JPH0620834A - Magnetic multilayer film - Google Patents
Magnetic multilayer filmInfo
- Publication number
- JPH0620834A JPH0620834A JP19454492A JP19454492A JPH0620834A JP H0620834 A JPH0620834 A JP H0620834A JP 19454492 A JP19454492 A JP 19454492A JP 19454492 A JP19454492 A JP 19454492A JP H0620834 A JPH0620834 A JP H0620834A
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnetic
- multilayer film
- magnetic multilayer
- multilayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁性多層膜に係り、特
に磁性膜として飽和磁束密度の高い強磁性元素を含んだ
膜を用いる磁性多層膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic multilayer film, and more particularly to a magnetic multilayer film using a film containing a ferromagnetic element having a high saturation magnetic flux density as the magnetic film.
【0002】[0002]
【従来の技術】従来Fe16N2 単結晶膜の保磁力は約5
0Oeであり、保磁力を低下させることは困難であっ
た。Fe16N2 を含んでいる膜のB−H曲線はジャーナ
ル オブアプライド フィジックス 65(11)、1
989、p.p.4357〜4361( J. Appl. Phy
s. 65(11)1989)に示されている。膜面内の
B−H曲線から面内の保持力は約100 Oeである。
また、面内の飽和磁界は3.0kOe以上であることが
分かる。この原因は大きな結晶磁気異方性エネルギー、
膜中の歪に起因している。結晶磁気異方性エネルギーの
寄与を小さくするために単結晶から配向多結晶膜にする
こと、膜厚を薄くすること、及び歪を開放させることが
提案されている(特開昭62−221102号、特開平
2−285609号、特開平2−308504号、特開
平3−1509号公報)。Fe16N2の飽和磁束密度が
高いのはFe原子及びN原子が規則配列し、正方晶で体
積が増加しているためである。多結晶の中で成長する場
合は規則度が低くなる。単結晶基板上に成長する場合も
膜厚が1μm以上になるとFe16N2 の規則度は低下す
る。膜厚が薄い場合には基板の周期構造に沿ってエピタ
キシャル成長するための格子のミスフィットによる転位
や歪が導入されるが規則度はほとんど低下しない。 2. Description of the Related Art A conventional Fe 16 N 2 single crystal film has a coercive force of about 5
It was 0 Oe, and it was difficult to reduce the coercive force. The BH curve of the film containing Fe 16 N 2 is shown in Journal of Applied Physics 65 (11), 1
989, p. p. 4357-4361 (J. Appl. Phy
s. 65 (11) 1989). The in-plane coercive force is about 100 Oe from the in-plane B-H curve.
Further, it can be seen that the in-plane saturation magnetic field is 3.0 kOe or more. The cause is a large magnetocrystalline anisotropy energy,
This is due to the strain in the film. In order to reduce the contribution of the magnetocrystalline anisotropy energy, it has been proposed to change from a single crystal to an oriented polycrystalline film, to reduce the film thickness, and to release strain (Japanese Patent Laid-Open No. 62-221102). , JP-A-2-285609, JP-A-2-308504, and JP-A-3-1509). The saturation magnetic flux density of Fe 16 N 2 is high because Fe atoms and N atoms are regularly arranged and the volume is increased in a tetragonal system. When grown in a polycrystal, the order becomes low. Even when grown on a single crystal substrate, the order of Fe 16 N 2 decreases when the film thickness becomes 1 μm or more. When the film thickness is thin, dislocations and strains are introduced due to the misfit of the lattice for epitaxial growth along the periodic structure of the substrate, but the regularity is hardly reduced.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術は、保磁
力が大きいために透磁率(約5000)が低く、磁気ヘ
ッドのコア材料にするためには保磁力を小さくする必要
がある。そこで、本発明は、上記のような問題点を解決
した飽和磁束密度の高い強磁性元素を含んだ膜で保磁力
を小さくした磁性多層膜を提供することを目的とする。In the above-mentioned prior art, since the coercive force is large, the magnetic permeability (about 5000) is low, and it is necessary to reduce the coercive force in order to use it as the core material of the magnetic head. Therefore, an object of the present invention is to provide a magnetic multilayer film in which the coercive force is reduced by a film containing a ferromagnetic element having a high saturation magnetic flux density, which solves the above problems.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に、本発明では、強磁性元素を含む膜と、該強磁性元素
を含む材料がもつ格子定数と近似した格子定数をもつ非
磁性材料とが、交互に積層(特にエピタキシャル成長し
て)していることを特徴とする磁性多層膜としたもので
ある。前記磁性多層膜において、強磁性元素を含む膜
は、Fe−N二元系膜又はFe−Co−N三元系膜であ
り、非磁性材料がMgO,GaAs,In0.2 Ga0.8
Asから選ばれた少なくとも一つを用いるのがよく、こ
れらを積層することにより結晶粒径を細かくし、かつ安
定成長させることが可能である。In order to achieve the above object, in the present invention, a film containing a ferromagnetic element and a non-magnetic material having a lattice constant similar to that of the material containing the ferromagnetic element are provided. And are alternately laminated (especially by epitaxial growth) to provide a magnetic multilayer film. In the magnetic multilayer film, the film containing a ferromagnetic element is a Fe—N binary film or a Fe—Co—N ternary film, and the nonmagnetic material is MgO, GaAs, In 0.2 Ga 0.8.
It is preferable to use at least one selected from As, and by stacking these, the crystal grain size can be made fine and stable growth can be achieved.
【0005】また、前記磁性多層膜は、保磁力が20O
e以下、特に1〜20Oeの範囲であり、飽和磁束密度
が2.0T以上、特に2.0〜2.8の範囲であり、該
多層膜の積層周期は各層を形成する材料の格子定数以上
であり、膜全体の膜厚は100Å以上で2μ程度までが
よい。Fe−N膜あるいはFe−Co−N合金を磁気ヘ
ッドのコア材に用いる場合、膜の耐食性が問題となる。
そこで、FeあるいはFe−Coに他の元素を置換する
のがよい。Fe16N2 体心正方晶(bct)であり、こ
の構造はbcc構造の一つの方向のみ伸ばした構造にな
っており、原子配列bcc構造に近い。そこでbccF
eに置換してbcc構造が安定である添加元素を選び耐
食性について調べた結果、Cr、Mo、Nb、Vのいず
れか1種以上を5at%以上で20at%程度までを添
加した膜で耐食性が改善された。上記の磁性多層膜は磁
気ヘッドの主磁極に用いると高磁界付与特性をもち記録
再生特性の優れた磁気ヘッドが得られ、また、この磁気
ヘッドを用いて磁気ディスク装置が得られる。The magnetic multilayer film has a coercive force of 20 O.
e or less, particularly in the range of 1 to 20 Oe, the saturation magnetic flux density is 2.0 T or more, particularly in the range of 2.0 to 2.8, and the lamination period of the multilayer film is equal to or more than the lattice constant of the material forming each layer. Therefore, the total thickness of the film is preferably 100 Å or more and about 2 μ. When the Fe-N film or the Fe-Co-N alloy is used as the core material of the magnetic head, the corrosion resistance of the film becomes a problem.
Therefore, it is preferable to substitute Fe or Fe-Co with another element. Fe 16 N 2 body-centered tetragonal (bct), which has a structure in which only one direction of the bcc structure is extended, and is close to the atomic arrangement bcc structure. So bccF
As a result of substituting e and selecting an additive element having a stable bcc structure and investigating the corrosion resistance, it was found that the corrosion resistance of a film containing one or more of Cr, Mo, Nb, and V at 5 at% or more and up to about 20 at% Improved. When the above magnetic multilayer film is used as a main magnetic pole of a magnetic head, a magnetic head having a high magnetic field application characteristic and excellent recording / reproducing characteristics can be obtained, and a magnetic disk device can be obtained by using this magnetic head.
【0006】[0006]
【作用】Fe−N二元系合金には飽和磁束密度の高いF
e16N2 化合物が存在する。この化合物の結晶磁気異方
性エネルギーは4.5×105 erg/ccとFeとほ
ぼ等しく、磁気ヘッドのコア材等に適した軟磁気特性を
持ち、かつ高飽和磁束密度の磁性膜にするにはFe16N
2 を含んだ膜の結晶粒径を小さくする必要がある。また
Fe16N2 の電気抵抗はFeの3倍〜5倍程度であるた
め、うず電流損を小さくするにはさらに抵抗を高くする
必要がある。Function: Fe-N binary alloy has a high saturation magnetic flux density F
There is an e 16 N 2 compound. The crystal magnetic anisotropy energy of this compound is 4.5 × 10 5 erg / cc, which is almost equal to that of Fe, and has a soft magnetic property suitable for a core material of a magnetic head, etc., and is a magnetic film with a high saturation magnetic flux density. Is Fe 16 N
It is necessary to reduce the crystal grain size of the film containing 2 . Further, since the electric resistance of Fe 16 N 2 is about 3 to 5 times that of Fe, it is necessary to further increase the resistance in order to reduce the eddy current loss.
【0007】結晶粒を小さくするには多層化することが
考えられる。しかしFe16N2 あるいはFe−Nマルテ
ンサイトおよびFe−Co−N系マルテンサイトは準安
定相であり、膜成長時に多くの欠陥が導入された場合、
このような準安定相は成長できない。そこで上記準安定
相の構造を安定に保ったまま結晶粒径を小さくするため
に上記準安定相の格子定数に近い格子定数を持った材料
と交互に積層する方法が有効である。Fe16N2 と積層
する材料としてはFe16N2 の格子定数に近い面間隔あ
るいは格子定数を持った材料が適しており、本発明では
MgO,GaAs及びIn0.2 Ga0.8 Asの中の少な
くとも一つを積層する。これらの材料は電気抵抗が高
く、またFe16N2 の成長が阻害されることがないた
め、Fe16N2 の膜厚を薄くすることにより、Fe16N
2 の磁気異方性エネルギーを低減することができる。F
e16N2 は多結晶であっても配向していれば成長するこ
とができ、結晶粒同志が方位関係をもっている多層膜も
作製できる。In order to make the crystal grains smaller, it is possible to make them multi-layered. However, Fe 16 N 2 or Fe-N martensite and Fe-Co-N martensite are metastable phases, and when many defects are introduced during film growth,
Such metastable phases cannot grow. Therefore, in order to reduce the crystal grain size while keeping the structure of the metastable phase stable, a method of alternately laminating with a material having a lattice constant close to that of the metastable phase is effective. The material to be laminated with the Fe 16 N 2 is suitably a material having a lattice spacing or lattice constant close to that of Fe 16 N 2, in the present invention MgO, GaAs and an In 0.2 Ga 0.8 at least one among As Stack one. These materials have high electrical resistance, and because never grow Fe 16 N 2 is inhibited, by reducing the thickness of the Fe 16 N 2, Fe 16 N
The magnetic anisotropy energy of 2 can be reduced. F
Although e 16 N 2 is polycrystalline, it can grow as long as it is oriented, and a multilayer film in which crystal grains have an azimuth relationship can also be produced.
【0008】例えばFe16N2 をIn0.2 Ga0.8 As
単結晶基板状にエピタキシャル成長させた場合、Fe16
N2 の成長は膜厚0.1μmを超えると不安定になる。
従ってFe16N2 の成長が安定している膜厚で、結晶粒
径を一定に保ちながら厚膜のFe−N(Fe16N2 を含
んでいる)膜を作製するにはFe−N膜を多層にするこ
とが粒径の制御性から考えて最も有効な方法である。F
e16N2 の規則度の低下(即ち欠陥の導入)はBsを低
下させることに相当するが、Feの一部をCoで置換す
ることで膜全体のBsはFe−N二元系の場合よりも高
くなり、保磁力が20Oe以下でBsが2.7Tの膜を
得ることができる。For example, Fe 16 N 2 is replaced with In 0.2 Ga 0.8 As
When epitaxially grown on a single crystal substrate, Fe 16
The growth of N 2 becomes unstable when the film thickness exceeds 0.1 μm.
Thus a film thickness growth of the Fe 16 N 2 is stable, Fe-N film to produce a Fe-N (containing the Fe 16 N 2) film of thick while keeping the grain size constant Considering the controllability of the particle size, the most effective method is to make the particles multi-layered. F
The decrease in the degree of order of e 16 N 2 (that is, the introduction of defects) corresponds to the decrease in Bs. However, by substituting a part of Fe with Co, the Bs of the entire film is in the case of Fe-N binary system. A coercive force of 20 Oe or less and a Bs of 2.7 T can be obtained.
【0009】またFe−N二元系材料は耐食性がパーマ
ロイやCoNiFe系軟磁性膜に比べて低い。そこでF
e−N合金に第3元素を添加することが有効である。こ
の時、第3元素はFe16N2 のエピタキシャル成長に悪
影響にならない元素としなければならない。Fe16N2
の結晶構造はbctであるので添加元素としてはFeと
固溶した時にbccを形成するbcc安定化元素が望ま
しい。本発明ではFeのbcc形成元素としてCr、M
o、Nb、Vを選択した結果、耐食性が著しく改善され
ることが分かった。The Fe-N binary material has a lower corrosion resistance than the permalloy or CoNiFe soft magnetic film. So F
It is effective to add the third element to the e-N alloy. At this time, the third element must be an element that does not adversely affect the epitaxial growth of Fe 16 N 2 . Fe 16 N 2
Since its crystal structure is bct, it is desirable that the additional element is a bcc stabilizing element that forms bcc when it forms a solid solution with Fe. In the present invention, as the bcc forming element of Fe, Cr, M
As a result of selecting o, Nb, and V, it was found that the corrosion resistance was significantly improved.
【0010】[0010]
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されない。 実施例1 まず、磁性多層膜の作製条件について以下説明する。基
板はIn0.2 Ga0.8 As(001)、GaAs(00
1)あるいはMgO(001)単結晶であり、基板表面
は洗浄により異種酸化物を除去してある。基板の清浄化
処理後、基板表面を反射電子回折パターンを観察するこ
とによりブロードなパターンが無いことを確認し、アン
モニアと窒素の混合ガス(NH3 :N2 =1:1〜1:
10)雰囲気中でFeを蒸着した。成長速度は0.1〜
0.01Å/s、基板温度は200℃である。蒸着源に
用いたFeは99.999%の純度であり、Co,C
r、Mo、Nb及びVの純度は99.9%以上である。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 First, the manufacturing conditions of the magnetic multilayer film will be described below. The substrate is In 0.2 Ga 0.8 As (001), GaAs (00
1) or MgO (001) single crystal, and the surface of the substrate is cleaned to remove the heterogeneous oxide. After the cleaning process of the substrate, to verify that broad patterns not by the substrate surface to observe the reflected electron diffraction pattern, a mixed gas of ammonia and nitrogen (NH 3: N 2 = 1 : 1~1:
10) Fe was vapor-deposited in the atmosphere. Growth rate is 0.1
0.01 Å / s, substrate temperature is 200 ° C. The Fe used for the vapor deposition source had a purity of 99.999%, and Co, C
The purity of r, Mo, Nb and V is 99.9% or more.
【0011】多層化膜全体の膜厚は0.1μmであり、
中間層であるIn0.2 Ga0.8 As、GaAsあるいは
MgOは同じ蒸着室内で蒸着(約1Å/s)し、中間層
の平均膜厚は30〜200Åとした。中間層は30Åよ
り薄くなると膜の連続性が低下し、また200Åよりも
厚いと飽和磁束密度の低下が著しくなるのでこの膜厚範
囲とした。Fe−N膜の膜厚は100〜1000Åの範
囲で測定した。Fe−N膜の膜厚が100Å未満では多
層の周期構造が乱れてくるため、100Å以上とした。
Fe−N膜厚が100〜1000Åでは周期による回折
ピークがXRD(X線回折)の小角領域で観察されてい
る。また作製したFe−NあるいはFe−Co−N膜に
はFe16N2 の規則構造を示す回折ピークを観測してい
る。The total thickness of the multilayer film is 0.1 μm,
The intermediate layer of In 0.2 Ga 0.8 As, GaAs or MgO was vapor-deposited (about 1Å / s) in the same vapor deposition chamber, and the average thickness of the intermediate layer was 30 to 200Å. When the thickness of the intermediate layer is less than 30Å, the continuity of the film is deteriorated, and when it is more than 200Å, the saturation magnetic flux density is remarkably decreased. The film thickness of the Fe-N film was measured in the range of 100 to 1000Å. When the film thickness of the Fe-N film is less than 100 Å, the multilayer periodic structure is disturbed, so it is set to 100 Å or more.
When the Fe-N film thickness is 100 to 1000Å, the diffraction peak due to the period is observed in the small angle region of XRD (X-ray diffraction). Further, a diffraction peak showing the ordered structure of Fe 16 N 2 is observed in the produced Fe—N or Fe—Co—N film.
【0012】上記膜では回折ピークは、XRDパターン
において(002),(004),(220)及び(1
03)が観察されている。このピークの内、(002)
及び(004)はFe16N2 のc軸が基板面に垂直に成
長していることを示している。これはFe16N2 のa軸
が基板面に平行であることに等しく、a軸の長さと上記
単結晶の格子定数はほぼ一致しているため、界面では単
結晶の周期を維持しながら成長していることをしめして
おり、エピタキシャル成長しているといえる。In the above film, the diffraction peaks are (002), (004), (220) and (1) in the XRD pattern.
03) has been observed. (002) of this peak
And (004) show that the c-axis of Fe 16 N 2 grows perpendicular to the substrate surface. This is equivalent to that the a-axis of Fe 16 N 2 is parallel to the substrate surface, and the length of the a-axis and the lattice constant of the above single crystal are almost the same, so that the growth of the single crystal at the interface is maintained. It can be said that it is epitaxially growing.
【0013】図1にBsとFe−N膜一層当たりの膜厚
と保磁力(Hc)の関係を示す。多層膜のHcはFe−
N膜の膜厚減少とともに減少している。Hcが20Oe
以下を実現するにはFe−N膜の膜厚を500Å以下に
すれば良いことが分かる。Hcの値がIn0.2 Ga0.8
As(−〇−)、GaAs(−●−)、MgO(−□
−)の順に大きくなるのは、格子歪に関係しているため
である。一方、Fe16N2 と各中間層の間の格子定数差
はIn0.2 Ga0.8 As、GaAs、MgOの順に大き
くなっており、格子歪が小さいほうが多層膜の保磁力は
小さくなっている。これは格子歪が磁壁の動きをトラッ
プしているためと考えている。図2にIn0.2 Ga0.8
Asを中間層に用いた場合のFe−N膜の結晶粒径とF
e−N膜一層当たりの膜厚の関係を示す。Fe−N膜の
膜厚(d)を薄くしていくと膜の結晶粒径は小さくなる
ことが分かる。Fe−N膜の膜厚が500Å以下では粒
径は300Å以下となり、この時図1から明らかなよう
に保磁力は20Oe以下となっていることが分かる。FIG. 1 shows the relationship between the coercive force (Hc) and the film thickness per layer of Bs and the Fe--N film. Hc of the multilayer film is Fe-
It decreases as the film thickness of the N film decreases. Hc is 20 Oe
It can be understood that the thickness of the Fe-N film should be 500 Å or less to realize the following. Hc value is In 0.2 Ga 0.8
As (-○-), GaAs (-●-), MgO (-□)
The reason why it increases in the order of −) is that it is related to lattice strain. On the other hand, the lattice constant difference between Fe 16 N 2 and each intermediate layer increases in the order of In 0.2 Ga 0.8 As, GaAs, and MgO, and the smaller the lattice strain, the smaller the coercive force of the multilayer film. This is because lattice strain traps the movement of the domain wall. In 0.2 Ga 0.8
The crystal grain size and F of the Fe-N film when As is used for the intermediate layer
The relationship of film thickness per e-N film layer is shown. It can be seen that as the film thickness (d) of the Fe—N film is made thinner, the crystal grain size of the film becomes smaller. When the thickness of the Fe-N film is 500 Å or less, the grain size is 300 Å or less, and at this time, it is clear from FIG. 1 that the coercive force is 20 Oe or less.
【0014】図3にFe−N/In0.2 Ga0.8 As多
層膜のBsとFe−N膜一層当たりの膜厚の関係を示
す。BsはFe−N膜の膜厚減少と共に低下する。しか
し、この膜厚範囲ではBsは2.0T以上であり、Fe
−N膜当たりの磁束密度はFeよりも高い。これらの多
層膜についてXRDのθ−2θ走査を用いてパターンを
観察するとFe16N2 の規則格子であることを示すFe
16N2 (002),(004)が観測された。また(2
20)や(103)のピークも測定された。これはFe
16N2 が一方向に成長しているのではなく、c軸が基板
面の法線方向からある角度をもって成長している多結晶
膜であることを示している。FIG. 3 shows the relationship between Bs of the Fe—N / In 0.2 Ga 0.8 As multilayer film and the film thickness per Fe—N film. Bs decreases as the film thickness of the Fe-N film decreases. However, in this thickness range, Bs is 2.0 T or more, and Fe
The magnetic flux density per -N film is higher than that of Fe. When the patterns of these multilayer films are observed by using XRD θ-2θ scanning, Fe 16 N 2 is shown to be a regular lattice.
16 N 2 (002) and (004) were observed. Also (2
The peaks of 20) and (103) were also measured. This is Fe
It is shown that 16 N 2 is not a unidirectionally grown polycrystal film in which the c-axis is grown at an angle from the normal direction of the substrate surface.
【0015】これらの回折ピークの中で、c軸が傾斜し
ていることを示す(103)(〇)及び(220)
(●)ピークの強度について調べた結果を図4に示す。
Fe−Nの膜厚が1000Åの時の強度を1としたとき
の相対値で示してある。Fe−N膜の膜厚が薄くなるほ
どこれらのピーク強度は高くなる。このことはFe−N
膜厚が薄くなると結晶粒が細かくなると同時にFe16N
2 の方向がずれて成長していることを示している。この
結果Fe16N2 の磁気異方性を小さくでき、Hcを小さ
くすることができるものと考えられる。図5にこれらの
膜のHkを示す。HkもHcと同様にFe−N膜の膜厚
が薄くなるほど低下する。格子歪のFe−N膜厚依存性
を点線で示した。結晶粒径が細かく、格子歪が増加する
とFe−N膜のHc及びHkは小さくなることが分か
る。Among these diffraction peaks, it is shown that the c-axis is inclined (103) (○) and (220).
The results of examining the intensity of the (●) peak are shown in FIG.
It is shown as a relative value when the strength is 1 when the film thickness of Fe-N is 1000 Å. These peak intensities become higher as the Fe-N film becomes thinner. This is Fe-N
As the film thickness decreases, the crystal grains become finer and at the same time Fe 16 N
It shows that the direction of 2 is shifted and growing. As a result, it is considered that the magnetic anisotropy of Fe 16 N 2 can be reduced and Hc can be reduced. FIG. 5 shows the Hk of these films. Similar to Hc, Hk also decreases as the thickness of the Fe-N film decreases. The dependence of the lattice strain on the Fe-N film thickness is shown by a dotted line. It can be seen that Hc and Hk of the Fe—N film become smaller as the crystal grain size becomes finer and the lattice strain increases.
【0016】実施例2 図6にFe−Co−NとIn0.2 Ga0.8 Asを多層に
したときの多層膜のBs(−〇−)とHc(−□−)を
示す。Coの濃度は50at%であり、蒸着源としてF
eの代わりにFe−Co合金を用いて電子ビームを用い
て蒸着した。図3のFe−N二元系に比べ、Fe−Co
−N膜の方がBsが高いことが分かる。また、磁性膜の
膜厚が500ÅではFe−Co−N膜の場合、2.75
Tと高く、しかもHcは20Oe以下になっている。C
o添加によってBsが高くなるのはFe16N2 よりも
(Fe,Co)16N2 のBsの方が高いためである。Example 2 FIG. 6 shows Bs (− ◯ −) and Hc (− □ −) of a multilayer film when Fe—Co—N and In 0.2 Ga 0.8 As are multilayered. The Co concentration is 50 at%, and F is used as a vapor deposition source.
An Fe-Co alloy was used instead of e and vapor deposition was performed using an electron beam. Fe-Co compared to the Fe-N binary system in FIG.
It can be seen that the -N film has a higher Bs. Further, when the thickness of the magnetic film is 500 Å, in the case of the Fe-Co-N film,
T is high and Hc is 20 Oe or less. C
The addition of o increases the Bs because the Bs of (Fe, Co) 16 N 2 is higher than that of Fe 16 N 2 .
【0017】図6でFe−Co−Nの膜厚を500Åと
して作製した多層膜の耐食性を酸性液(HCl水溶液,
HCl 1mol,80℃,1時間)に浸した時のBs
の変化を図7に示す。無添加の多層膜はBs変化は80
%以下であった。Cr(−〇−),Mo(−●−),N
b(−△−)あるいはV(−□−)のいずれか1元素を
添加することで耐食性は改善される。特に添加元素濃度
を5at%以上とすることでBsの変化は10%以内に
抑えることができる。また、添加元素はCr,Mo,N
b,Vの順に耐食性を改善している。In FIG. 6, the corrosion resistance of the multilayer film produced with the film thickness of Fe--Co--N being 500Å is shown in FIG.
Bs when immersed in HCl 1 mol, 80 ° C., 1 hour)
FIG. 7 shows the change in Bs change of additive-free multilayer film is 80
% Or less. Cr (-○-), Mo (-●-), N
Corrosion resistance is improved by adding any one element of b (-Δ-) and V (-□-). In particular, the Bs change can be suppressed within 10% by setting the additive element concentration to 5 at% or more. The additive elements are Cr, Mo, N
The corrosion resistance is improved in the order of b and V.
【0018】実施例3 図8に垂直ディスク用単磁気ヘッドの断面を示す。主磁
極1に上記方法で作製した多層磁性膜を用い、基板2に
は単結晶基板を用いる。ヨーク3にはNiFeを用い
て、8ターンのコイルを使い、保護膜5で全体を覆って
いる。Co−Cr膜(膜厚0.14μm、Hc:700
Oe、Bs:6000G)のディスクを用いて速度10
m/sで記録再生特性を調べた。その結果、主磁極にF
e−Co−N(500Å)/In0.2 Ga0.8 As(5
0Å)多層膜を用い、膜厚が0.1μmのヘッドで10
0kFRPIのD50を得た。Embodiment 3 FIG. 8 shows a cross section of a single magnetic head for a vertical disk. The multilayer magnetic film produced by the above method is used for the main pole 1, and the single crystal substrate is used for the substrate 2. NiFe is used for the yoke 3, a coil of 8 turns is used, and the whole is covered with the protective film 5. Co-Cr film (film thickness 0.14 μm, Hc: 700)
Oe, Bs: 6000G) and a speed of 10
The recording / reproducing characteristics were examined at m / s. As a result, F
e-Co-N (500Å) / In 0.2 Ga 0.8 As (5
0 Å) A multi-layer film with a thickness of 0.1 μm
To obtain a D 50 of 0kFRPI.
【0019】[0019]
【発明の効果】本発明のFe−NあるいはFe−Co−
N及び上記添加元素を含む薄膜磁気ヘッドの磁極材料と
して応用できる。特に垂直磁気ディスク用の主磁極材料
に使用することで高磁気付与特性を有し、高い記録再生
効率を有するヘッドを作製でき、記録密度(D50)が1
00KBPI以上の特性を得ることができる。また添加
元素としてCr,Mo,Nb,Vを5at%以上加える
と耐食性が向上するのでヘッドプロセス時に磁性膜の磁
気特性は劣化しない。EFFECT OF THE INVENTION Fe-N or Fe-Co- of the present invention
It can be applied as a magnetic pole material of a thin film magnetic head containing N and the above-mentioned additional elements. In particular, by using it as a main magnetic pole material for a perpendicular magnetic disk, a head having high magnetic property and high recording / reproducing efficiency can be manufactured, and the recording density (D 50 ) is 1
It is possible to obtain the characteristics of 00 KBPI or more. Further, if Cr, Mo, Nb, and V are added as an additive element in an amount of 5 at% or more, the corrosion resistance is improved, so that the magnetic characteristics of the magnetic film do not deteriorate during the head process.
【図1】Fe−N膜の膜厚と保磁力(Hc)との関係を
示すグラフ。FIG. 1 is a graph showing the relationship between the film thickness of an Fe—N film and coercive force (Hc).
【図2】Fe−N膜の膜厚と結晶粒径の関係を示すグラ
フ。FIG. 2 is a graph showing the relationship between the film thickness of the Fe—N film and the crystal grain size.
【図3】Fe−N膜の膜厚と飽和磁束密度(Bs)との
関係を示すグラフ。FIG. 3 is a graph showing the relationship between the film thickness of the Fe—N film and the saturation magnetic flux density (Bs).
【図4】Fe16N2 (220)及び(103)回折ピー
ク強度(T)とFe−N膜の膜厚との関係を示すグラ
フ。FIG. 4 is a graph showing the relationship between Fe 16 N 2 (220) and (103) diffraction peak intensities (T) and the film thickness of the Fe—N film.
【図5】Fe−N膜の膜厚と異方性磁界(Hk)との関
係を示すグラフ。FIG. 5 is a graph showing the relationship between the film thickness of the Fe—N film and the anisotropic magnetic field (Hk).
【図6】Fe−Co−N膜の膜厚と飽和磁束密度(B
s)との関係を示すグラフ。FIG. 6 is a film thickness of a Fe—Co—N film and a saturation magnetic flux density (B
The graph which shows the relationship with s).
【図7】飽和磁束密度変化と添加元素(M)濃度との関
係を示すグラフ。FIG. 7 is a graph showing the relationship between changes in saturation magnetic flux density and additive element (M) concentration.
【図8】垂直磁気ヘッドの断面構造図。FIG. 8 is a sectional structural view of a perpendicular magnetic head.
1:主磁極、2:基板、3:ヨーク、4:コイル、5:
保護板1: main pole, 2: substrate, 3: yoke, 4: coil, 5:
Protective plate
Claims (9)
含む材料がもつ格子定数と近似した格子定数をもつ非磁
性材料とが、交互に積層していることを特徴とする磁性
多層膜。1. A magnetic multilayer characterized in that a film containing a ferromagnetic element and a non-magnetic material having a lattice constant similar to that of a material containing the ferromagnetic element are alternately laminated. film.
系膜又はFe−Co−N三元系膜であり、非磁性材料が
MgO,GaAs,In0.2 Ga0.8 Asから選ばれた
少なくとも一つであることを特徴とする請求項1記載の
磁性多層膜。2. The film containing the ferromagnetic element is a Fe—N binary film or a Fe—Co—N ternary film, and the nonmagnetic material is selected from MgO, GaAs, and In 0.2 Ga 0.8 As. The magnetic multilayer film according to claim 1, wherein the magnetic multilayer film is at least one.
20Oe以下、飽和磁束密度が2.0T以上であること
を特徴とする磁性多層膜。3. The magnetic multilayer film according to claim 2, which has a coercive force of 20 Oe or less and a saturation magnetic flux density of 2.0 T or more.
ピタキシャル成長が膜中の各結晶粒の間で起こり、それ
ぞれの結晶粒で異なる成長方位をもち、多層膜の相間に
複数の成長方位関係をもっていることを特徴とする磁性
多層膜。4. The magnetic multilayer film according to claim 1, wherein epitaxial growth occurs between crystal grains in the film, each crystal grain has a different growth orientation, and a plurality of growth orientation relationships exist between the phases of the multilayer film. A magnetic multi-layer film characterized in that
ピタキシャル成長した磁性元素を含む膜中に成長にもと
ずく格子歪を有し、格子歪による磁気異方性をもってい
ることを特徴とする磁性多層膜。5. The magnetic multilayer film according to claim 4, wherein the epitaxially grown film containing the magnetic element has lattice strain due to growth and magnetic anisotropy due to lattice strain. Multilayer film.
磁性元素を含む膜がbcc形成元素であるCr、Mo、
Nb、Vのいずれか1種以上を5at%以上含むことを
特徴とする磁性多層膜。6. The magnetic multilayer film according to claim 2, wherein the film containing a ferromagnetic element is Cr, Mo which is a bcc forming element,
A magnetic multilayer film containing 5 at% or more of at least one of Nb and V.
て、多層膜の積層周期は各層を形成する材料の格子定数
以上であり、膜全体の膜厚は100Å以上であることを
特徴とする磁性多層膜。7. A multilayer film according to any one of claims 1 to 6, wherein a lamination period of the multilayer film is equal to or more than a lattice constant of a material forming each layer, and a film thickness of the entire film is equal to or more than 100Å. A magnetic multilayer film.
多層膜を磁気ヘッドの主磁極に用いたことを特徴とする
磁性ヘッド。8. A magnetic head comprising the magnetic multilayer film according to claim 1 for a main pole of a magnetic head.
を特徴とする磁気ディスク装置。9. A magnetic disk device comprising the magnetic head according to claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19454492A JPH0620834A (en) | 1992-06-30 | 1992-06-30 | Magnetic multilayer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19454492A JPH0620834A (en) | 1992-06-30 | 1992-06-30 | Magnetic multilayer film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0620834A true JPH0620834A (en) | 1994-01-28 |
Family
ID=16326301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19454492A Pending JPH0620834A (en) | 1992-06-30 | 1992-06-30 | Magnetic multilayer film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0620834A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3178099A4 (en) * | 2014-08-08 | 2018-04-18 | Regents of the University of Minnesota | Multilayer iron nitride hard magnetic materials |
-
1992
- 1992-06-30 JP JP19454492A patent/JPH0620834A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3178099A4 (en) * | 2014-08-08 | 2018-04-18 | Regents of the University of Minnesota | Multilayer iron nitride hard magnetic materials |
US10573439B2 (en) | 2014-08-08 | 2020-02-25 | Regents Of The University Of Minnesota | Multilayer iron nitride hard magnetic materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100790281B1 (en) | Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device | |
US5484491A (en) | Ferromagnetic film | |
EP0300511B1 (en) | Magnetic head | |
US20040166376A1 (en) | Magnetic recording medium, method for producing the same, and magnetic recording apparatus | |
US5363794A (en) | Uniaxial thin film structures formed from oriented bilayers and multilayers | |
Suzuki et al. | Design and recording properties of Fe-Pt perpendicular media | |
EP0360055A1 (en) | Soft-magnetic film having high saturation magnetic-flux density and magnetic head utilizing the same | |
JP3612087B2 (en) | Magnetic recording medium | |
Kohmoto | Recent development of thin film materials for magnetic heads | |
JP2950912B2 (en) | Soft magnetic thin film | |
Qiu et al. | Magnetic properties and crystal structure of high moment FeTaN materials for thin‐film recording heads | |
US6410133B1 (en) | Magnetic recording disk, method of the magnetic recording disk and magnetic recording apparatus | |
Hasegawa et al. | Structural and soft magnetic properties of nanocrystalline (Fe, Co, Ni)-Ta-C films with high thermal stability | |
JP3392444B2 (en) | Magnetic artificial lattice film | |
JP3382084B2 (en) | Magnetic thin film for magnetic head, method of manufacturing the same, and magnetic head using the magnetic thin film | |
US5304258A (en) | Magnetic alloy consisting of a specified FeTaN Ag or FeTaNCu composition | |
JPH0831372B2 (en) | Method for manufacturing Fe—Co magnetic film | |
JPH0620834A (en) | Magnetic multilayer film | |
JP2950917B2 (en) | Soft magnetic thin film | |
KR960010327B1 (en) | Magnetic recording medium | |
JP2696989B2 (en) | Multilayer magnetic film | |
JP3559332B2 (en) | Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium | |
JPH05263170A (en) | Magnetic alloy film and its production | |
Honda et al. | Bias effects on magnetic anisotropy of sputtered Co/Pt multilayers | |
JP2893706B2 (en) | Iron-based soft magnetic film |