JPH0620912A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH0620912A
JPH0620912A JP4176880A JP17688092A JPH0620912A JP H0620912 A JPH0620912 A JP H0620912A JP 4176880 A JP4176880 A JP 4176880A JP 17688092 A JP17688092 A JP 17688092A JP H0620912 A JPH0620912 A JP H0620912A
Authority
JP
Japan
Prior art keywords
optical system
focus
projection optical
polarized light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4176880A
Other languages
Japanese (ja)
Other versions
JP3287014B2 (en
Inventor
Yukitaka Masu
崇 舛行
Takechika Nishi
健爾 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP17688092A priority Critical patent/JP3287014B2/en
Publication of JPH0620912A publication Critical patent/JPH0620912A/en
Application granted granted Critical
Publication of JP3287014B2 publication Critical patent/JP3287014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Abstract

PURPOSE:To minimize focal difference in the orthogonal biaxial directions on a substrate generated by the state of the polarized light of illumination light projected to the projection optical system of a projection aligner, and to increase the substantial depth of a focus. CONSTITUTION:A linearly polarized light plate 40 is arranged between a light source 1 and a projection optical system PL. The linearly polarized light plate 40 is rotated, and rotation is stopped at a position, where focal difference in the orthogonal biaxial directions on a substrate in the direction of polarized light is minimized. The substantial depth of a focus is increased through exposure under the state. A circularly polarized light plate 41 is disposed between the projection optical system PL and a wafer W, thus preventing the directional properties of image formation characteristics by the direction of polarized light, then obtaining more excellent image formation characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は投影露光装置に関し、特
に半導体素子或いは液晶基板等の製造用の投影露光装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus, and more particularly to a projection exposure apparatus for manufacturing semiconductor elements or liquid crystal substrates.

【0002】[0002]

【従来の技術】この種の装置では直線偏光の光束で露光
を行うと、偏光方向(P偏光とS偏光)によって感光剤
表面の反射率に差が生じ、投影されるパターンの線幅が
違ってくる。すなわち、直線偏光の光束で露光を行うと
結像特性に方向性が生じる。そこで、従来の装置では円
偏光板もしくは偏光解消板を設けて直線偏光を円偏光若
しくは非偏光とし、感光剤表面の反射率の影響を防止し
ていた。このように偏光特性を円偏光もしくは非偏光と
することにより感光剤表面での反射率の影響は減少す
る。
2. Description of the Related Art In this type of apparatus, when exposure is performed with a linearly polarized light beam, the reflectance of the surface of the photosensitive material differs depending on the polarization direction (P-polarized light and S-polarized light), and the line width of the projected pattern is different. Come on. That is, when exposure is performed with a linearly polarized light beam, the imaging characteristics have a directivity. Therefore, in the conventional device, a circularly polarizing plate or a depolarizing plate is provided to make linearly polarized light circularly polarized light or non-polarized light to prevent the influence of the reflectance of the surface of the photosensitive agent. By making the polarization characteristic circularly polarized or non-polarized in this way, the influence of the reflectance on the surface of the photosensitive agent is reduced.

【0003】[0003]

【発明が解決使用とする課題】上記の如き従来の技術に
よれば、感光剤表面の反射率の影響は減少する。しかし
ながら、上記の如く従来の装置では、投影光学系に入射
する照明光の偏光状態を円偏光もしくは非偏光としても
投影光学系の歪みや収差等の影響により感光基板上の2
次元方向のパターンの互いの線幅に差が生じてしまう。
これは感光基板上の2次元方向(縦方向と横方向)での
焦点位置が異なるためと考えられる。
According to the conventional technique as described above, the influence of the reflectance of the surface of the photosensitizer is reduced. However, as described above, in the conventional apparatus, even if the polarization state of the illumination light incident on the projection optical system is circularly polarized or non-polarized, the distortion on the projection optical system, the aberration, or the like causes the light on the photosensitive substrate to increase.
A difference occurs between the line widths of the patterns in the dimension direction.
It is considered that this is because the focal positions in the two-dimensional direction (vertical direction and horizontal direction) on the photosensitive substrate are different.

【0004】この様子を図5に示す。図10は投影光学
系の視野内の2次元方向(感光基板上の縦方向と横方
向)とで焦点位置が異なることを模式的に示す図であ
る。縦方向の焦点位置fyを示す三角形をΔY、横方向
の焦点位置fxを示す三角形をΔXとし、これら2つの
焦点位置の差をΔZとして示している。また、ここでは
2つの焦点位置と焦点深度との関係を示しており、これ
らの縦方向と横方向での焦点深度を夫々Δfy、Δfx
で示している。実質的な焦点深度はこれらの2つの焦点
深度の重複部分Δf(斜線部)であり、夫々が持つ焦点
深度より小さいものとなる。
This state is shown in FIG. FIG. 10 is a diagram schematically showing that the focal position is different in the two-dimensional direction (vertical direction and horizontal direction on the photosensitive substrate) within the visual field of the projection optical system. The triangle indicating the vertical focus position fy is indicated as ΔY, the triangle indicating the horizontal focus position fx is indicated as ΔX, and the difference between these two focus positions is indicated as ΔZ. Further, here, the relationship between the two focal positions and the focal depths is shown, and the focal depths in the vertical direction and the lateral direction are Δfy and Δfx, respectively.
It shows with. The substantial depth of focus is the overlapping portion Δf (hatched portion) of these two depths of focus, which is smaller than the depth of focus of each of them.

【0005】縦方向と横方向での焦点位置は照明光の偏
光方向と密接な関係があると考えられ、投影光学系の歪
み等と偏光方向との関係により焦点差が生じてしまう。
従って、感光剤による反射率の影響を低減しただけでは
投影光学系の実質的な焦点深度は改善されないという問
題点があった。そこで、本発明は投影光学系の感光基板
上の2次元方向での焦点差を最小とすることにより総合
的な焦点深度を増大させることを目的とする。
The focus positions in the vertical and horizontal directions are considered to have a close relationship with the polarization direction of the illumination light, and a focus difference occurs due to the distortion of the projection optical system and the polarization direction.
Therefore, there is a problem that the substantial depth of focus of the projection optical system cannot be improved only by reducing the influence of the reflectance due to the photosensitive agent. Therefore, it is an object of the present invention to increase the total depth of focus by minimizing the focus difference in the two-dimensional direction on the photosensitive substrate of the projection optical system.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では光源(1)から射出された光で所定のパ
ターン(PA)が形成されたマスク(R)を照明する照
明光学系(6)とパターンを投影光学系(PL)を介し
て感光基板(W)上に結像する投影露光装置において、
光源と投影光学系との間に設けられた偏光状態調整手段
(40)と;偏光状態調整手段を投影光学系の光軸(A
X)と垂直な面内で回転させ、感光基板上の直交する2
軸方向での夫々の焦点位置を相対的に移動させる駆動手
段(33)と;夫々の焦点位置の差を最小とするように
駆動手段を制御する制御手段(32)とを設けた。
In order to solve the above problems, according to the present invention, an illumination optical system for illuminating a mask (R) having a predetermined pattern (PA) formed by light emitted from a light source (1). In a projection exposure apparatus for forming an image of (6) and a pattern on a photosensitive substrate (W) via a projection optical system (PL),
A polarization state adjusting means (40) provided between the light source and the projection optical system; and a polarization state adjusting means for the optical axis (A of the projection optical system.
X) and rotate it in a plane perpendicular to the plane 2
A driving means (33) for relatively moving the respective focal positions in the axial direction and a control means (32) for controlling the driving means so as to minimize the difference between the respective focal positions are provided.

【0007】[0007]

【作用】本発明では、光源と投影光学系との間に直線偏
光板等の偏光状態調整手段を入れ、それを投影光学系の
光軸と垂直な平面内で回転させることにより、感光基板
上の直交する2軸方向(縦方向と横方向)との焦点位置
を相対的に変化させる。そして夫々の焦点位置が最も接
近した位置で直線偏光調整手段の回転を停止し、この位
置で直線偏光調整手段を固定する。夫々の焦点位置が最
も接近しているため、夫々のもつ焦点深度の重複部分が
最も多くなり実質的な焦点深度が拡大する。
According to the present invention, the polarization state adjusting means such as a linear polarizing plate is inserted between the light source and the projection optical system, and the polarization state adjusting means is rotated in a plane perpendicular to the optical axis of the projection optical system. The focus position is relatively changed in the two orthogonal directions (vertical direction and horizontal direction). Then, the rotation of the linear polarization adjusting means is stopped at the positions where the respective focal positions are closest to each other, and the linear polarization adjusting means is fixed at this position. Since the respective focal positions are closest to each other, the overlapping portions of the respective focal depths are the largest and the substantial focal depth is expanded.

【0008】さらに、投影光学系と感光基板との間に円
偏光板等を入れることにより、直線偏光を円偏光(ラン
ダム偏光に近い円偏光)若しくは非偏光に変換し、感光
剤の反射率の違いによる結像特性の方向性をなくし、さ
らに結像性能を改善することができる。
Further, by inserting a circularly polarizing plate or the like between the projection optical system and the photosensitive substrate, linearly polarized light is converted into circularly polarized light (circularly polarized light close to random polarized light) or non-polarized light, and the reflectance of the photosensitive agent It is possible to eliminate the directionality of the imaging characteristic due to the difference and further improve the imaging performance.

【0009】[0009]

【実施例】図1は本発明の一実施例に好適な投影露光装
置の概略図である。図1において超高圧水銀ランプ、エ
キシマレーザ光源等の露光用の照明光源1は、g線、i
線或いは紫外線パルス光(例えばKrFエキシマレーザ
光)などのレジスト層を感光する波長(露光波長)の照
明光ILを発生する。照明光ILは、オプチカルインテ
グレータ(フライアイレンズ)、リレーレンズ、コンデ
ンサーレンズ等を含む照明光学系6に入射する。ミラー
22は通常状態(露光時)では光路から退避しており、
後述するように照明光の偏光状態による投影光学系PL
の結像特性を計測するときのみ光軸上に挿入される。
1 is a schematic view of a projection exposure apparatus suitable for one embodiment of the present invention. In FIG. 1, an illumination light source 1 for exposure such as an ultra-high pressure mercury lamp, an excimer laser light source is a g-line, i
Illumination light IL having a wavelength (exposure wavelength) that sensitizes the resist layer, such as a line or ultraviolet pulse light (for example, KrF excimer laser light), is generated. The illumination light IL enters the illumination optical system 6 including an optical integrator (fly eye lens), a relay lens, a condenser lens, and the like. The mirror 22 is retracted from the optical path in the normal state (during exposure),
As will be described later, the projection optical system PL depending on the polarization state of the illumination light
It is inserted on the optical axis only when measuring the imaging characteristics of.

【0010】照明光学系6において光束の一様化、スペ
ックルの低減化等が行われた照明光ILは、、ミラー7
で反射されてリレーレンズ9a、9b及び可変ブライン
ド10を通った後、ミラー12で垂直に下方に反射され
てメインコンデンサーレンズ13に至り、レチクルRの
パターン領域PAを均一な照度で照明する。可変ブライ
ンド10の面はレチクルRと共役な面にあり、駆動モー
タ11により可変ブラインド10を構成する可動ブレー
ドを開閉させて開口形状を変えることによって、レチク
ルRの照明視野を任意に選択することができる。
Illumination light IL that has been made uniform in luminous flux and reduced in speckles in illumination optical system 6 is reflected by mirror 7
After passing through the relay lenses 9a and 9b and the variable blind 10, the light is reflected vertically downward by the mirror 12 and reaches the main condenser lens 13 to illuminate the pattern area PA of the reticle R with uniform illuminance. The surface of the variable blind 10 is a surface conjugate with the reticle R, and the illumination field of the reticle R can be arbitrarily selected by opening and closing the movable blade that constitutes the variable blind 10 by the drive motor 11 to change the opening shape. it can.

【0011】レチクルRは投影光学系PLの光軸AXに
対して垂直な平面(水平面)内で2次元移動可能なレチ
クルステージRS上に載置され、パターン領域PAの中
心点が光軸AXと一致するように位置決めされる。レチ
クルRの所期設定は、レチクル周辺のアライメントマー
ク(不図示)を光電検出するレチクルアライメント系R
Aからのマーク検出信号に基づいて、レチクルステージ
RSを微動することにより行われる。レチクルRは不図
示のレチクル交換器により適宜交換されて使用される。
パターン領域PAを通過した照明光ILは、直線偏光板
40を介して両側テレセントリックな投影光学系PLに
入射する。
The reticle R is mounted on a reticle stage RS which can be two-dimensionally moved in a plane (horizontal plane) perpendicular to the optical axis AX of the projection optical system PL, and the center point of the pattern area PA is the optical axis AX. Positioned to match. The reticle R is initially set by a reticle alignment system R that photoelectrically detects an alignment mark (not shown) around the reticle.
This is performed by finely moving the reticle stage RS based on the mark detection signal from A. The reticle R is used after being appropriately replaced by a reticle exchanger (not shown).
The illumination light IL that has passed through the pattern area PA enters the projection optical system PL that is telecentric on both sides via the linear polarization plate 40.

【0012】直線偏光板40はレチクルRと投影光学系
PLとの間の空間に配置され、レチクルRを通過した照
明光ILの偏光方向を一方向に揃える。直線偏光板40
はモータやギヤ等の駆動装置33により光軸AXと垂直
な平面内で回転可能である。また駆動装置33にはロー
タリーエンコーダ等の回転角検出手段が設けられてお
り、直線偏光板40の回転位置を検出可能となってい
る。この直線偏光板40はウエハWの直交する2軸方向
(基準X方向、基準Y方向)での夫々の焦点位置を変更
可能となっている。すなわち、基準X軸方向での焦点位
置と基準Y方向での焦点位置との相対的位置を変更する
ことができ、理想的にはX方向とY方向での焦点位置が
ほぼ一致するように回転される。また、駆動装置33は
直線偏光板40を光路から退出入させることが可能とな
っている。
The linear polarizing plate 40 is arranged in the space between the reticle R and the projection optical system PL, and aligns the polarization direction of the illumination light IL passing through the reticle R in one direction. Linear polarizing plate 40
Can be rotated in a plane perpendicular to the optical axis AX by a driving device 33 such as a motor or a gear. Further, the drive device 33 is provided with a rotation angle detection means such as a rotary encoder, and can detect the rotation position of the linear polarizing plate 40. The linear polarizing plate 40 is capable of changing the respective focal positions of the wafer W in two orthogonal directions (reference X direction and reference Y direction). That is, the relative position between the focus position in the reference X-axis direction and the focus position in the reference Y direction can be changed, and ideally, the rotation is performed so that the focus positions in the X direction and the Y direction substantially match. To be done. Further, the driving device 33 can move the linear polarizing plate 40 in and out of the optical path.

【0013】本実施例では直線偏光板40の偏光方向に
関する情報(回転角等)はコンソール等の入力手段42
により制御手段32に入力される。そして制御手段32
は、この情報に基づいて直線偏光板40を回転し、偏光
方向が最適となる位置で回転を停止する。そして、その
偏光方向を維持するように駆動手段33を制御する。直
線偏光板40によりX方向とY方向の焦点位置が調整さ
れた照明光ILは投影光学系PLを介してλ/4板等の
円偏光板41に達する。照明光ILは円偏光板41で偏
光され、ほぼランダム偏光に近い形の円偏光もしくは非
偏光でウエハWに達する。投影光学系PLはレチクルR
の回路パターンの像を表面にレジスト層が形成され、そ
の表面が結像面とほぼ一致するように保持されたウェハ
W上の1つのショット領域に重合わせて投影(結像)す
る。ウェハWは駆動モータ17により光軸AX方向(Z
方向)に微動可能なZステージ14上に載置されてい
る。Zステージ14は駆動モータ18により2次元移動
可能なXYステージ15上に載置され、XYステージ1
5はウェハWの1つのショット領域に対するレチクルR
の転写が終了すると、ウェハ上の次の領域が投影光学系
PLの露光領域と一致するまで移動される。XYステー
ジ15の2次元的な位置は干渉計19によって、例えば
0.01μm程度の分解能で常時検出される。そのた
め、Zステージ14の端部には干渉計19からのレーザ
光を反射する移動鏡14mが設けられている。干渉計1
9と移動鏡14mはX方向とY方向の位置検出用として
一対づつ設けられている。
In the present embodiment, information about the polarization direction of the linear polarizing plate 40 (rotation angle etc.) is input by an input means 42 such as a console.
Is input to the control means 32. And the control means 32
Rotates the linear polarizing plate 40 based on this information and stops the rotation at the position where the polarization direction is optimum. Then, the driving means 33 is controlled so as to maintain the polarization direction. The illumination light IL whose focal position in the X direction and the Y direction is adjusted by the linear polarization plate 40 reaches the circular polarization plate 41 such as a λ / 4 plate via the projection optical system PL. The illumination light IL is polarized by the circularly polarizing plate 41 and reaches the wafer W as circularly polarized light or non-polarized light having a shape close to random polarization. The projection optical system PL is a reticle R
An image of the circuit pattern is formed on a surface of which a resist layer is formed, and is projected (imaged) so as to be superposed on one shot area on the wafer W held so as to be substantially coincident with the image plane. The wafer W is moved by the drive motor 17 in the optical axis AX direction (Z
Mounted on a Z stage 14 that can be moved in the direction). The Z stage 14 is mounted on the XY stage 15 which can be two-dimensionally moved by the drive motor 18, and the XY stage 1
5 is a reticle R for one shot area of the wafer W
When the transfer of is completed, the next area on the wafer is moved until it coincides with the exposure area of the projection optical system PL. The two-dimensional position of the XY stage 15 is constantly detected by the interferometer 19 with a resolution of, for example, about 0.01 μm. Therefore, a movable mirror 14m that reflects the laser light from the interferometer 19 is provided at the end of the Z stage 14. Interferometer 1
9 and the movable mirror 14m are provided in pairs for position detection in the X and Y directions.

【0014】Zステージ14上にはまた、投影光学系P
Lの結像特性を測定する際に用いられる基準部材20が
設けられている。基準部材20には、図3に示すように
投影光学系PLの露光領域(イメージフィールドIF)
の中心部の1カ所と周辺部の4カ所に対応する位置に、
図2に示す格子パターンが設けられた5つの開口パター
ン21a〜21eが設けられている。図3において、半
径rの円領域IFは投影光学系PLの最大露光領域を示
し、この円に内接する正方形は実際にウエハを露光でき
る最大チップ領域を示している。図2において、黒地が
遮光部、白地が透光部である。図3において、各格子パ
ターンはX軸に対して45度の傾きを持っている。本実
施例中、開口パターン21a〜21eを開口21と総称
する。開口21はその下方から計測照明系LLによって
照明されている。
On the Z stage 14, a projection optical system P is also provided.
A reference member 20 used when measuring the imaging characteristics of L is provided. As shown in FIG. 3, the reference member 20 has an exposure area (image field IF) of the projection optical system PL.
At the position corresponding to 1 place in the center and 4 places in the periphery,
Five opening patterns 21a to 21e provided with the lattice pattern shown in FIG. 2 are provided. In FIG. 3, a circular area IF having a radius r indicates the maximum exposure area of the projection optical system PL, and a square inscribed in this circle indicates the maximum chip area where the wafer can be actually exposed. In FIG. 2, the black background is the light shielding portion and the white background is the light transmitting portion. In FIG. 3, each lattice pattern has an inclination of 45 degrees with respect to the X axis. In this embodiment, the opening patterns 21a to 21e are collectively called the opening 21. The opening 21 is illuminated from below by the measurement illumination system LL.

【0015】計測照明系LLは照明光ILの光路中に不
図示の駆動装置によって挿入されるミラー22、ハーフ
ミラー23とレンズ24と光ファイバ25とレンズ26
及びミラー27とから成り、照明光ILをウエハステー
ジ15内に導く。開口21から射出された照明光ILは
投影光学系PLを介してレチクルRに達し、その裏面に
よって反射され、再び投影光学系PLを介して開口21
に戻る。この反射光は開口21を透過した後、ミラー2
7、レンズ26、ファイバー25、レンズ24、ハーフ
ミラー23を介してフォトマル、SPD等で構成される
光電検出器28に入射し、光電検出器28で光電変換さ
れて電気信号として出力される。ここで、図示は省略し
ているが、5つの開口21a〜21eをそれぞれ個別に
照明し、反射光を個別に受光するように構成されてい
る。
The measurement illumination system LL includes a mirror 22, a half mirror 23, a lens 24, an optical fiber 25 and a lens 26 which are inserted into the optical path of the illumination light IL by a driving device (not shown).
And the mirror 27, and guides the illumination light IL into the wafer stage 15. The illumination light IL emitted from the opening 21 reaches the reticle R via the projection optical system PL, is reflected by the back surface of the reticle R, and is again opened via the projection optical system PL.
Return to. This reflected light passes through the opening 21 and then the mirror 2
The light enters the photoelectric detector 28 including a photomultiplier, SPD, etc. through the lens 7, the lens 26, the fiber 25, the lens 24, and the half mirror 23, is photoelectrically converted by the photoelectric detector 28, and is output as an electric signal. Here, although not shown, the five openings 21a to 21e are individually illuminated and the reflected light is individually received.

【0016】図1において、符号29は斜入射式検出光
学系(焦点検出系)であり、例えば特公平2−1036
1号公報に開示されている。この焦点検出系29は、ウ
エハ表面の投影光学系PLの最良結像面に対する上下方
向(Z方向)の位置を検出する。焦点検出系29は、光
軸AXに対して斜め方向からウエハ表面に入射する照明
光を射出する光源29aとウエハ表面での反射光を受光
する受光光学系29bとを有する。尚、本実施例では設
計上の最良結像面が零点基準となるように、予め受光光
学系29bの内部に設けられた不図示の平行平板ガラス
(プレーンパラレル)の角度が調整される。すなわち、
焦点検出系29のキャリブレーションが行われる。そし
て基準部材20を用いて、投影光学系PLのベストフォ
ーカス位置を求める。レチクルRがレチクルステージR
Sに載置された状態で、干渉計19でXYステージ15
の位置をモニターしながら、基準部材20上の開口21
の中心が投影光学系PLの光軸AX上に来るようにXY
ステージ15をモータ18で移動する。このとき同時に
モータ17を駆動して、Zステージ14を投影光学系P
Lのベストフォーカス位置と思われる位置(設計値)か
らその焦点深度(±DOF)の数倍(例えば2・DO
F)程度下げる(或いは上げる)。また同時に、ミラー
22を光路中に移動させて開口21に照明光ILを導
き、開口21の特定パターン及び投影光学系PLを介し
てレチクルRの裏面(パターン面)を照明する。レチク
ルRから反射した照明光は再び投影光学系PL、開口2
1を通った後、ミラー27、レンズ26、光ファイバ2
5、レンズ24及びハーフミラー23を介して光電検出
器28に入射する。その後、この状態でZステージ14
をモータ17によって上方(或いは下方)に先のZステ
ージの移動量(2・DOF)の2倍程度走査する。この
とき光電検出器28の出力(すなわち、開口21を通過
した反射光の強度に応じた光電信号)とZステージ14
の位置に対応している焦点検出系29の出力を同時にサ
ンプリングして図4のような情報が得られる。光電検出
器28の出力は図4のように山型の波形形状となり、そ
の頂点での焦点検出系29の出力値がfである。サンプ
リングは例えばZステージ14の単位移動量(例えば
0.02μm)毎、或いは単位時間毎に行えばよい。
In FIG. 1, reference numeral 29 is an oblique incidence type detection optical system (focus detection system), for example, Japanese Patent Publication No. 2-1036.
It is disclosed in Japanese Patent Publication No. The focus detection system 29 detects the position of the wafer surface in the vertical direction (Z direction) with respect to the best image plane of the projection optical system PL. The focus detection system 29 includes a light source 29a that emits illumination light that is incident on the wafer surface from an oblique direction with respect to the optical axis AX, and a light receiving optical system 29b that receives light reflected by the wafer surface. In this embodiment, the angle of the parallel flat glass (plane parallel) (not shown) provided in advance inside the light receiving optical system 29b is adjusted so that the best designed image plane becomes the zero point reference. That is,
The focus detection system 29 is calibrated. Then, using the reference member 20, the best focus position of the projection optical system PL is obtained. Reticle R is Reticle Stage R
The XY stage 15 is moved by the interferometer 19 while being mounted on the S.
Of the opening 21 on the reference member 20 while monitoring the position of
XY so that the center of is on the optical axis AX of the projection optical system PL.
The stage 15 is moved by the motor 18. At this time, the motor 17 is simultaneously driven to move the Z stage 14 to the projection optical system P.
Several times the depth of focus (± DOF) from the position (design value) that is considered to be the best focus position of L (for example, 2 · DO)
F) Lower (or raise) about. At the same time, the mirror 22 is moved into the optical path to guide the illumination light IL to the opening 21, and the back surface (pattern surface) of the reticle R is illuminated via the specific pattern of the opening 21 and the projection optical system PL. The illumination light reflected from the reticle R is again projected onto the projection optical system PL and the aperture 2
After passing through 1, mirror 27, lens 26, optical fiber 2
5, incident on the photoelectric detector 28 via the lens 24 and the half mirror 23. Then, in this state, Z stage 14
The motor 17 scans upwards (or downwards) about twice the moving amount (2 · DOF) of the Z stage. At this time, the output of the photoelectric detector 28 (that is, the photoelectric signal corresponding to the intensity of the reflected light that has passed through the opening 21) and the Z stage 14
The outputs of the focus detection system 29 corresponding to the positions of are simultaneously sampled to obtain information as shown in FIG. The output of the photoelectric detector 28 has a mountain-shaped waveform shape as shown in FIG. 4, and the output value of the focus detection system 29 at the apex is f. The sampling may be performed, for example, for each unit movement amount (for example, 0.02 μm) of the Z stage 14 or for each unit time.

【0017】図4のような関係が得られるのは、開口2
1がレチクルRと共役な位置にあれば開口21から出射
した照明光はレチクルRに鮮明な像を形成する。このた
め、その反射光が開口21を入射するとき、格子パター
ンの鮮明な像を形成する。その反射光が開口21を通過
するとき、遮光部が遮光される反射光がほとんどなく、
デフォーカスのときと比較して光電検出器28の受光光
量が増大する。従って、図4において、光電検出器28
のピーク出力時に焦点検出器29で得られた出力値fが
投影光学系PLの最適焦点位置(ベストフォーカス位
置)となる。主制御系32は光電検出器28の出力から
そのピーク値を求め、その時の焦点検出系29の出力値
から焦点位置を求める。本実施例では開口21は5つの
開口部から構成されており、5つの焦点位置の平均値を
ベストフォーカス位置としている。尚、夫々の開口部か
らの反射光を個別に受光可能であるため、Zステージ1
4の移動は1回でよい。ベストフォーカス位置が求まっ
たら、前述の設計上のベストフォーカス位置と比較し、
その差を焦点検出系29にオフセットとして加える。こ
のオフセットは前述の平行平板ガラスを駆動してもよい
し、電気的にオフセットを加えるだけでもよい。また、
Zステージ14上には、ウエハW上に塗布された感光剤
の表面とほぼ等しい面上に受光面を有する照射量モニタ
43が設けられている。照射量モニタ43はウエハWに
達する照明光の照度を検出可能である。
The relationship as shown in FIG. 4 is obtained by the opening 2
If 1 is at a position conjugate with the reticle R, the illumination light emitted from the aperture 21 forms a clear image on the reticle R. Therefore, when the reflected light enters the opening 21, a clear image of the lattice pattern is formed. When the reflected light passes through the opening 21, almost no reflected light is blocked by the light blocking portion,
The amount of light received by the photoelectric detector 28 increases as compared with the case of defocusing. Therefore, in FIG. 4, the photoelectric detector 28
The output value f obtained by the focus detector 29 at the peak output of becomes the optimum focus position (best focus position) of the projection optical system PL. The main control system 32 obtains the peak value from the output of the photoelectric detector 28, and obtains the focus position from the output value of the focus detection system 29 at that time. In this embodiment, the opening 21 is composed of five openings, and the average value of the five focus positions is the best focus position. Since the reflected light from each opening can be individually received, the Z stage 1
4 moves only once. If the best focus position is found, compare it with the best focus position in the design above,
The difference is added to the focus detection system 29 as an offset. This offset may drive the above-mentioned parallel plate glass, or may only add the offset electrically. Also,
An irradiation amount monitor 43 having a light receiving surface on a surface substantially equal to the surface of the photosensitizer applied on the wafer W is provided on the Z stage 14. The irradiation amount monitor 43 can detect the illuminance of the illumination light reaching the wafer W.

【0018】さて、投影光学系PLと直線偏光板40の
最適な偏光方向(回転角)に関する情報は、図5に示す
ようなテストレチクルを用いて試し焼きを行うことによ
り求められる。テストレチクルにはX、Y方向で線幅の
等しいテストパターンが設けられている。図6は直線偏
光板40を所定角度毎(例えば10度毎に)に回転させ
ながら、図5のX、Yパターンを用いて試し焼きを行っ
た時のレジスト像を示す図である。図6(a)はX方向
の焦点位置がベストフォーカスとなっている場合を示
し、図6(b)X、Y両方向での焦点位置がほぼ一致し
た場合(X方向のパターンの線幅とY方向のパターンの
線幅とがほぼ等しくなった場合)を示し、図6(c)は
Y方向でベストフォーカスとなっている場合を示してい
る。従って、図6(b)のようにX、Y両方向での焦点
位置がほぼ一致したときの直線偏光板40の回転角を入
力手段42により入力すればよい。
Information about the optimum polarization directions (rotation angles) of the projection optical system PL and the linear polarizing plate 40 can be obtained by performing a test print using a test reticle as shown in FIG. The test reticle is provided with test patterns having the same line width in the X and Y directions. FIG. 6 is a view showing a resist image when trial baking is performed using the X and Y patterns of FIG. 5 while rotating the linear polarizing plate 40 at every predetermined angle (for example, every 10 degrees). FIG. 6A shows the case where the focus position in the X direction is the best focus, and FIG. 6B shows the case where the focus positions in both the X and Y directions are substantially the same (the line width of the pattern in the X direction and the Y direction). Direction line width of the pattern becomes almost equal), and FIG. 6C shows a case where the best focus is obtained in the Y direction. Therefore, as shown in FIG. 6B, the rotation angle of the linear polarizing plate 40 when the focal positions in both the X and Y directions are substantially the same may be input by the input means 42.

【0019】ここで、投影光学系に入射する光束の偏光
方向を変化させることにより、感光基板上の直交する2
軸方向(XY方向)の焦点位置が異なることを図7を参
照して概念的に説明する。図7において感光基板上には
基準座標軸(Y軸、X軸)が予め定めされているものと
する。図7は所定の偏光方向での感光基板上のXY方向
での焦点位置(fx、fy)、焦点差(ΔZ)、焦点深
度(Δfx、Δfy)及び実質的な焦点深度(Δfx
y)を示している。尚、図7において使用する符号は図
10と同様の内容には同様の符号を付してある。
Here, by changing the polarization direction of the light beam incident on the projection optical system, two orthogonal light beams are formed on the photosensitive substrate.
The fact that the focal positions in the axial directions (XY directions) are different will be conceptually described with reference to FIG. In FIG. 7, it is assumed that reference coordinate axes (Y axis, X axis) are predetermined on the photosensitive substrate. FIG. 7 shows the focal position (fx, fy), the focal difference (ΔZ), the focal depth (Δfx, Δfy), and the substantial focal depth (Δfx) in the XY directions on the photosensitive substrate in a predetermined polarization direction.
y) is shown. The reference numerals used in FIG. 7 are the same as those in FIG. 10, and the same reference numerals are given.

【0020】図7(a)はX方向の焦点位置fxaとY
方向の焦点位置fyaとに焦点差ΔZaが生じており、
夫々の焦点深度Δfxa、Δfyaの重複部分となる実
質的な焦点深度Δfxyが小さい場合を示している。図
7(b)は図7(a)のような焦点位置となる直線偏光
板40の偏光方向(例えばY方向と一致した方向)から
所定角度だけ回転させた偏光方向(例えばX方向と一致
した方向)での焦点位置の様子を示したものである。こ
の場合にも、X方向の焦点位置fxbとY方向の焦点位
置fybとに焦点差ΔZbが生じており、夫々の焦点深
度Δfxb、Δfybの重複部分となる実質的な焦点深
度Δfxyは小さい。
FIG. 7A shows a focus position fxa in the X direction and Y.
A focal difference ΔZa is generated between the focal point position fya in the direction,
It shows a case where the substantial depth of focus Δfxy, which is the overlapping portion of the respective depths of focus Δfxa and Δfya, is small. FIG. 7B shows a polarization direction rotated by a predetermined angle from the polarization direction of the linear polarizing plate 40 at the focal point position shown in FIG. It shows the state of the focus position in the (direction). Also in this case, a focus difference ΔZb is generated between the focus position fxb in the X direction and the focus position fyb in the Y direction, and the substantial depth of focus Δfxy that is the overlapping portion of the respective focus depths Δfxb and Δfyb is small.

【0021】このように偏光方向によりX、Y方向の焦
点差が生じるのは、投影光学系の歪み等の影響により投
影光学系の分光特性が偏光方向によって異なる。このた
め、X、Y方向で屈折率に差が生じ、その結果として焦
点位置に差が生じると考えられる。そこで、直線偏光板
40の偏光方向を図7(a)と図7(b)の間に設定す
る(例えばX方向に対して0度から±90度未満の角度
に設定する)ことにより、図7(c)に示すようにX、
Y方向の焦点差が小さくなると考えられる。図7(c)
において、X方向の焦点位置fxcとY方向の焦点位置
fycとの焦点差ΔZcは小さく、夫々の焦点深度Δf
xb、Δfybの重複部分となる実質的な焦点深度Δf
xyは増大する。
The difference in focus between the X and Y directions depending on the polarization direction is that the spectral characteristics of the projection optical system differ depending on the polarization direction due to the influence of distortion of the projection optical system. Therefore, it is considered that a difference occurs in the refractive index in the X and Y directions, and as a result, a difference occurs in the focal position. Therefore, by setting the polarization direction of the linear polarizing plate 40 between FIG. 7 (a) and FIG. 7 (b) (for example, an angle of 0 ° to less than ± 90 ° with respect to the X direction), X as shown in 7 (c),
It is considered that the focus difference in the Y direction becomes smaller. Figure 7 (c)
, The focus difference ΔZc between the X-direction focus position fxc and the Y-direction focus position fyc is small, and the respective focus depths Δf.
Substantial depth of focus Δf, which is the overlapping portion of xb and Δfyb
xy increases.

【0022】次に図5のテストレチクルを用いて直線偏
光板40を最適な偏光方向となるように設定する動作に
ついて説明する。先ず、直線偏光板40を駆動手段33
により光路中から退避させる。次に前述の基準部材20
を使ったベストフォーカス検出により、ベストフォーカ
ス位置を求める。次に焦点検出系29の出力に基づいて
テスト用のウエハWの表面がベストフォーカス位置とな
るようにZステージ14を移動する。そして直線偏光板
40を光路中に挿入し、Zステージ14を所定移動単位
で変化させる毎に露光を行う。XYステージ15はZス
テージ14の所定移動単位(例えば0.2μm)で行わ
れる露光が終わる毎にステップ移動される。Zステージ
14の移動はベストフォーカス位置を中心として例えば
焦点深度(Δfx、Δfy)程度の範囲で上下に移動さ
せる。焦点深度が±1μmだとすると10回の露光がス
テップアンドリピートで行われる。そして、直線偏光板
40を所定の基準位置から所定角度(例えば10度)回
転する毎にZステージ14の移動とXYステージ15の
ステップ移動とで行われる露光を繰り返す。この試し焼
きの結果からXY両方の方向での線幅差が最も小さくな
る場合であって、かつ焦点深度が大きくなる直線偏光板
40の角度を求める。
Next, the operation of setting the linear polarizing plate 40 so as to have the optimum polarization direction using the test reticle shown in FIG. 5 will be described. First, the linear polarization plate 40 is driven by the driving means 33.
To retract from the optical path. Next, the above-mentioned reference member 20
The best focus position is obtained by the best focus detection using. Next, based on the output of the focus detection system 29, the Z stage 14 is moved so that the surface of the test wafer W is at the best focus position. Then, the linear polarizing plate 40 is inserted into the optical path, and the exposure is performed every time the Z stage 14 is changed by a predetermined movement unit. The XY stage 15 is moved stepwise every time the exposure performed in a predetermined movement unit (for example, 0.2 μm) of the Z stage 14 is completed. The Z stage 14 is moved up and down around the best focus position within a range of, for example, a depth of focus (Δfx, Δfy). If the depth of focus is ± 1 μm, exposure is performed 10 times in step and repeat. Then, every time the linearly polarizing plate 40 is rotated by a predetermined angle (for example, 10 degrees) from a predetermined reference position, the exposure performed by the movement of the Z stage 14 and the step movement of the XY stage 15 is repeated. From the result of this trial baking, the angle of the linear polarizing plate 40 in which the line width difference in both the XY directions is the smallest and the depth of focus becomes large is obtained.

【0023】そして、実際の露光時にこの角度情報は入
力手段42により入力され、最適な偏光方向で露光が実
行され、焦点深度が拡大する。さらに、本実施例では円
偏光板41を設けたことによりウエハWに塗布された感
光剤の反射率の影響による結像特性の方向性を低減させ
ており、さらに良好な露光が実現される。このとき、直
線偏光板40の回転により円偏光板41を通過する光量
に損失が生じる場合は、円偏光板41を光軸AXと垂直
な面内で回転可能とし、光量損失が最も少ないところで
回転を止めるようにすればよい。光量は照度モニタ43
を用いて検出する。
At the time of actual exposure, this angle information is input by the input means 42, the exposure is executed in the optimum polarization direction, and the depth of focus is expanded. Further, in this embodiment, the circularly polarizing plate 41 is provided to reduce the directionality of the image forming characteristics due to the influence of the reflectance of the photosensitizer applied to the wafer W, so that even better exposure is realized. At this time, if the amount of light passing through the circularly polarizing plate 41 is lost due to the rotation of the linear polarizing plate 40, the circularly polarizing plate 41 can be rotated in a plane perpendicular to the optical axis AX, and rotated at a position where the amount of light loss is the smallest. Should be stopped. Illuminance monitor 43
To detect.

【0024】次に本発明の第2の実施例について説明す
る。本実施例では試し焼きを行わずに、直線偏光板40
を回転させ、所定角度毎に第1の実施例で説明した光電
検出器28と焦点検出系29とを用いた焦点位置計測法
でX方向の焦点位置とY方向との焦点位置とを計測し、
2つの焦点差が最小となる位置で直線偏光板40を停
止、固定させるものである。
Next, a second embodiment of the present invention will be described. In this embodiment, the linear polarizing plate 40 is not subjected to trial baking.
Is rotated, and the focus position in the X direction and the focus position in the Y direction are measured for each predetermined angle by the focus position measuring method using the photoelectric detector 28 and the focus detection system 29 described in the first embodiment. ,
The linear polarizing plate 40 is stopped and fixed at a position where the two focus differences are minimized.

【0025】本実施例では基準部材20には、図8に示
すようにX方向の格子パターンとY方向の格子パターン
とを一対とする5組の開口パターン21ay、21ax
〜21ey、21exが設けられている。図8におい
て、添字y付の開口パターン21ay〜21eyは投影
光学系PLのY方向の焦点位置を測定するためのもの、
添字x付の開口パターン21ax〜21exは、投影光
学系PLのX方向の焦点位置を測定するためのものであ
る。本実施例では一対の開口パターン21ay、21a
x〜21eyを開口21と総称する。ここで、図示は省
略しているが、5組の開口21ay、21ax〜21e
yをそれぞれ個別に照明し、レチクルRからの反射光を
個別に受光するように構成されている。このため、第1
の実施例と同様にZステージ14の移動は1回でよい。
In this embodiment, the reference member 20 has five sets of opening patterns 21ay, 21ax each having a pair of a grid pattern in the X direction and a grid pattern in the Y direction as shown in FIG.
21 ey and 21 ex are provided. In FIG. 8, the opening patterns 21ay to 21ey with the subscript y are for measuring the focus position of the projection optical system PL in the Y direction,
The opening patterns 21ax to 21ex with the subscript x are for measuring the focus position of the projection optical system PL in the X direction. In this embodiment, a pair of opening patterns 21ay, 21a
The x to 21 ey are collectively referred to as the opening 21. Here, although illustration is omitted, five sets of openings 21ay, 21ax to 21e are provided.
y is individually illuminated, and the reflected light from the reticle R is individually received. Therefore, the first
The Z stage 14 need only be moved once, as in the embodiment of FIG.

【0026】これらの開口21について第1の実施例と
同様にして焦点位置の計測を行うことにより図9のよう
に夫々の開口パターン21ax〜21eyの焦点位置が
求まる。本実施例では計10個の開口パターンを透過し
たレチクルRからの反射光を個別に受光しているので、
計10回の計測を行っている。Zステージ14を第1の
実施例のように±焦点深度程度だけ所定移動量単位毎に
移動し、各位置毎に焦点位置の計測を行い、焦点位置を
制御系32内に記憶する。この動作を直線偏光板40を
所定角度(例えば10度)回転する毎に行う。そして、
夫々の開口パターンについてX方向の焦点位置とY方向
の焦点位置との偏差量が最小となる回転角を求める。こ
の回転角で直線偏光板40の位置を維持したまま露光を
行うことにより焦点深度が増大する。
The focus positions of these openings 21 are obtained by measuring the focus positions in the same manner as in the first embodiment, as shown in FIG. In this embodiment, since the reflected light from the reticle R that has passed through a total of 10 aperture patterns is individually received,
Measurement is performed 10 times in total. As in the first embodiment, the Z stage 14 is moved by about ± focus depth for each predetermined movement amount unit, the focus position is measured at each position, and the focus position is stored in the control system 32. This operation is performed every time the linearly polarizing plate 40 is rotated by a predetermined angle (for example, 10 degrees). And
The rotation angle at which the amount of deviation between the focus position in the X direction and the focus position in the Y direction is minimized for each aperture pattern is obtained. By performing exposure while maintaining the position of the linearly polarizing plate 40 at this rotation angle, the depth of focus increases.

【0027】本発明は以上の実施例に限定されるもので
はなく、直線偏光板40は光源1から投影光学系PLと
の間の空間中のどこに配置してもよい。また、偏光状態
を調整する方法は直線偏光の方向を変えることに限定さ
れるものではなく、投影光学系PLに入射する光束を直
線偏光以外とし、偏光状態を変えることにより焦点差を
調整するようにしてもよい。これは例えば円偏光を入射
させた場合、その偏光状態を楕円状とし、その形状を変
えることにより調整することも考えられる。
The present invention is not limited to the above embodiment, and the linear polarizing plate 40 may be arranged anywhere in the space between the light source 1 and the projection optical system PL. Further, the method of adjusting the polarization state is not limited to changing the direction of the linearly polarized light, and the light flux incident on the projection optical system PL is made to be other than the linearly polarized light, and the focus difference is adjusted by changing the polarization state. You may For example, when circularly polarized light is made incident, the polarization state may be changed to an elliptical shape, and the shape may be changed to adjust.

【0028】さらに、光源1は直線偏光や円偏光の光を
射出するものでもよく、また、ランダム偏光の光を射出
するものでもよい。
Further, the light source 1 may emit linearly polarized light or circularly polarized light, or may emit random polarized light.

【0029】[0029]

【効果】以上のように本発明によれば、偏光状態を調整
する手段を設けるという簡単な構成により実質的な焦点
深度を拡大することができる。また、偏光の影響による
結像特性の低下を低減させることができ、結像特性の方
向性が減少する。
As described above, according to the present invention, the substantial depth of focus can be increased by a simple structure in which a means for adjusting the polarization state is provided. Further, it is possible to reduce the deterioration of the image forming characteristic due to the influence of the polarized light, and the directionality of the image forming characteristic is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に好適な投影露光装置の概略
図である。
FIG. 1 is a schematic diagram of a projection exposure apparatus suitable for an embodiment of the present invention.

【図2】本発明の一実施例による開口21に設けられた
格子パターンを示す図である。
FIG. 2 is a diagram showing a grid pattern provided in an opening 21 according to an embodiment of the present invention.

【図3】本発明の一実施例による基準部材20の構成を
説明する図である。
FIG. 3 is a diagram illustrating a configuration of a reference member 20 according to an embodiment of the present invention.

【図4】本発明の一実施例による開口21を通過する光
による光検出器28の出力と焦点検出系29の出力との
関係を示す図である。
FIG. 4 is a diagram showing a relationship between an output of a photodetector 28 and an output of a focus detection system 29 according to light passing through an opening 21 according to an embodiment of the present invention.

【図5】本発明の一実施例によるテストレチクルを示す
図である。
FIG. 5 is a diagram showing a test reticle according to an embodiment of the present invention.

【図6】本発明の一実施例により図5のテストレチクル
を用いて露光を行った場合のレジスト像を示す図であ
る。
FIG. 6 is a diagram showing a resist image when exposure is performed using the test reticle of FIG. 5 according to an embodiment of the present invention.

【図7】偏光方向の違いによりXY方向で焦点位置が異
なることを説明する概念図である。
FIG. 7 is a conceptual diagram illustrating that the focal position differs in the XY directions due to the difference in the polarization direction.

【図8】本発明の第2の実施例による開口21に設けら
れた格子パターンを示す図である。
FIG. 8 is a diagram showing a grid pattern provided in an opening 21 according to a second embodiment of the present invention.

【図9】図8の格子パターンの夫々を通過した光による
光検出器28の出力と焦点検出系29の出力との関係を
示す図である。
9 is a diagram showing a relationship between an output of a photodetector 28 and an output of a focus detection system 29 due to light that has passed through each of the grating patterns of FIG.

【図10】従来の装置によるXY方向で焦点位置が異な
ることを説明する概念図である。
FIG. 10 is a conceptual diagram explaining that the focal position differs in the XY directions by the conventional device.

【符号の説明】 1…光源 6…照明光学系 14…Zステージ 15…XYステージ 20…基準部材 21…開口パターン 28…光電検出器 29…焦点検出系 32…主制御系 33…駆動装置 40…直線偏光板 41…円偏光板 42…入力手段 43…照度モニタ R…レチクル W…ウエハ PL…投影光学系[Explanation of Codes] 1 ... Light source 6 ... Illumination optical system 14 ... Z stage 15 ... XY stage 20 ... Reference member 21 ... Aperture pattern 28 ... Photoelectric detector 29 ... Focus detection system 32 ... Main control system 33 ... Driving device 40 ... Linear polarization plate 41 ... Circular polarization plate 42 ... Input means 43 ... Illuminance monitor R ... Reticle W ... Wafer PL ... Projection optical system

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光源から射出された光で所定のパターンが
形成されたマスクを照明する照明光学系と前記パターン
を投影光学系を介して感光基板上に結像する投影露光装
置において、 前記光源と前記投影光学系との間に設けられた偏光状態
調整手段と;前記偏光状態調整手段を前記投影光学系の
光軸と垂直な面内で回転させ、前記感光基板上の直交す
る2軸方向での夫々の焦点位置を相対的に移動させる駆
動手段と;前記夫々の焦点位置の差を最小とするように
前記駆動手段を制御する制御手段とを有することを特徴
とする投影露光装置。
1. An illumination optical system for illuminating a mask on which a predetermined pattern is formed by light emitted from a light source, and a projection exposure apparatus for forming an image of the pattern on a photosensitive substrate through a projection optical system. And a polarization state adjusting means provided between the projection optical system and the projection optical system; the polarization state adjusting means is rotated in a plane perpendicular to the optical axis of the projection optical system, and the two orthogonal directions on the photosensitive substrate. 2. A projection exposure apparatus, comprising: a driving unit that relatively moves the respective focal positions in the above item; and a control unit that controls the driving unit so as to minimize the difference between the respective focal positions.
【請求項2】前記投影光学系と前記感光基板との間に円
偏光板もしくは偏光解消板とを設けたことを特徴とする
請求項1記載の投影露光装置。
2. The projection exposure apparatus according to claim 1, further comprising a circularly polarizing plate or a depolarizing plate provided between the projection optical system and the photosensitive substrate.
JP17688092A 1992-07-03 1992-07-03 Projection exposure apparatus and device manufactured by the exposure apparatus Expired - Lifetime JP3287014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17688092A JP3287014B2 (en) 1992-07-03 1992-07-03 Projection exposure apparatus and device manufactured by the exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17688092A JP3287014B2 (en) 1992-07-03 1992-07-03 Projection exposure apparatus and device manufactured by the exposure apparatus

Publications (2)

Publication Number Publication Date
JPH0620912A true JPH0620912A (en) 1994-01-28
JP3287014B2 JP3287014B2 (en) 2002-05-27

Family

ID=16021390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17688092A Expired - Lifetime JP3287014B2 (en) 1992-07-03 1992-07-03 Projection exposure apparatus and device manufactured by the exposure apparatus

Country Status (1)

Country Link
JP (1) JP3287014B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002092A1 (en) * 1998-07-02 2000-01-13 Carl Zeiss Lighting system for microlithography, comprising a depolarizer
WO2005031467A3 (en) * 2003-09-26 2005-05-19 Zeiss Carl Smt Ag Microlithographic projection exposure
US7023527B2 (en) 1993-06-30 2006-04-04 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
JP2007227918A (en) * 2006-02-23 2007-09-06 Asml Netherlands Bv Lithography equipment and device manufacturing method
US7408616B2 (en) 2003-09-26 2008-08-05 Carl Zeiss Smt Ag Microlithographic exposure method as well as a projection exposure system for carrying out the method
US7534533B2 (en) 2004-02-10 2009-05-19 Kabushiki Kaisha Toshiba Polarization analyzing system, exposure method, and method for manufacturing semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7023527B2 (en) 1993-06-30 2006-04-04 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
WO2000002092A1 (en) * 1998-07-02 2000-01-13 Carl Zeiss Lighting system for microlithography, comprising a depolarizer
WO2005031467A3 (en) * 2003-09-26 2005-05-19 Zeiss Carl Smt Ag Microlithographic projection exposure
US7408616B2 (en) 2003-09-26 2008-08-05 Carl Zeiss Smt Ag Microlithographic exposure method as well as a projection exposure system for carrying out the method
US7847921B2 (en) 2003-09-26 2010-12-07 Carl Zeiss Smt Ag Microlithographic exposure method as well as a projection exposure system for carrying out the method
US8767181B2 (en) 2003-09-26 2014-07-01 Carl Zeiss Smt Gmbh Microlithographic exposure method as well as a projection exposure system for carrying out the method
US7534533B2 (en) 2004-02-10 2009-05-19 Kabushiki Kaisha Toshiba Polarization analyzing system, exposure method, and method for manufacturing semiconductor device
US7859665B2 (en) 2004-02-10 2010-12-28 Kabushiki Kaisha Toshiba Polarization analyzing system, exposure method, and method for manufacturing semiconductor device
JP2007227918A (en) * 2006-02-23 2007-09-06 Asml Netherlands Bv Lithography equipment and device manufacturing method
JP4668218B2 (en) * 2006-02-23 2011-04-13 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
US8587766B2 (en) 2006-02-23 2013-11-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
JP3287014B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
USRE37391E1 (en) Exposure method and projection exposure apparatus
JP2893778B2 (en) Exposure equipment
US5148214A (en) Alignment and exposure apparatus
JP3275575B2 (en) Projection exposure apparatus and device manufacturing method using the projection exposure apparatus
KR20030040052A (en) Exposure apparatus and exposing method, and method of manufacturing a device
JPS6313330A (en) Alignment device
JP2001244194A (en) Abbe arm correction system used in lithography system
JP2926325B2 (en) Scanning exposure method
JPH0620912A (en) Projection aligner
TWI605316B (en) Lithographic apparatus and method
TW201027270A (en) Illumination optical system, exposure system and method of fabricating device
JP2009043906A (en) Euv exposure apparatus, euv exposure method, and device manufacturing method
JP3024220B2 (en) Projection type exposure method and apparatus
JPH09270382A (en) Projection aligner and manufacture of semiconductor device using the same
JP2830868B2 (en) Projection exposure apparatus and scanning exposure method
JP2810400B2 (en) Exposure equipment
JP3161430B2 (en) Scanning exposure method, scanning exposure apparatus, and element manufacturing method
JP7336343B2 (en) Exposure apparatus, exposure method, and article manufacturing method
US7787104B2 (en) Illumination optics for a microlithographic projection exposure apparatus
JP3211246B2 (en) Projection exposure apparatus and element manufacturing method
JP2007299891A (en) Light source unit, illuminating optical system, aligner, and manufacturing method of device
JP5239830B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2003035511A (en) Position detector and aligner equipped with it
JP2830869B2 (en) Circuit element manufacturing method
JP3123524B2 (en) Scanning exposure method, scanning type exposure apparatus, and element manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11