energy source.

【0022】(2)乾燥地等の水源に乏しい地域におい
ても、塩集積土壌中の高塩分の地下水を利用し、かつこ
れを効果的に除塩して作物に供給することが可能であ
り、大規模な灌漑設備が不要である。
(2) It is possible to use groundwater having a high salinity in the salt-accumulated soil and to effectively remove the salt to supply it to the crop even in an area having a poor water source such as a dry land. No large-scale irrigation equipment is required.

【0023】(3)化学薬品や保水剤等の回収不能な薬
剤を使用せずに農業生産が可能となるため、地下水脈の
汚染等の環境への影響が極めて少ない。
(3) Since agricultural production can be carried out without using unrecoverable chemicals such as chemicals and water retention agents, there is little influence on the environment such as pollution of groundwater veins.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水または水蒸気を透過し、水可溶性塩類
を実質上透過しない半透膜を、水分層と植物の吸水根の
間に配することを特徴とする植生工法。
1. A vegetation method comprising arranging a semipermeable membrane permeable to water or water vapor and substantially impermeable to water-soluble salts between a water layer and an absorptive root of a plant.
【請求項2】 水または水蒸気を透過し、水可溶性塩類
を実質上透過しない半透膜が、逆浸透膜である請求項1
の植生工法。
2. The reverse osmosis membrane is a semipermeable membrane which is permeable to water or water vapor and substantially impermeable to water-soluble salts.
Vegetation method.
【請求項3】 逆浸透膜の純水透過係数Aが1×10-5
( g/cm2 ・s・atm)以上で、かつNaClの溶質透過係
数Bが5×10-4(cm/s)以下であることを特徴とする請
求項2の植生工法。
3. The pure water permeability coefficient A of the reverse osmosis membrane is 1 × 10 −5.
3. The vegetation method according to claim 2, wherein the solute permeation coefficient B of NaCl is 5 × 10 −4 (cm / s) or more and (g / cm 2 · s · atm) or more.
【請求項4】 水または水蒸気を透過し、水可溶性塩類
を実質上透過しない半透膜が、水蒸気透過膜である請求
項1の植生工法。
4. The vegetation method according to claim 1, wherein the semipermeable membrane that is permeable to water or water vapor and is substantially impermeable to water-soluble salts is a water vapor permeable membrane.
【請求項5】 水蒸気透過膜の水蒸気透過係数が0.5
(g/m2 ・atm ・24hr) 以上であることを特徴とする請求
項4の植生工法。
5. The water vapor permeable membrane has a water vapor transmission coefficient of 0.5.
(g / m 2 · atm · 24 hours) or more, The vegetation method according to claim 4, characterized in that
JP5008165A 1993-01-21 1993-01-21 Method of vegetation with semipermeable membrane Pending JPH06209644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5008165A JPH06209644A (en) 1993-01-21 1993-01-21 Method of vegetation with semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5008165A JPH06209644A (en) 1993-01-21 1993-01-21 Method of vegetation with semipermeable membrane

Publications (1)

Publication Number Publication Date
JPH06209644A true JPH06209644A (en) 1994-08-02

Family

ID=11685726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5008165A Pending JPH06209644A (en) 1993-01-21 1993-01-21 Method of vegetation with semipermeable membrane

Country Status (1)

Country Link
JP (1) JPH06209644A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529866A (en) * 2006-03-16 2009-08-27 デザイン テクノロジー アンド イノベーション リミテッド Irrigation equipment
WO2010008042A1 (en) * 2008-07-16 2010-01-21 メビオール株式会社 Plant cultivation system
JP2010051320A (en) * 1999-08-06 2010-03-11 E I Du Pont De Nemours & Co Method for changing root growth
JP2011051332A (en) * 2009-06-23 2011-03-17 Cmet Inc Optical shaping apparatus and optical shaping method
JP2012115778A (en) * 2010-12-01 2012-06-21 Asahi Kasei Chemicals Corp Method of obtaining purified water, and apparatus for the same
CN109661867A (en) * 2018-12-29 2019-04-23 华北水利水电大学 It combines nested saline-alkali soil treatment method and administers set bucket

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051320A (en) * 1999-08-06 2010-03-11 E I Du Pont De Nemours & Co Method for changing root growth
JP4542200B2 (en) * 1999-08-06 2010-09-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー How to change root growth
JP2009529866A (en) * 2006-03-16 2009-08-27 デザイン テクノロジー アンド イノベーション リミテッド Irrigation equipment
US8336253B2 (en) 2006-03-16 2012-12-25 Design Technology And Innovation Limited Irrigation apparatus
JP2013027400A (en) * 2006-03-16 2013-02-07 Design Technology & Innovation Ltd Irrigation apparatus
WO2010008042A1 (en) * 2008-07-16 2010-01-21 メビオール株式会社 Plant cultivation system
JP2011051332A (en) * 2009-06-23 2011-03-17 Cmet Inc Optical shaping apparatus and optical shaping method
JP2012115778A (en) * 2010-12-01 2012-06-21 Asahi Kasei Chemicals Corp Method of obtaining purified water, and apparatus for the same
CN109661867A (en) * 2018-12-29 2019-04-23 华北水利水电大学 It combines nested saline-alkali soil treatment method and administers set bucket
CN109661867B (en) * 2018-12-29 2024-01-26 华北水利水电大学 Combined sleeve type saline-alkali soil treatment method and treatment sleeve

Similar Documents

Publication Publication Date Title
US20020130078A1 (en) Water purification apparatus
JP2011000585A (en) Water purification apparatus
WO2001010193A1 (en) Method for modifying root growth
EP2003951B1 (en) Irrigation device
CA2378233C (en) Irrigation device
CN101969757A (en) Reverse osmosis irrigation
JPH06209644A (en) Method of vegetation with semipermeable membrane
WO2010008042A1 (en) Plant cultivation system
AU2009201496B2 (en) Water purification apparatus
AU2005247024B2 (en) Water purification apparatus
JPH08154506A (en) Plant-growing sheet, vegetation using the same and plant growing machine.
GB2450029A (en) Irrigation system
JPH0885A (en) Sheet for growth of plant and vegetation work using the same
AU2011253854A1 (en) Water purification apparatus