JPH06207840A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JPH06207840A
JPH06207840A JP5003372A JP337293A JPH06207840A JP H06207840 A JPH06207840 A JP H06207840A JP 5003372 A JP5003372 A JP 5003372A JP 337293 A JP337293 A JP 337293A JP H06207840 A JPH06207840 A JP H06207840A
Authority
JP
Japan
Prior art keywords
nozzle
piezoelectric element
gap
vortex
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5003372A
Other languages
Japanese (ja)
Inventor
Toshio Aga
敏夫 阿賀
Akio Fujita
晃朗 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP5003372A priority Critical patent/JPH06207840A/en
Publication of JPH06207840A publication Critical patent/JPH06207840A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect plugging of a gap between a nozzle and a force receiving body (vortex production body) in simple constitution by calculating a square of output/measured flow speed of plugging piezoelectric elements at a specified time and comparing it with a constant of a storing means. CONSTITUTION:Piezoelectric elements 36, 37 are inserted into a recess part 35 axially provided on a vortex production body 33 at an end side of the vortex production body 33, fixed thereon and a constant K=a square of output/ measured flow speed of the elements 36 at the time when a vortex flowmeter is set is stored to a storing means 41. In order to detect plugging of a gap between a nozzle 31 and the vortex production body 33, at a specified time, for instant, at the time of periodic repair a value of the square of the output/ measured flow speed of the element is calculated with CPU 42, compared it with the constant K stored in the storing means 41, when its difference exceeds a specified value (a value determined in consideration of some degree of a margin for the constant K), it is judged that plugging such as dust produces in the gap 34 between the nozzle 31 and the vortex production body 33.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、管路のノズルと受力体
との隙間のごみ等による詰まりを検出可能な渦流量計に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vortex flowmeter capable of detecting clogging of a gap between a nozzle of a pipe and a force receiver due to dust or the like.

【0002】[0002]

【従来の技術】図2は、従来より一般に使用されている
従来例の構成説明図で、例えば、特開平3−02061
8号(特願平1−033256号)に示されている。1
0は流体が流れる管路、11は管路10に直角に設けら
れた円筒状のノズルである。
2. Description of the Related Art FIG. 2 is a structural explanatory view of a conventional example which has been generally used, for example, Japanese Patent Application Laid-Open No. 3-02061.
No. 8 (Japanese Patent Application No. 1-033256). 1
Reference numeral 0 is a pipe through which the fluid flows, and 11 is a cylindrical nozzle provided at a right angle to the pipe 10.

【0003】12はノズル11とは間隔を持って管路1
0に直角に挿入された台形断面を持つ柱状の渦発生体で
あり、その一端はネジ13により管路10に支持され、
他端はフランジ部14でノズル11にネジ或いは溶接に
より固定されている。15は渦発生体12のフランジ部
14側に設けられた凹部である。
Reference numeral 12 is a pipe line 1 with a distance from the nozzle 11.
It is a columnar vortex generator having a trapezoidal cross section that is inserted at a right angle to 0, and one end thereof is supported by a pipe 13 by a screw 13,
The other end is fixed to the nozzle 11 with a flange 14 by screws or welding. Reference numeral 15 denotes a concave portion provided on the flange portion 14 side of the vortex generator 12.

【0004】この凹部15の中には、その底部から順に
金属製の第1コモン電極16、圧電素子17、電極板1
8、絶縁板19、電極板20、圧電素子21がサンドイ
ッチ状に配列され金属製の押圧棒22でこれ等は押圧固
定されている。さらに、電極板18からはリ−ド線2
3、電極板20からはリ−ド線24がそれぞれ端子A、
Bに引き出されている。
Inside the recess 15, metal first common electrode 16, piezoelectric element 17 and electrode plate 1 are arranged in this order from the bottom.
8, the insulating plate 19, the electrode plate 20, and the piezoelectric element 21 are arranged in a sandwich shape, and these are pressed and fixed by a metal pressing rod 22. Further, from the electrode plate 18, the lead wire 2
3, lead wires 24 from the electrode plate 20 are terminals A,
B has been pulled out.

【0005】圧電素子17、21は各圧電素子17、2
1の紙面に向かって左側と右側とがそれぞれ逆方向に分
極されており同じ方向の応力に対して互いに上下の電極
に逆極性の電荷を発生する。
The piezoelectric elements 17 and 21 are the piezoelectric elements 17 and 2, respectively.
The left side and the right side of FIG. 1 are polarized in opposite directions, and charges of opposite polarities are generated in the upper and lower electrodes with respect to stress in the same direction.

【0006】圧電素子17に発生した電荷は電極板18
と接続された端子Aと台座16を介して接続された管路
10との間に得られ、圧電素子21に発生した電荷は電
極板20と接続された端子Bと押圧棒20と接続された
管路10との間に得られる。
The electric charge generated in the piezoelectric element 17 is applied to the electrode plate 18
The electric charge generated between the terminal A connected to and the conduit 10 connected via the pedestal 16 and generated in the piezoelectric element 21 was connected to the terminal B connected to the electrode plate 20 and the pressing rod 20. It is obtained between the pipe 10 and the pipe 10.

【0007】この2個の電極板18、20に発生した電
荷は図7に示すように電荷増幅器25、26に入力され
る。電荷増幅器25の出力と電荷増幅器26の出力をボ
リウム27を介した出力とを加算器28で加算して流量
信号を得る。この流量信号は例えば電流出力に変換され
て2線を介して負荷に伝送される(図示せず)。次に、
以上のように構成された渦流量計の動作について図4と
図5を用いて説明する。
The charges generated on the two electrode plates 18 and 20 are input to charge amplifiers 25 and 26 as shown in FIG. The output of the charge amplifier 25 and the output of the charge amplifier 26 are added to the output via the volume 27 by the adder 28 to obtain a flow rate signal. This flow rate signal is converted into, for example, a current output and transmitted to the load via the two wires (not shown). next,
The operation of the vortex flowmeter configured as above will be described with reference to FIGS. 4 and 5.

【0008】流体が管路10の中に流れると渦発生体1
2に矢印Fで示した方向にカルマン渦による振動が発生
する。この振動により渦発生体12には図4(a)に示
すような応力分布とこの逆の応力分布の繰返しが生じ、
各圧電素子17、21には図4(a)に示す渦周波数を
持つ信号応力に対応した電荷+Q、−Qの繰返しが生じ
る。なお、図4においては説明の便宜のため電極板18
或いは21を紙面に対して左右に2つに分割し、かつ上
下の一方の電極は台座16あるいは押圧棒22に相当す
るものとしてある。
When the fluid flows into the conduit 10, the vortex generator 1
The vibration due to the Karman vortex occurs in the direction indicated by arrow F in FIG. This vibration causes the vortex generator 12 to repeat a stress distribution as shown in FIG.
Charges + Q and −Q corresponding to the signal stress having the vortex frequency shown in FIG. 4A are repeated in each piezoelectric element 17 and 21. In FIG. 4, the electrode plate 18 is illustrated for convenience of explanation.
Alternatively, 21 is divided into two parts to the left and right with respect to the paper surface, and one of the upper and lower electrodes corresponds to the pedestal 16 or the pressing rod 22.

【0009】一方、管路10にはノイズとなる管路振動
も生じる。この管路振動は流体の流れと同じ方向の抗
力方向、流体の流れとは直角方向の揚力方向、渦発
生体の長手方向の3方向成分に分けられる。このうち、
抗力方向の振動に対する応力分布は第9図(b)に示す
ようになり1個の電極内で正負の電荷は打ち消されてノ
イズ電荷は発生しない。また、長手方向の振動に対して
は図4(c)に示すように電極内で打ち消されて抗力方
向と同様にノイズ電荷は発生しない。
On the other hand, in the pipeline 10, pipeline vibration that causes noise is also generated. This pipeline vibration is divided into a drag force direction that is the same as the fluid flow direction, a lift force direction that is perpendicular to the fluid flow direction, and a longitudinal component of the vortex generator. this house,
The stress distribution with respect to the vibration in the drag direction is as shown in FIG. 9 (b), and positive and negative charges are canceled out within one electrode, and noise charges are not generated. Further, as to the vibration in the longitudinal direction, as shown in FIG. 4 (c), it is canceled in the electrode and no noise charge is generated as in the drag direction.

【0010】しかし、揚力方向の振動は信号応力と同一
の応力分布となりノイズ電荷が生じる。そこで、このノ
イズ電荷を消去するために以下の演算を実行する。圧電
素子17、21の各電荷をQ1、Q2、信号成分をS1
2、揚力方向のノイズ成分をN1、N2とし、圧電素子
17、21で分極を逆とするとQ1、Q2は次式で示され
る。 Q1=S1+N1 −Q2=−S2−N2
However, the vibration in the lift direction has the same stress distribution as the signal stress, and noise charge is generated. Therefore, the following calculation is executed in order to erase this noise charge. The charges of the piezoelectric elements 17 and 21 are Q 1 and Q 2 , the signal component is S 1 ,
If S 2 and the noise components in the lift direction are N 1 and N 2, and the polarization is reversed in the piezoelectric elements 17 and 21, Q 1 and Q 2 are represented by the following equations. Q 1 = S 1 + N 1 -Q 2 = -S 2 -N 2

【0011】ただし、S1とS2、N1とN2のベクトル方
向は同じである。ここで、圧電素子17、21の信号成
分とノイズ成分の関係は図5(この図は揚力方向のノイ
ズと信号に対する渦発生体の曲げモ−メントの関係を示
す)に示すようになっているので、図7に示すように圧
電素子17側の電荷増幅器25の出力を加算器28で加
算する際にボリウム27と共にN1/N2倍して圧電素子
21側の電荷増幅器26の出力と加算すると、 Q1−Q2(N1/N2) =S1−S2(N1/N2) となり管路ノイズは除去される。
However, the vector directions of S 1 and S 2 , and N 1 and N 2 are the same. Here, the relationship between the signal component and the noise component of the piezoelectric elements 17 and 21 is shown in FIG. 5 (this figure shows the relationship between the noise in the lift direction and the bending moment of the vortex generator with respect to the signal). Therefore, as shown in FIG. 7, when the output of the charge amplifier 25 on the piezoelectric element 17 side is added by the adder 28, it is multiplied by N 1 / N 2 together with the volume 27 and added to the output of the charge amplifier 26 on the piezoelectric element 21 side. Then, Q 1 −Q 2 (N 1 / N 2 ) = S 1 −S 2 (N 1 / N 2 ), and the pipeline noise is removed.

【0012】しかして、第1コモン電極16、圧電素子
17、電極板18、絶縁板19、電極板20、圧電素子
21は、凹部15に押圧棒22で押圧固定されている。
ここで渦発生体12と第1コモン電極16、圧電素子1
7、電極板18、絶縁板19、電極板20、圧電素子2
1、押圧棒22との温度膨脹を等しくしておけば、測定
流体温度が変化しても、初期の押付け力は変化しないの
で、問題は無い。
The first common electrode 16, the piezoelectric element 17, the electrode plate 18, the insulating plate 19, the electrode plate 20, and the piezoelectric element 21 are pressed and fixed in the recess 15 by the pressing rod 22.
Here, the vortex generator 12, the first common electrode 16, the piezoelectric element 1
7, electrode plate 18, insulating plate 19, electrode plate 20, piezoelectric element 2
1. If the temperature expansion of the pressing rod 22 is made equal, the initial pressing force does not change even if the measured fluid temperature changes, so there is no problem.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、この様
な装置においては、管路のノズル11と受力体12との
隙間のごみ等による詰まりは、測定信号が小さくなる、
S/N比が悪くなり計測不能となって、渦発生体12を
管路10より引き抜いた場合に、初めてごみの等の付着
が判る場合が多かった。これまで、詰まりの予知診断は
できなかった。
However, in such a device, the clogging due to dust or the like in the gap between the nozzle 11 and the force receiving body 12 in the conduit reduces the measurement signal.
When the vortex generator 12 was pulled out from the conduit 10, the S / N ratio became poor and measurement became impossible. Until now, the predictive diagnosis of clogging has not been possible.

【0014】管路のノズル11と受力体12との隙間の
ごみ等による詰まりの発生は、渦流量計が使用される分
野が広がる事により徐々に問題となってきた。今日にお
いて、詰まりの予知診断が求められて来ている。本発明
は、この問題点を解決するものである。本発明の目的
は、管路のノズルと受力体との隙間のごみ等による詰ま
りを検出可能な渦流量計を提供するにある。
The occurrence of clogging due to dust or the like in the gap between the nozzle 11 of the conduit and the force receiving member 12 has gradually become a problem as the fields in which the vortex flowmeter is used expands. Today, there is a demand for predictive diagnosis of clogging. The present invention solves this problem. An object of the present invention is to provide a vortex flowmeter capable of detecting clogging due to dust or the like in a gap between a nozzle of a pipeline and a force receiving body.

【0015】[0015]

【課題を解決するための手段】この目的を達成するため
に、本発明は、管路に設けられたノズルと、該ノズルに
隙間を保って挿入された剛性の高い柱状の受力体と、該
受力体の一端側に軸方向に設けられた凹部と、該凹部に
挿入固定された圧電素子とを具備しカルマン渦により受
力体に作用する交番力を検出して流量を測定する渦流量
計において、装置の設置時の前記圧電素子の出力/測定
流速の二乗=Kなる定数Kを記憶するメモリー手段と、
所定時に前記圧電素子の出力/測定流速の二乗を演算し
前記メモリー手段の前記Kと比較してその差が所定値を
越えた場合に前記ノズルと前記受力体との隙間に詰まり
が生じたと判断するCPUとを具備したことを特徴とす
る渦流量計を構成したものである。
In order to achieve this object, the present invention is directed to a nozzle provided in a pipe line, and a highly rigid columnar force receiving member inserted in the nozzle with a gap. A vortex for measuring the flow rate by detecting an alternating force acting on the force receiving body by a Karman vortex, which has a concave portion axially provided on one end side of the force receiving body and a piezoelectric element inserted and fixed in the concave portion. In the flowmeter, memory means for storing a constant K such that the output of the piezoelectric element at the time of installation of the device / square of measured flow velocity = K
The square of the output of the piezoelectric element / measured flow velocity is calculated at a predetermined time and compared with the K of the memory means. If the difference exceeds a predetermined value, it is determined that the gap between the nozzle and the force receiving body is clogged. The vortex flowmeter is characterized by comprising a CPU for judging.

【0016】[0016]

【作用】以上の構成において、所定時に、詰まり検出圧
電素子の出力/測定流速の二乗を演算し、メモリー手段
のKの値と比較してその差が所定値を越えた場合に、ノ
ズルと受力体との隙間に詰まりが生じたと判断するCP
Uが設けられたので、ノズルと受力体との隙間の詰まり
を検出することができる。以下、実施例に基づき詳細に
説明する。
In the above construction, the square of the output of the clogging detection piezoelectric element / the square of the measured flow velocity is calculated at a predetermined time, and compared with the value of K in the memory means. CP that judges that the gap with the force body is clogged
Since U is provided, clogging of the gap between the nozzle and the force receiver can be detected. Hereinafter, detailed description will be given based on examples.

【0017】[0017]

【実施例】図1は本発明の一実施例の要部構成説明図で
ある。31は、管路32に設けられたノズルである。3
3は、ノズル31に隙間34を保って挿入された剛性の
高い柱状の渦発生体である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the essential structure of an embodiment of the present invention. Reference numeral 31 is a nozzle provided in the conduit 32. Three
Reference numeral 3 denotes a highly rigid columnar vortex generator inserted in the nozzle 31 with a gap 34.

【0018】35は、渦発生体33の一端側に軸方向に
設けられた凹部である。36,37は、凹部35に挿入
固定された圧電素子である。41は、渦流量計の設置時
の、圧電素子36の出力/測定流速の二乗=Kなる定数
Kを記憶するメモリー手段である。
Reference numeral 35 is a recess provided axially on one end side of the vortex generator 33. 36 and 37 are piezoelectric elements inserted and fixed in the recess 35. Reference numeral 41 is a memory means for storing a constant K such that the output of the piezoelectric element 36 / the square of the measured flow velocity = K when the vortex flowmeter is installed.

【0019】42は、所定時に、圧電素子36の出力/
測定流速の二乗を演算し、メモリー手段41のKと比較
して、その差が所定値を越えた場合に、ノズル31と渦
発生体33との隙間に詰まりが生じたと判断するCPU
である。
Reference numeral 42 denotes an output of the piezoelectric element 36 at a predetermined time.
A CPU that calculates the square of the measured flow velocity, compares it with K in the memory means 41, and judges that the gap between the nozzle 31 and the vortex generator 33 is clogged when the difference exceeds a predetermined value.
Is.

【0020】以上の構成において、流速流量の測定は、
従来例と同様にして測定される。一方、ノズルと受力体
との隙間の詰まりの検出は、先ず、渦発生体33の設置
時の、圧電素子41の出力/測定流速の二乗=Kなる定
数Kをメモリー手段41に記憶させる。次に、CPU4
2により、所定時に、例えば、定期補修時に、出圧電素
子36の出力/測定流速の二乗を演算し、メモリー手段
41のKと比較してその差が所定値Aを越えた場合に、
ノズル31と渦発生体33との隙間34に詰まりが生じ
たと判断する。前記所定値Aは、定数Kにある程度のマ
ージンを考慮して決定される。
In the above structure, the flow velocity and flow rate are measured by
It is measured in the same manner as the conventional example. On the other hand, to detect the clogging of the gap between the nozzle and the force receiving body, first, when the vortex generator 33 is installed, the output of the piezoelectric element 41 / the square of the measured flow velocity = K, a constant K, is stored in the memory means 41. Next, CPU4
2, the square of the output / measured flow velocity of the output piezoelectric element 36 is calculated at a predetermined time, for example, at the time of periodic repair, and when the difference exceeds K of the memory means 41 and exceeds the predetermined value A,
It is determined that the gap 34 between the nozzle 31 and the vortex generator 33 is clogged. The predetermined value A is determined in consideration of the constant K and some margin.

【0021】この結果、所定時に、圧電素子36の出力
/測定流速の二乗を演算し、メモリー手段41のKと比
較してその差が所定値Aを越えた場合に、ノズル31と
渦発生体33との隙間34に詰まりが生じたと判断する
CPU423が設けられたので、
As a result, at a predetermined time, the square of the output of the piezoelectric element 36 / measured flow velocity is calculated and compared with K of the memory means 41, and when the difference exceeds a predetermined value A, the nozzle 31 and the vortex generator are generated. Since the CPU 423 for determining that the gap 34 with the CPU 33 is clogged is provided,

【0022】(1)簡単な構成で、隙間34部分へのご
みの詰まり状態をモニターできる。 (2)モニターにより、修理、交換周期の設定等が、明
確になり、修理、交換の工数が削減できる。
(1) It is possible to monitor the clogging of dust in the gap 34 with a simple structure. (2) The monitor makes it possible to clarify the setting of the repair / replacement cycle and reduce the number of repair / replacement steps.

【0023】(3)当該プラントのごみやダストの有
無、量、種類等のチェックができ、プラントの自己診
断、寿命診断等が可能となる。 (4)測定用の圧電素子36を利用したので、別に圧電
素子を設ける必要がなく、構成が簡単となり、安価にで
きる。 なお、前述の実施例においては、メモリ手段41とCP
U42とは,圧電素子36に接続されていると説明した
が、これに限ることはなく、圧電素子37にのみ接続さ
れてもよく,あるいは、圧電素子36と圧電素子37の
両者に同時に接続されても良い。
(3) Presence / absence, amount, type, etc. of dust and dust in the plant can be checked, and self-diagnosis and life diagnosis of the plant can be performed. (4) Since the piezoelectric element 36 for measurement is used, it is not necessary to separately provide a piezoelectric element, the structure is simple, and the cost can be reduced. Incidentally, in the above-mentioned embodiment, the memory means 41 and the CP
Although U42 is described as being connected to the piezoelectric element 36, it is not limited to this, and may be connected only to the piezoelectric element 37, or may be connected to both the piezoelectric element 36 and the piezoelectric element 37 at the same time. May be.

【0024】[0024]

【発明の効果】以上説明したように、本発明は、管路に
設けられたノズルと、該ノズルに隙間を保って挿入され
た剛性の高い柱状の受力体と、該受力体の一端側に軸方
向に設けられた凹部と、該凹部に挿入固定された圧電素
子とを具備しカルマン渦により受力体に作用する交番力
を検出して流量を測定する渦流量計において、装置の設
置時の前記圧電素子の出力/測定流速の二乗=Kなる定
数Kを記憶するメモリー手段と、所定時に前記圧電素子
の出力/測定流速の二乗を演算し前記メモリー手段の前
記Kと比較してその差が所定値を越えた場合に前記ノズ
ルと前記受力体との隙間に詰まりが生じたと判断するC
PUとを具備したことを特徴とする渦流量計を構成し
た。
As described above, according to the present invention, the nozzle provided in the conduit, the columnar force receiving member having a high rigidity inserted in the nozzle with a gap maintained, and one end of the force receiving member. In a vortex flowmeter for measuring a flow rate by detecting an alternating force acting on a force receiving body by a Karman vortex, the vortex flowmeter including a concave portion axially provided on the side and a piezoelectric element inserted and fixed in the concave portion, Memory means for storing a constant K such that output of the piezoelectric element / square of measured flow velocity = K when installed, and square of output / measured flow velocity of the piezoelectric element at a predetermined time are calculated and compared with K of the memory means. When the difference exceeds a predetermined value, it is determined that the gap between the nozzle and the force receiving body is clogged.
A vortex flowmeter characterized by including a PU was constructed.

【0025】この結果、所定時に、詰まり検出圧電素子
の出力/測定流速の二乗を演算し、メモリー手段のKと
比較してその差が所定値を越えた場合に、ノズルと渦発
生体との隙間に詰まりが生じたと判断するCPUが設け
られたので、 (1)簡単な構成で、隙間部分へのごみの詰まり状態を
モニターできる。 (2)モニターにより、修理、交換周期の設定等が、明
確になり、修理、交換の工数が削減できる。
As a result, the square of the output of the clogging detection piezoelectric element / the square of the measured flow velocity is calculated at a predetermined time, and compared with K of the memory means, and when the difference exceeds a predetermined value, the nozzle and the vortex generator are separated. Since the CPU that determines that the gap has been clogged is provided, (1) it is possible to monitor the clogging state of dust in the gap with a simple configuration. (2) The monitor makes it possible to clarify the setting of the repair / replacement cycle and reduce the number of repair / replacement steps.

【0026】(3)当該プラントのごみやダストの有
無、量、種類等のチェックができ、プラントの自己診
断、寿命診断等が可能となる。 (4)測定用の圧電素子を利用したので、別に圧電素子
を設ける必要がなく、構成が簡単となり、安価にでき
る。
(3) Presence / absence, amount, type, etc. of dust and dust in the plant can be checked, and self-diagnosis, life diagnosis, etc. of the plant can be performed. (4) Since the piezoelectric element for measurement is used, it is not necessary to separately provide a piezoelectric element, the structure is simple, and the cost can be reduced.

【0027】従って、本発明によれば、管路のノズルと
受力体との隙間のごみ等による詰まりを検出可能な安価
な渦流量計を実現することが出来る。
Therefore, according to the present invention, it is possible to realize an inexpensive vortex flowmeter capable of detecting clogging due to dust in the gap between the nozzle of the conduit and the force receiving body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】従来より一般に使用されている従来例の構成説
明図である。
FIG. 2 is an explanatory diagram of a configuration of a conventional example that is generally used in the past.

【図3】図2に示す検出部で検出した電荷を電圧に変換
する変換部の構成を示すブロック図である。
FIG. 3 is a block diagram showing a configuration of a conversion unit that converts charges detected by the detection unit shown in FIG. 2 into a voltage.

【図4】図2の動作説明図である。FIG. 4 is an operation explanatory diagram of FIG. 2;

【図5】図2の動作説明図である。5 is an operation explanatory diagram of FIG. 2;

【符号の説明】[Explanation of symbols]

13…ネジ 14…フランジ 16…第1コモン電極 18…電極板 19…絶縁板 20…電極板 22…押圧棒 23…リ―ド線 24…リ―ド線 25…電荷増幅器 26…電荷増幅器 27…ボリウム 28…加算器 31…ノズル 32…管路 33…渦発生体 34…隙間 35…凹部 36…圧電素子 41…メモリー手段 42…CPU 13 ... screw 14 ... flange 16 ... first common electrode 18 ... electrode plate 19 ... insulating plate 20 ... electrode plate 22 ... pressing bar 23 ... lead wire 24 ... lead wire 25 ... charge amplifier 26 ... charge amplifier 27 ... Volume 28 ... Adder 31 ... Nozzle 32 ... Pipeline 33 ... Vortex generator 34 ... Gap 35 ... Recess 36 ... Piezoelectric element 41 ... Memory means 42 ... CPU

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】管路に設けられたノズルと、 該ノズルに隙間を保って挿入された剛性の高い柱状の受
力体と、 該受力体の一端側に軸方向に設けられた凹部と、 該凹部に挿入固定された圧電素子とを具備しカルマン渦
により受力体に作用する交番力を検出して流量を測定す
る渦流量計において、 装置の設置時の前記圧電素子の出力/測定流速の二乗=
Kなる定数Kを記憶するメモリー手段と、 所定時に前記圧電素子の出力/測定流速の二乗を演算し
前記メモリー手段の前記定数Kと比較してその差が所定
値を越えた場合に前記ノズルと前記受力体との隙間に詰
まりが生じたと判断するCPUとを具備したことを特徴
とする渦流量計。
1. A nozzle provided in a pipe line, a highly rigid columnar force receiving body inserted in the nozzle with a gap maintained, and a recess provided in one end side of the force receiving body in the axial direction. A vortex flowmeter which comprises a piezoelectric element inserted and fixed in the recess and measures the flow rate by detecting an alternating force acting on a force receiving body by a Karman vortex, the output / measurement of the piezoelectric element when the device is installed. Square of velocity =
Memory means for storing a constant K, K, and the nozzle when the square of output / measured flow velocity of the piezoelectric element is calculated at a predetermined time and compared with the constant K of the memory means and the difference exceeds a predetermined value. A vortex flowmeter, comprising: a CPU that determines that clogging has occurred in a gap between the force receiving body.
JP5003372A 1993-01-12 1993-01-12 Vortex flowmeter Pending JPH06207840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5003372A JPH06207840A (en) 1993-01-12 1993-01-12 Vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5003372A JPH06207840A (en) 1993-01-12 1993-01-12 Vortex flowmeter

Publications (1)

Publication Number Publication Date
JPH06207840A true JPH06207840A (en) 1994-07-26

Family

ID=11555523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5003372A Pending JPH06207840A (en) 1993-01-12 1993-01-12 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPH06207840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022094213A (en) * 2020-12-14 2022-06-24 横河電機株式会社 Diagnostic device, measurement device, diagnostic method, and diagnostic program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022094213A (en) * 2020-12-14 2022-06-24 横河電機株式会社 Diagnostic device, measurement device, diagnostic method, and diagnostic program
US11946786B2 (en) 2020-12-14 2024-04-02 Yokogawa Electric Corporation Diagnostic apparatus, measurement apparatus, diagnostic method, and computer-readable medium

Similar Documents

Publication Publication Date Title
US4437350A (en) Vortex flow metering apparatus
JPH02161313A (en) Composite flowmeter
JPH06207840A (en) Vortex flowmeter
JPH06147942A (en) Vortex flow metor
JPH11258016A (en) Vortex flow meter
JPH0320618A (en) Vortex flowmeter
JP4670152B2 (en) Vortex flow meter
JPH11248502A (en) Vertex flowmeter
JP3114411B2 (en) Vortex flow meter
JP3002778B1 (en) Karman vortex ultrasonic flow meter device
JP3209246B2 (en) Vortex flow meter
JPH11295118A (en) Vortex flowmeter
JP3968947B2 (en) Karman vortex flowmeter
JP5423963B2 (en) Vortex flow meter
JP2003207378A (en) Vortex flowmeter
JP3381766B2 (en) Vortex flow meter
JPH11248501A (en) Vortex flowmeter
JP2003322553A (en) Vortex flowmeter
JPH06307903A (en) Vortex flowmeter
JPH068497Y2 (en) Vortex flowmeter
JPH06249685A (en) Vortex flowmeter
JP2739353B2 (en) Mass flow meter
JPS5921483B2 (en) fluid measuring device
JPH10142018A (en) Vortex flowmeter
JPH03264822A (en) Vortex flowmeter