JPH06208956A - Predicting method for shape of thin film deposition - Google Patents

Predicting method for shape of thin film deposition

Info

Publication number
JPH06208956A
JPH06208956A JP30684692A JP30684692A JPH06208956A JP H06208956 A JPH06208956 A JP H06208956A JP 30684692 A JP30684692 A JP 30684692A JP 30684692 A JP30684692 A JP 30684692A JP H06208956 A JPH06208956 A JP H06208956A
Authority
JP
Japan
Prior art keywords
shape
thin film
film deposition
string
void
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30684692A
Other languages
Japanese (ja)
Inventor
Eiko Suzuki
栄子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP30684692A priority Critical patent/JPH06208956A/en
Publication of JPH06208956A publication Critical patent/JPH06208956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To predict occurrence of a void and its shape for seeking a condition under which a void will not take place. CONSTITUTION:The initial shape o a surface is inputted as a string of paints (S1), and the amount of a film material incident on a segment that connects two sequential paints during the time t1 is obtained, and then from this, growth speed far each point is obtained (S2). While moving along each point at the growth speed, surface shape after time t2 ( t1 t2) is obtained (S3). If a string loop takes place, a coordinate of an intersection is obtained, and then that point is added to as a new paint on the surface, and the part where a loop is formed is deleted (S4). Until a target film thickness is reached, S2-S4 are repeated several times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、薄膜堆積形状予測方法に関し、
より詳細には、段差がある下地へ堆積した時に生じるボ
イド形状の予測方法に関する。
TECHNICAL FIELD The present invention relates to a thin film deposition shape prediction method,
More specifically, the present invention relates to a method of predicting a void shape generated when deposited on a base having a step.

【0002】[0002]

【従来技術】ストリングモデルを用いた堆積形状シミュ
レータの代表的なものにはカリフォルニア大学で開発し
たSAMPLEがある。半導体メーカ等でも開発例がい
くつかあるが、SAMPLEに準したもので、ボイドの
取り扱いを正しく行えるものはない。段差を有する下地
にスパッタリングやCVD(Chemical Vapor Depositio
n;化学蒸着法)等で膜堆積を行なう場合、図5に示し
たようにボイドを生じる場合がある。数値計算による薄
膜堆積形状シミュレーションでは、ストリングモデルを
使用することが多いが、従来のシミュレータではボイド
の有無の明確な判定やボイド形状を予測できなかった。
2. Description of the Related Art SAMPLE developed at the University of California is a typical example of a deposit shape simulator using a string model. Although there are some development examples in semiconductor manufacturers, etc., they are based on SAMPLE and none can handle voids correctly. Sputtering or CVD (Chemical Vapor Depositio
When the film is deposited by (n; chemical vapor deposition method) or the like, voids may occur as shown in FIG. A string model is often used in thin film deposition shape simulation by numerical calculation, but the conventional simulator could not clearly determine the presence or absence of a void or predict the void shape.

【0003】[0003]

【目的】本発明は、上述のごとき実情に鑑みてなされた
もので、ボイドの発生しない条件を探るために、ボイド
の発生の有無やボイド形状を予測する薄膜堆積形状予測
方法を提供することを目的としてなされたものである。
An object of the present invention is to provide a thin film deposition shape prediction method for predicting the presence / absence of voids and the void shape in order to find the conditions in which voids do not occur, in view of the above circumstances. It was done for the purpose.

【0004】[0004]

【構成】本発明は上記目的を達成するために、(1)表
面形状を表現する幾何モデルとしてストリングモデルを
用い、ストリングの各頂点の成長速度に応じて微小厚さ
膜を成長させることを数回繰り返して膜堆積形状を予測
する薄膜堆積形状予測方法において、ボイド発生の有無
の判断としてストリングの8の字状のループの有無を用
いること、更には、(2)n回目で8の字状ループが発
生した時、(n−1)回目の形状に戻り、(n−1)回
目の形状に対して求めた成長速度からストリングの接点
が一点だけになるような形状を求め、該接点によって閉
じられた領域をボイドであると決めること、更には、
(3)前記(2)において、前記接点を表面上の新たな
点として追加し、該接点で表面からボイド部分を切り離
すことを特徴としたものである。以下、本発明の実施例
に基づいて説明する。
In order to achieve the above object, the present invention uses (1) a string model as a geometric model for expressing a surface shape, and grows a minute thick film according to the growth rate of each vertex of the string. In a thin film deposition shape prediction method that repeatedly predicts a film deposition shape, the presence or absence of an 8-shaped loop of a string is used to determine the presence or absence of a void. When a loop occurs, the shape returns to the (n-1) -th shape, and a shape such that the string has only one contact point is obtained from the growth rate obtained for the (n-1) -th shape. Determining that the enclosed area is a void, and
(3) In the above (2), the contact is added as a new point on the surface, and the void portion is separated from the surface at the contact. Hereinafter, description will be given based on examples of the present invention.

【0005】図1は、本発明による薄膜堆積形状予測方
法の一実施例を説明するためのフローチャートである。
堆積形状シミュレーションには表面形状を表現する幾何
モデルとしてストリングモデルが使用されることが多
い。ストリングモデルでは表面形状を折線で表し、その
頂点を移動させて形状変化を求めていく。以下、各ステ
ップに従って順に説明する。
FIG. 1 is a flow chart for explaining an embodiment of a thin film deposition shape prediction method according to the present invention.
A string model is often used as a geometric model for expressing the surface shape in the deposition shape simulation. In the string model, the surface shape is represented by a polygonal line, and the vertex is moved to obtain the shape change. Hereinafter, each step will be described in order.

【0006】Step1;表面の初期形状を点の連続として
入力する。Step2 ;次に、連続した2点を結んだセグメントへ、時
間△t1間に入射する膜原料の量を求め、これから各点
の成長速度を求める。この間、表面形状は固定してお
く。Step3 ;前記Step2で求めた成長速度を用いて各点を移動
し、時間△t2(△t1≪△t2)後の表面形状を求め
る。Step4 ;図2のようにストリングにループが生じたとき
には、交点Aの座標を求め、該交点Aを新たな表面上の
点として追加し、ループになっている部分は削除する。
目的膜厚に到達するまで前記Step2〜Step4を数回繰り返
す。
Step 1 : Input the initial shape of the surface as a series of points. Step2 ; Next, the amount of the film raw material incident on the segment connecting two consecutive points during the time Δt 1 is obtained, and the growth rate at each point is obtained from this. During this time, the surface shape is fixed. Step3 : Each point is moved using the growth rate obtained in the above Step2, and the surface shape after a time Δt 2 (Δt 1 << Δt 2 ) is obtained. Step4 ; When the string has a loop as shown in FIG. 2, the coordinates of the intersection point A are obtained, the intersection point A is added as a new point on the surface, and the looped portion is deleted.
The above Step 2 to Step 4 are repeated several times until the target film thickness is reached.

【0007】図3(a),(b)は、本発明による薄膜堆
積形状予測方法を説明するための図である。いま仮にn
回目で図3(a)に示したような8の字状のループが生
じたとする。これは、実際の膜成長の場合には、時間
〔(n−1)△t2〕と〔n△t2〕の間のある時間
〔(n−1)△t2+△t2^〕(△t2^<△t2)で図3
(b)に示したように、斜線部分にボイドを生じてA^
で閉じてしまったと考えられる。しかし、従来の方法で
は8の字状であるかどうかに関わらず、単に交点Aを新
たな表面上の点として追加し、ループ部分は削除してい
たため、ボイド発生の有無を明確にすることはできなか
った。本発明では8の字状のループが生じたかどうかの
判断を行ない、ボイド発生の有無を明確にする。
3A and 3B are views for explaining the thin film deposition shape prediction method according to the present invention. Now n
It is assumed that an 8-shaped loop as shown in FIG. This is the case of the actual film growth time [(n-1) △ t 2] and some time between [n △ t 2] [(n-1) △ t 2 + △ t 2 ^ ] (Δt 2 ^ <Δt 2 ) in FIG.
As shown in (b), a void appears in the shaded area and A ^
It is thought that it was closed at. However, in the conventional method, the intersection point A is simply added as a point on the new surface and the loop portion is deleted regardless of whether it is a figure 8 shape. could not. In the present invention, it is determined whether or not a figure 8 loop has occurred, and the presence or absence of voids is clarified.

【0008】また、このときのボイド形状を正しく見積
もるためには図3(b)状態まで遡る必要がある。そこ
で一旦時間〔(n−1)△t2〕の形状に戻り、時間
〔(n−1)△t2〕での形状に対して求めた成長時速
度から、図3(b)のように一点A^だけで接する時間
〔(n−1)△t2+△t2^〕(△t2^<△t2)を求
め、ストリングを移動させる。A^を時間〔(n−1)
△t2+△t2^〕における表面上の点として追加し、ボ
イド部分と表面とをA^で切り離し、時間〔(n−1)
△t2+△t2^〕での表面に対して成長速度を求め、
〔△t2+△t2^〕間の膜成長を行い、〔n△t2〕にお
ける表面形状を求める。このとき、新たに成長度を求め
るのではなく、〔(n−1)△t2〕に対して求めた成
長速度を代用しても良い。
In order to correctly estimate the void shape at this time, it is necessary to go back to the state of FIG. 3 (b). So back to the shape of the once time [(n-1) △ t 2], from the growth time rate determined for the shape of the time [(n-1) △ t 2], as shown in FIG. 3 (b) seeking a point a ^ just contact time [(n-1) △ t 2 + △ t 2 ^ ] (△ t 2 ^ <△ t 2), moving the string. A ^ as time [(n-1)
Δt 2 + Δt 2 ^] is added as a point on the surface, the void portion and the surface are separated by A ^, and the time [(n-1)
Δt 2 + Δt 2 ^], the growth rate is obtained for the surface,
A film is grown for [Δt 2 + Δt 2 ^] to obtain the surface shape at [nΔt 2 ]. At this time, instead of newly obtaining the growth rate, the growth rate obtained for [(n-1) Δt 2 ] may be used instead.

【0009】図4(a),(b)は、本発明の予測方法と
従来の解析方法との比較図で、図(a)は従来例、図
(b)は本発明の例である。従来の解析方法では、図4
(a)のようにボイドが発生せず良好な段差埋込が行な
われたかのように見えていた条件に対しても、実は図4
(b)のようにボイド発生していることがわかる。
FIGS. 4 (a) and 4 (b) are comparison diagrams of the prediction method of the present invention and a conventional analysis method. FIG. 4 (a) shows a conventional example and FIG. 4 (b) shows an example of the present invention. In the conventional analysis method, as shown in FIG.
As shown in FIG. 4 (a), the condition shown in FIG.
It can be seen that voids are generated as shown in (b).

【0010】[0010]

【効果】以上の説明から明らかなように、本発明による
と、以下のような効果がある。 (1)請求項1に対応する効果;ボイドの発生の有無の
判断としてストリングの8の字状のリープの有無を用い
るので、ボイド発生の有無を明確に知ることができる。 (2)請求項2に対応する効果;3回目で8の字状ルー
プが発生した時、(n−1)回目の形状に戻り、(n−
1)回目の形状に対して求めた成長速度からストリング
の接点が一点だけになるような形状を求め、該接点によ
って閉じられた領域をボイドであると決めるので、発生
したボイドの形状を知ることができる。 (3)請求項3に対応する効果;接点を表面上の新たな
点として追加し、該接点で表面からボイド部分を切り離
すので、ボイド発生以降の計算をスムーズに続行でき
る。
As is apparent from the above description, the present invention has the following effects. (1) Effect corresponding to claim 1 Since presence / absence of leap in the shape of a string 8 is used to determine presence / absence of voids, presence / absence of voids can be clearly known. (2) The effect corresponding to claim 2; when the 8-shaped loop is generated in the third time, the shape returns to the (n-1) th time, and (n-
1) Find the shape of the string that has only one point of contact from the growth rate obtained for the shape of the first time, and determine the region closed by the contact as a void, so know the shape of the void that has occurred. You can (3) Effect corresponding to claim 3; The contact is added as a new point on the surface, and the void portion is separated from the surface at the contact, so that the calculation after the occurrence of the void can be smoothly continued.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による薄膜堆積形状予測方法の一実施
例を説明するためのフローチャートである。
FIG. 1 is a flow chart for explaining an embodiment of a thin film deposition shape prediction method according to the present invention.

【図2】 本発明による薄膜堆積形状予測方法のストリ
ングモデルでの表面形状を示す図である。
FIG. 2 is a diagram showing a surface shape in a string model of a thin film deposition shape prediction method according to the present invention.

【図3】 本発明による薄膜堆積形状予測方法を説明す
るための図である。
FIG. 3 is a diagram for explaining a thin film deposition shape prediction method according to the present invention.

【図4】 本発明による薄膜堆積形状予測方法と従来の
解析方法との比較図である。
FIG. 4 is a comparison diagram of a thin film deposition shape prediction method according to the present invention and a conventional analysis method.

【図5】 従来の薄膜堆積形状シミュレーションにおけ
るボイドの発生を示す図である。
FIG. 5 is a diagram showing generation of voids in a conventional thin film deposition shape simulation.

【手続補正書】[Procedure amendment]

【提出日】平成5年9月14日[Submission date] September 14, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 ─────────────────────────────────────────────────────
[Figure 5] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年2月3日[Submission date] February 3, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】[0010]

【効果】以上の説明から明らかなように、本発明による
と、以下のような効果がある。 (1)請求項1に対応する効果;ボイドの発生の有無の
判断としてストリングの8の字状のリープの有無を用い
るので、ボイド発生の有無を明確に知ることができる。 (2)請求項2に対応する効果;3回目で8の字状ルー
プが発生した時、(n−1)回目の形状に戻り、(n−
1)回目の形状に対して求めた成長速度からストリング
の接点が一点だけになるような形状を求め、該接点によ
って閉じられた領域をボイドであると決めるので、発生
したボイドの形状を知ることができる。 (3)請求項3に対応する効果;接点を表面上の新たな
点として追加し、該接点で表面からボイド部分を切り離
すので、ボイド発生以降の計算をスムーズに続行でき
る。
As is apparent from the above description, the present invention has the following effects. (1) Effect corresponding to claim 1 Since presence / absence of leap in the shape of a string 8 is used to determine presence / absence of voids, presence / absence of voids can be clearly known. (2) The effect corresponding to claim 2; when the 8-shaped loop is generated in the third time, the shape returns to the (n-1) th time, and (n-
1) Find the shape of the string that has only one point of contact from the growth rate obtained for the shape of the first time, and determine the region closed by the contact as a void, so know the shape of the void that has occurred. You can (3) Effect corresponding to claim 3 Since the contact is added as a new point on the surface and the void portion is separated from the surface at the contact, the calculation after the void occurrence can be smoothly continued.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による薄膜堆積形状予測方法の一実施
例を説明するためのフローチャートである。
FIG. 1 is a flow chart for explaining an embodiment of a thin film deposition shape prediction method according to the present invention.

【図2】 本発明による薄膜堆積形状予測方法のストリ
ングモデルでの表面形状を示す図である。
FIG. 2 is a diagram showing a surface shape in a string model of a thin film deposition shape prediction method according to the present invention.

【図3】 本発明による薄膜堆積形状予測方法を説明す
るための図である。
FIG. 3 is a diagram for explaining a thin film deposition shape prediction method according to the present invention.

【図4】 本発明による薄膜堆積形状予測方法と従来の
解析方法との比較図である。
FIG. 4 is a comparison diagram of a thin film deposition shape prediction method according to the present invention and a conventional analysis method.

【図5】 従来の薄膜堆積形状シミュレーションにおけ
るボイドの発生を示す図である。
FIG. 5 is a diagram showing generation of voids in a conventional thin film deposition shape simulation.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面形状を表現する幾何モデルとしてス
トリングモデルを用い、ストリングの各頂点の成長速度
に応じて微小厚さ膜を成長させることを数回繰り返して
膜堆積形状を予測する薄膜堆積形状予測方法において、
ボイド発生の有無の判断としてストリングの8の字状の
ループの有無を用いることを特徴とする薄膜堆積形状予
測方法。
1. A thin film deposition shape for predicting a film deposition shape by using a string model as a geometric model expressing a surface shape and repeating a growth of a thin film having a small thickness according to a growth rate of each vertex of the string several times. In the prediction method,
A thin film deposition shape prediction method characterized by using the presence or absence of an 8-shaped loop of a string to determine whether or not a void has occurred.
【請求項2】 n回目で8の字状ループが発生した時、
(n−1)回目の形状に戻り、(n−1)回目の形状に
対して求めた成長速度からストリングの接点が一点だけ
になるような形状を求め、該接点によって閉じられた領
域をボイドであると決めることを特徴とする請求項1記
載の薄膜堆積形状予測方法。
2. When an 8-shaped loop is generated at the n-th time,
Returning to the (n-1) th shape, a shape such that there is only one point of contact of the string is obtained from the growth rate obtained for the (n-1) th shape, and the region closed by the contact is voided. The thin film deposition shape prediction method according to claim 1, characterized in that
【請求項3】 前記接点を表面上の新たな点として追加
し、該接点で表面からボイド部分を切り離すことを特徴
とする請求項2記載の薄膜堆積形状予測方法。
3. The thin film deposition shape prediction method according to claim 2, wherein the contact is added as a new point on the surface, and the void portion is separated from the surface at the contact.
JP30684692A 1992-11-17 1992-11-17 Predicting method for shape of thin film deposition Pending JPH06208956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30684692A JPH06208956A (en) 1992-11-17 1992-11-17 Predicting method for shape of thin film deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30684692A JPH06208956A (en) 1992-11-17 1992-11-17 Predicting method for shape of thin film deposition

Publications (1)

Publication Number Publication Date
JPH06208956A true JPH06208956A (en) 1994-07-26

Family

ID=17961961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30684692A Pending JPH06208956A (en) 1992-11-17 1992-11-17 Predicting method for shape of thin film deposition

Country Status (1)

Country Link
JP (1) JPH06208956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651192A (en) * 2016-04-12 2016-06-08 广州市尤特新材料有限公司 Detection method and system of surface thickness and planeness of rotary target
WO2021124392A1 (en) * 2019-12-16 2021-06-24 日本電信電話株式会社 Material development assistance device, material development assistance method, and material development assistance program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651192A (en) * 2016-04-12 2016-06-08 广州市尤特新材料有限公司 Detection method and system of surface thickness and planeness of rotary target
WO2021124392A1 (en) * 2019-12-16 2021-06-24 日本電信電話株式会社 Material development assistance device, material development assistance method, and material development assistance program
JPWO2021124392A1 (en) * 2019-12-16 2021-06-24

Similar Documents

Publication Publication Date Title
Baumann et al. Multiscale modeling of thin-film deposition: applications to Si device processing
Crowley et al. Thermospheric dynamics during September 18–19, 1984: 2. Validation of the NCAR thermospheric general circulation model
Jerolmack et al. Frozen dynamics of migrating bedforms
Dettmer et al. Sequential trans-dimensional Monte Carlo for range-dependent geoacoustic inversion
Kashchiev et al. Transition from island to layer growth of thin films: A Monte Carlo simulation
JPH06208956A (en) Predicting method for shape of thin film deposition
CN115453623A (en) UNet-based receiving function and surface wave frequency dispersion joint inversion method
JP3592826B2 (en) Film shape prediction method
JP2004085394A (en) System for modifying marine forecast data
Jungman et al. Reflection from a boundary with periodic roughness: Theory and experiment
US6643628B1 (en) Cellular automata neural network method for process modeling of film-substrate interactions and other dynamic processes
Shim et al. Adaptive temperature-accelerated dynamics
JP4750531B2 (en) Shape simulation method, program, and apparatus
TWI276997B (en) A system and method for target queue time calculation in semiconductor manufacturing planning, and a semiconductor product managed by a target queue time calculation method
JP3196472B2 (en) Thin film formation method
JPH11101794A (en) Apparatus for estimating adhesion energy of interface of different materials
JPH10117437A (en) Maximum daily power demand prediction
Ma et al. Distributional reinforcement learning for run-to-run control in semiconductor manufacturing processes
US20060017546A1 (en) Alert management
Braga-Neto et al. Machine Learning Requires Probability and Statistics [Perspectives]
Life Accelerated Characterization and Optimization of Thin-Film Materials With Combinatorial Deposition and Bayesian Active Learning
Josell et al. An exact algebraic solution for the incubation period of superfill
Huang et al. An integral equation method for epitaxial step-flow growth simulations
JPH11352246A (en) Electronic tidal meter, method for calculating spring tide day, and recording medium for program implementing the method
Samsudin et al. X-Ray Reflectivity Analysis in Evaluating Multilayer Thin Film Fabrication