JPH06204732A - Driver for satellite antenna - Google Patents

Driver for satellite antenna

Info

Publication number
JPH06204732A
JPH06204732A JP36117492A JP36117492A JPH06204732A JP H06204732 A JPH06204732 A JP H06204732A JP 36117492 A JP36117492 A JP 36117492A JP 36117492 A JP36117492 A JP 36117492A JP H06204732 A JPH06204732 A JP H06204732A
Authority
JP
Japan
Prior art keywords
satellite
angle
axis
turning
polar axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36117492A
Other languages
Japanese (ja)
Inventor
Akira Kanehara
晃 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP36117492A priority Critical patent/JPH06204732A/en
Publication of JPH06204732A publication Critical patent/JPH06204732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To select plural satellites on a still orbit and to acquire the selected satellite. CONSTITUTION:A turning end 2b is directed to, e.g. the due north, and while a turning axis direction is tilted upward from a horizontal plane by a latitude a of an installed point, the polar axis 2 is fixed by a support base 1, an axial line of a support arm 4a is directed with a tilt by a prescribed angle beta (elevation angle difference between the sun and a reference satellite in a reference direction at a reference time) from a direction of an axial line of a support arm 4a orthogonal to a turning axis of the turning end 2b to fix the other end of the arm 4a to the turning end 2b thereby allowing an aperture of a parabolic antenna 4 to be directed in a direction of the angle beta. A turning angle for each satellite is preset to a changeover controller 3, which drives the turning end 2b of the shaft 2 in the operation through the reception of designation of a satellite. A turning angle epsilon of the turning end 2b for each satellite is expressed as epsilon-cos<-1>[{singammacos(90 deg.-alpha)}/cosbetacosalpha], where gamma is an elevating angle of an objective satellite based on a satellite in existence in the direction of the due south.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静止軌道上の複数の衛
星のそれぞれの方向へアンテナの指向方向を切り替えて
設定する衛星用アンテナ駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a satellite antenna driving apparatus for switching and setting the direction of an antenna in each direction of a plurality of satellites in a geostationary orbit.

【0002】[0002]

【従来の技術】例えば、多数の衛星からテレビ放送電波
を受ける場合のように、静止軌道上に配置される複数の
静止衛星を1つのパラボラアンテナで捕捉するには、複
数の衛星のそれぞれの方向へアンテナの指向方向を切り
替えて設定できる衛星用アンテナ駆動装置が必要であ
る。
2. Description of the Related Art For example, when a plurality of geostationary satellites placed in geostationary orbits are to be captured by one parabolic antenna, as in the case of receiving television broadcasting radio waves from a large number of satellites, the directions of the satellites are different from each other. There is a need for a satellite antenna drive that can set the antenna pointing direction.

【0003】かかるアンテナ駆動装置として天体観測に
使用される赤道儀を利用することが考えられる。即ち、
図4に示すように、赤道儀は、地球自転に対応して回転
駆動される極軸31と、この極軸31と一体的に回転す
るとともに、地球軌道に応じて赤緯角を変化させる赤緯
軸32とを備えるが、この赤緯軸32にパラボラアンテ
ナ33の支持腕33aを取り付けた構造とし、極軸31
を北半球では真北方向に向け、かつ水平面内にある主軸
から設置点の緯度で定まる角度αだけ傾斜させて設定
し、対象が静止衛星であることから、赤緯角に相当する
所定角度Pをパラボラアンテナ33の開口面が静止軌道
を指向するようなある角度に設定し、衛星の配置間隔に
対応した角度ずつ極軸31が回転するようにその回転角
を制御するのである。
It is possible to use an equatorial mount used for astronomical observation as the antenna driving device. That is,
As shown in FIG. 4, the equatorial mount includes a polar axis 31 that is rotationally driven in response to the rotation of the earth, and a red axis that rotates integrally with the polar axis 31 and that changes the declination angle according to the earth's orbit. The declination axis 32 is provided with the support arm 33a of the parabolic antenna 33, and the polar axis 31 is provided.
In the northern hemisphere, is set to the true north direction and is tilted from the main axis in the horizontal plane by an angle α determined by the latitude of the installation point. Since the target is a geostationary satellite, the predetermined angle P corresponding to the declination angle is set. The opening surface of the parabolic antenna 33 is set at a certain angle so as to direct the geostationary orbit, and the rotation angle is controlled so that the polar axis 31 rotates by an angle corresponding to the arrangement interval of the satellites.

【0004】[0004]

【発明が解決しようとする課題】しかし、赤道儀では、
極軸や赤緯軸の回転角は、地球中心を基準として定めら
れるが、静止衛星は太陽に比して近距離にあるので、完
全な球面でない地球表面の影響は無視できず地球中心を
基準として回転角を求める場合には誤差が大きくなり補
正が必要である。また、赤緯角に相当する所定角度の設
定では設置点の緯度と経度及び衛星の高度と経度を考慮
する必要があるので、実際の運用では相当に繁雑な調整
操作が必要となることが予想される。
[Problems to be Solved by the Invention] However, in the equatorial mount,
The rotation angles of polar axis and declination axis are determined with reference to the center of the earth, but since geostationary satellites are closer than the sun, the influence of the earth's surface, which is not a perfect spherical surface, cannot be ignored, and the center of the earth is used as a reference. When obtaining the rotation angle, the error becomes large and correction is necessary. In addition, since it is necessary to consider the latitude and longitude of the installation point and the altitude and longitude of the satellite when setting the predetermined angle corresponding to the declination angle, it is expected that a considerably complicated adjustment operation will be required in actual operation. To be done.

【0005】要するに、衛星用アンテナ駆動装置を赤道
儀にパラボラアンテナを取り付ける形式で構成する場
合、回転角や赤緯角に相当する所定角度の設定をどのよ
うにして行うかが問題となる。
In short, when the satellite antenna driving device is constructed so that the parabolic antenna is attached to the equatorial mount, the problem is how to set the predetermined angle corresponding to the rotation angle and the declination angle.

【0006】本発明は、このような問題に鑑みなされた
もので、その目的は、簡単な調整操作でアンテナの指向
方向を切り替え設定できる衛星用アンテナ駆動装置を提
供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a satellite antenna drive device capable of switching and setting the pointing direction of the antenna by a simple adjustment operation.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明の衛星用アンテナ駆動装置は次の如き構成を
有する。即ち、本発明の衛星用アンテナ駆動装置は、静
止軌道上の複数の衛星のそれぞれの方向へアンテナの指
向方向を切り替えて設定する衛星用アンテナ駆動装置で
あって; この衛星用アンテナ駆動装置は、一端が固定
端で他端が回転端である極軸と; 前記極軸の固定端を
回転端の回転軸方向を南北方向に向け、かつ、地上の設
置点の緯度に相当する角度分水平面から傾斜させて固定
保持する支持台と; 前記極軸の回転端に指向方向が回
転軸に直交する方向から所定角度(基準時基準方向にお
ける太陽仰角と衛星仰角との差)分傾いた方向となるよ
うに固定保持されるパラボラアンテナと; 地上設置点
の緯度と経度及び対象とする複数の衛星それぞれの高度
と経度から求めた衛星毎の極軸回転角が予め設定され、
衛星の指定入力を受けて必要な極軸回転角だけ前記極軸
の回転端を回転駆動する切替制御器と; を備えたこと
を特徴とするものである。
In order to achieve the above-mentioned object, the satellite antenna driving device of the present invention has the following structure. That is, the satellite antenna driving device of the present invention is a satellite antenna driving device that switches and sets the pointing directions of the antennas to the respective directions of a plurality of satellites in a geostationary orbit; A polar axis having a fixed end at one end and a rotating end at the other end; and a fixed end of the polar axis with the rotational axis direction of the rotating end oriented in the north-south direction, and from an angle dividing plane corresponding to the latitude of the ground installation point. A support base that is tilted and fixedly held; the direction of orientation of the rotation end of the polar axis is inclined by a predetermined angle (difference between the sun elevation angle and the satellite elevation angle in the reference direction at the time of reference) from the direction orthogonal to the rotation axis. A parabolic antenna that is fixedly held as shown above; the polar axis rotation angle for each satellite obtained from the latitude and longitude of the ground installation point and the altitude and longitude of each of the target satellites is preset,
A switching controller that receives a designated input from the satellite and rotationally drives the rotating end of the polar axis by a required polar axis rotation angle;

【0008】[0008]

【作用】次に、前記の如く構成される本発明の衛星用ア
ンテナ駆動装置の作用を説明する。本発明では、赤道儀
に倣い、極軸とこの極軸を地上に支持する支持台とを備
え、極軸にパラボラアンテナを取り付ける構造とする
が、極軸として一端が固定端で他端が回転端であるもの
を用意し、設置時に、極軸の回転端の回転軸方向を所定
方向に設定して固定端を支持台に固定保持させ、同時に
パラボラアンテナをその指向方向が回転軸に直交する方
向から所定角度分傾いた方向となるようにして極軸の回
転端に固定保持させ、運用時には衛星の指定を受けた切
替制御器が極軸の回転端のみを回転操作すれば済むよう
にしてある。なお、「所定角度」とは、赤道儀で言う赤
緯角に相当する角度であるが、本発明では、例えば北半
球では、真南方向の衛星仰角と南中時の春秋分太陽仰角
との差と定義される角度である。
Next, the operation of the satellite antenna driving apparatus of the present invention constructed as described above will be described. According to the present invention, the structure is equipped with a polar axis and a support base for supporting the polar axis on the ground in accordance with an equatorial mount, and the parabolic antenna is attached to the polar axis. Prepare the end, and at the time of installation, set the rotating axis direction of the rotating end of the polar axis to a predetermined direction so that the fixed end is fixedly held on the support base, and at the same time, the parabolic antenna has its directivity direction orthogonal to the rotating axis. It is fixed to the rotating end of the polar axis so as to be inclined by a predetermined angle from the direction, and during operation, the switching controller designated by the satellite only has to rotate only the rotating end of the polar axis. The "predetermined angle" is an angle corresponding to the declination angle in the equatorial mount. However, in the present invention, for example, in the northern hemisphere, the difference between the satellite elevation angle in the south direction and the spring and autumn sun elevation angle in the middle of the south. Is an angle defined as.

【0009】その結果、赤道儀よりも簡単な構造で繁雑
な調整操作を要さずに単に衛星指定という簡単な操作の
みで静止軌道上の複数の衛星を切り替えて捕捉できるこ
ととなる。
As a result, a plurality of satellites in the geosynchronous orbit can be switched and captured by a simple operation of simply designating the satellite without a complicated adjustment operation having a simpler structure than the equatorial mount.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例に係る衛星用アンテナ
駆動装置を示す。図1において、この衛星用アンテナ駆
動装置は、支持台1と極軸2と切替制御器3とパラボラ
アンテナ4とで基本的に構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a satellite antenna driving device according to an embodiment of the present invention. In FIG. 1, this satellite antenna drive device is basically composed of a support base 1, a polar axis 2, a switching controller 3 and a parabolic antenna 4.

【0011】支持台1は、例えば平板状の基台1aと、
この基台1aの上面に直立する支柱1bとからなる。基
台1aは、設置点に水平配置される。支柱1bは、その
先端がコ字状に形成され、そこの凹部に極軸2の一端2
aが挿入されボルト1cにより固定保持されるようにな
っている。
The support base 1 includes, for example, a flat base 1a,
It is composed of a support column 1b which stands upright on the upper surface of the base 1a. The base 1a is horizontally arranged at the installation point. The column 1b has a U-shaped tip, and one end 2 of the pole shaft 2 is formed in the recess of the column 1b.
A is inserted and fixedly held by the bolt 1c.

【0012】極軸2は、一端2aが固定端で他端2bが
回転端となっている。つまり固定端2aにはモータが内
蔵され、そのモータの回転軸が回転端2bを形成してい
る。内蔵モータの回転駆動制御は切替制御器3が行う。
The pole shaft 2 has one end 2a as a fixed end and the other end 2b as a rotating end. That is, a motor is built in the fixed end 2a, and the rotating shaft of the motor forms the rotating end 2b. The switching controller 3 controls the rotation drive of the built-in motor.

【0013】切替制御器3は、例えば固定端に内蔵され
るモータを駆動する回路と、衛星指定や設置点Aの緯度
と経度、地球半径Re 等の各種データを入力するキーボ
ードと、入力された各種データに基づき衛星毎の回転角
を演算し記憶し衛星指定に応じて駆動回路に回転駆動指
令を出す簡易形コンピュータとで構成される。
The switching controller 3 is inputted with, for example, a circuit for driving a motor built in the fixed end, a keyboard for inputting various data such as satellite designation, latitude and longitude of the installation point A, and earth radius R e. It is composed of a simplified computer that calculates and stores the rotation angle of each satellite based on various data and issues a rotation drive command to the drive circuit according to the designation of the satellite.

【0014】パラボラアンテナ4は、支持腕4aの一端
に、アンテナ開口面が支持腕4aの軸と直交するように
取り付けられる。支持腕4aの他端はコ字状に形成さ
れ、そこの凹部に極軸2の回転端2bが挿入され、ボル
ト4bにより固定保持されるようになっている。
The parabolic antenna 4 is attached to one end of the support arm 4a such that the antenna opening surface is orthogonal to the axis of the support arm 4a. The other end of the support arm 4a is formed in a U shape, and the rotary end 2b of the polar shaft 2 is inserted into the concave portion thereof and is fixedly held by a bolt 4b.

【0015】以上の構成において、設置時では、固定端
2aを支柱1bの先端凹部にボルト1cで固定保持さ
せ、またパラボラアンテナ4の支持腕4aの他端凹部を
回転端2bにボルト4bで固定保持させる。
In the above structure, at the time of installation, the fixed end 2a is fixedly held by the bolt 1c in the recess of the tip of the column 1b, and the other end of the support arm 4a of the parabolic antenna 4 is fixed to the rotating end 2b by the bolt 4b. Hold it.

【0016】その際に、極軸2は、回転端2b側を、図
1中N(S)と示してあるように、北半球においては真
北方向に向けて、南半球においては真南方向に向けて、
かつ、回転軸方向を地上の設置点の緯度に相当する角度
α分水平面から上向きに傾斜させて設定する。
At this time, the polar axis 2 faces the rotation end 2b side in the northward direction in the northern hemisphere and in the southward direction in the southern hemisphere, as indicated by N (S) in FIG. hand,
In addition, the rotation axis direction is set by inclining upward from the horizontal plane of the angle α corresponding to the latitude of the installation point on the ground.

【0017】また、パラボラアンテナ4の支持腕4a
は、その軸線が極軸2の回転端2bの回転軸に直交する
方向から所定角度β分傾いた方向となるようにして設定
する。これにより、パラボラアンテナ4は、北半球では
真南方向を指向して設定される。つまり、北半球では真
南方向に存在する衛星を基準にするのである。以下、北
半球に設定されるとして説明する。
The support arm 4a of the parabolic antenna 4 is also provided.
Is set such that its axis is inclined by a predetermined angle β from the direction orthogonal to the rotation axis of the rotation end 2b of the polar axis 2. As a result, the parabolic antenna 4 is set in the true south direction in the northern hemisphere. In other words, in the Northern Hemisphere, the satellites that are located in the true south direction are the reference. Hereinafter, it will be described as being set in the northern hemisphere.

【0018】所定角度βは、図2に示すように、地球2
1上の北半球の設置点Aにおいて、南中時の春秋分太陽
仰角δと真南方向に存在する衛星22の仰角γ1 との角
度差であり、赤道儀で言う赤緯角に相当するが、内容が
異なるものである。
The predetermined angle β is, as shown in FIG.
It is the angle difference between the sun elevation angle δ of the spring and autumn equinox during mid-south and the elevation angle γ 1 of the satellite 22 in the true south direction at the installation point A in the northern hemisphere above 1 , which corresponds to the declination angle in the equatorial mount. , The contents are different.

【0019】この所定角度βは、具体的には、設置点A
の緯度α(但し、南半球では−α)、地球21の半径R
e 及び衛星22と地球中心との間の距離RS を用いて求
められる。
This predetermined angle β is specifically, the installation point A
Latitude α (but -α in the Southern Hemisphere), radius R of the Earth 21
e and the distance R S between the satellite 22 and the center of the earth.

【0020】即ち、設置点Aから真南にある基準衛星2
2までの距離RSAT1は数式1で与えられるので、設置点
Aから基準衛星22を見た仰角γ1 は数式2となり、太
陽仰角δは図2から、90°−αであるので、所定角度
βは数式3で求められる。
That is, the reference satellite 2 located just south of the installation point A
Since the distance R SAT1 to 2 is given by Equation 1, the elevation angle γ 1 looking at the reference satellite 22 from the installation point A is Equation 2, and the sun elevation angle δ is 90 ° −α from FIG. β can be obtained by Equation 3.

【0021】[0021]

【数1】 RSAT1=(Re 2+RS 2−2ReS cosα)1/2 ## EQU1 ## R SAT1 = (R e 2 + R S 2 -2R e R S cos α) 1/2

【0022】[0022]

【数2】 γ1 = cos-1{(RSAT1 2 +Re 2−RS 2)/2ReSAT1}−90°Γ 1 = cos −1 {(R SAT1 2 + R e 2 −R S 2 ) / 2R e R SAT1 } -90 °

【0023】[0023]

【数3】β=γ1 −(90°−α)[Formula 3] β = γ 1 − (90 ° −α)

【0024】なお、図3に、設置点の緯度に対する真南
方向時の春秋分時の太陽と静止衛星の仰角の関係を示し
てある。両仰角の差が所定角度βである。
FIG. 3 shows the relationship between the latitude of the installation point and the elevation angle of the geostationary satellite and the sun at the spring and autumn equinoxes in the southward direction. The difference between both elevation angles is the predetermined angle β.

【0025】そして、運用時では、極軸2の回転端2b
を回転させ対象とする衛星を切り替えて捕捉するが、そ
の回転角は真南方向に存在する衛星22を基準に次のよ
うにして求めることができる。
In operation, the rotating end 2b of the polar shaft 2
The target satellite is switched and captured by rotating the satellite. The rotation angle can be obtained as follows with reference to the satellite 22 existing in the true south direction.

【0026】即ち、設置点Aから対象とする衛星までの
距離RSAT2は、設置点Aの緯度α、地球21の半径R
e 、基準衛星22と地球中心との間の距離Rs 及び設置
点Aと対象とする衛星との経度差θにより求められ(数
式4)、これにより対象とする衛星の仰角γ2 は数式5
で与えられるので、回転角εは数式6で与えられる。
That is, the distance R SAT2 from the installation point A to the target satellite is the latitude α of the installation point A and the radius R of the earth 21.
e , the distance R s between the reference satellite 22 and the center of the earth, and the longitude difference θ between the installation point A and the target satellite (Equation 4), and thus the elevation angle γ 2 of the target satellite is Equation 5
The rotation angle ε is given by the following equation 6.

【0027】[0027]

【数4】 RSAT2=(Re 2+RS 2−2ReS cosα cosθ)1/2 ## EQU00004 ## R SAT2 = (R e 2 + R S 2 -2R e R S cos α cos θ) 1/2

【0028】[0028]

【数5】 γ2 = cos-1{(RSAT2 2 +Re 2−RS 2)/2ReSAT2}−90°Γ 2 = cos −1 {(R SAT2 2 + R e 2 −R S 2 ) / 2R e R SAT2 } −90 °

【0029】[0029]

【数6】 ε= cos-1[{ sinγ2 − sinβcos(90°−α)}/ cosβ cosα][Equation 6] ε = cos -1 [{sinγ 2 −sinβ cos (90 ° −α)} / cos β cos α]

【0030】そこで、本実施例では、南北方向N
(S)、角度αと同βの設定は設置作業時にのみ行われ
るので、南北方向N(S)の設定は方位磁石や水平器を
用いそれに補正値を加味して行い、角度αと同βの設定
は手計算や数表(図3)を用いて行うこととし、同時に
設定作業の1つとして衛星毎の回転角εを切替制御器3
の簡易形コンピュータに演算させ(数式4〜同6)、そ
れを記憶させることを行う。
Therefore, in this embodiment, the north-south direction N
(S) and the angle α and β are set only during the installation work. Therefore, the north-south direction N (S) is set by using a compass and a leveling magnet with a correction value added to the angle α and β. The setting of the rotation angle ε for each satellite is performed as one of the setting work by the manual calculation and the numerical table (Fig. 3).
The simplified computer (1) is operated (Equations 4 to 6) and stored.

【0031】その結果、運用時に切替制御器3のキーホ
ードを操作して衛星指定を行えば、回転端2bが必要な
角度回転駆動され、パラボラアンテナ4を自動的に所望
の衛星方向へ切り替えて指向させ得ることとなる。
As a result, when the satellite is designated by operating the key board of the switching controller 3 during operation, the rotary end 2b is rotationally driven by a required angle, and the parabolic antenna 4 is automatically switched to a desired satellite direction for directing. Can be done.

【0032】なお、切替制御器3では、簡易形コンピュ
ータに代えてメモリを設け、外部で演算した衛星毎の回
転角を記憶させ、指定入力に応じて必要な回転角を読み
出すようにしても良いことは勿論である。
The switching controller 3 may be provided with a memory in place of the simplified computer so that the rotation angle of each satellite calculated externally can be stored and the necessary rotation angle can be read out according to the designated input. Of course.

【0033】ここで、数値的な誤差は、設置点Aの緯度
が高くなる程大きくなるが、例えば日本国内(北緯4
5.5°以下)では0.3°以下の誤差であり、全体的
にも小さいものであり、実用上支障ない程度である。
Here, the numerical error increases as the latitude of the installation point A increases, but for example, in Japan (4 latitudes north)
(5.5 ° or less), the error is 0.3 ° or less, which is small as a whole, which is not a problem in practical use.

【0034】[0034]

【発明の効果】以上説明したように、本発明の衛星用ア
ンテナ駆動装置によれば、赤道儀に倣い、極軸とこの極
軸を地上に支持する支持台とを備え、極軸にパラボラア
ンテナを取り付ける構造とするが、極軸として一端が固
定端で他端が回転端であるものを用意し、設定時に、極
軸の回転端の回転軸方向を所定方向に設定して固定端を
支持台に固定保持させ、同時にパラボラアンテナをその
指向方向が回転軸に直交する方向から所定角度(基準時
基準方向における太陽と衛星との仰角差)分傾いた方向
となるようにして極軸の回転端に固定保持させ、運用時
には衛星の指定を受けた切替制御器が極軸の回転端のみ
を回転操作すれば済むようにしてあるので、赤道儀より
も簡単な構造で繁雑な調整操作を要さずに単に衛星指定
という簡単な操作のみで静止軌道上の複数の衛星を切り
替えて捕捉できる効果がある。
As described above, according to the satellite antenna driving device of the present invention, a parabolic antenna is provided on the polar axis, which has a polar axis and a support for supporting the polar axis on the ground, following the equatorial mount. However, a pole shaft with one fixed end and the other end being a rotating end is prepared, and at the time of setting, the rotating shaft direction of the rotating end of the polar shaft is set to a predetermined direction to support the fixed end. The parabola antenna is fixedly held on the table, and at the same time, the polar axis is rotated so that the parabolic antenna is tilted by a predetermined angle (the elevation difference between the sun and the satellite in the reference direction at the time of reference) from the direction orthogonal to the rotation axis. Since it is fixedly held at the end and the switching controller designated by the satellite only needs to rotate only the rotating end of the polar axis during operation, it has a simpler structure than the equatorial mount and does not require complicated adjustment operation. Simple operation to simply specify the satellite There is an effect that can be captured by switching a plurality of satellites in geostationary orbit at only.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る衛星用アンテナ駆動装
置の外観構成図である。
FIG. 1 is an external configuration diagram of a satellite antenna driving device according to an embodiment of the present invention.

【図2】所定角度β及び回転端2bの回転角の算出方法
の説明図である。
FIG. 2 is an explanatory diagram of a method of calculating a predetermined angle β and a rotation angle of a rotation end 2b.

【図3】設置点の緯度と真南方向時の春秋分時の太陽及
び衛星の仰角との関係図である。
FIG. 3 is a diagram showing the relationship between the latitude of the installation point and the elevation angles of the sun and satellite during the spring and autumn equinox when facing south.

【図4】赤道儀にパラボラアンテナを設定した場合の外
観概念図である。
FIG. 4 is a conceptual view of the appearance when a parabolic antenna is set on the equatorial mount.

【符号の説明】[Explanation of symbols]

1 支持台 1a 基台 1b 支柱 2 極軸 2a 固定端 2b 回転端 3 切替制御器 4 パラボラアンテナ 4a 支持腕 21 地球 22 基準方向(真南方向)に存在する衛星 Re 地球半径 RS 地球中心から衛星までの距離 α 設置点の緯度 β 基準時基準方向における太陽と衛星の仰角差 γ 衛星仰角 δ 太陽仰角From the satellite R e earth radius R S geocentric present in first support platform 1a base 1b strut 2 polar 2a fixed end 2b rotating end 3 switch controller 4 parabolic antenna 4a supporting arm 21 earth 22 reference direction (due south direction) Distance to satellite α Latitude of installation point β Reference time Elevation difference between sun and satellite in reference direction γ Satellite elevation angle δ Sun elevation angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 静止軌道上の複数の衛星のそれぞれの方
向へアンテナの指向方向を切り替えて設定する衛星用ア
ンテナ駆動装置であって; この衛星用アンテナ駆動装
置は、一端が固定端で他端が回転端である極軸と; 前
記極軸の固定端を回転端の回転軸方向を南北方向に向
け、かつ、地上の設置点の緯度に相当する角度分水平面
から傾斜させて固定保持する支持台と; 前記極軸の回
転端に指向方向が回転軸に直交する方向から所定角度
(基準時基準方向における太陽仰角と衛星仰角との差)
分傾いた方向となるように固定保持されるパラボラアン
テナと; 地上設置点の緯度と経度及び対象とする複数
の衛星それぞれの高度と経度から求めた衛星毎の極軸回
転角が予め設定され、衛星の指定入力を受けて必要な極
軸回転角だけ前記極軸の回転端を回転駆動する切替制御
器と; を備えたことを特徴とする衛星用アンテナ駆動
装置。
1. A satellite antenna drive apparatus for switching the direction of an antenna to each direction of a plurality of satellites in geostationary orbit; the satellite antenna drive apparatus has one end fixed and the other end. And a polar axis having a rotating end; and a support for fixing and holding the fixed end of the polar axis with the rotating axis of the rotating end oriented in the north-south direction and tilted from the horizontal plane at an angle corresponding to the latitude of the ground installation point. A table; a predetermined angle from the direction orthogonal to the rotation axis at the rotation end of the polar axis (difference between the sun elevation angle and the satellite elevation angle in the reference direction at the time of reference)
A parabolic antenna that is fixedly held in a tilted direction; the polar rotation angle of each satellite obtained from the latitude and longitude of the ground installation point and the altitude and longitude of each of the target satellites is preset. A satellite antenna drive device, comprising: a switching controller that receives a designated input from a satellite and rotationally drives a rotating end of the polar axis by a required polar axis rotation angle.
JP36117492A 1992-12-28 1992-12-28 Driver for satellite antenna Pending JPH06204732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36117492A JPH06204732A (en) 1992-12-28 1992-12-28 Driver for satellite antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36117492A JPH06204732A (en) 1992-12-28 1992-12-28 Driver for satellite antenna

Publications (1)

Publication Number Publication Date
JPH06204732A true JPH06204732A (en) 1994-07-22

Family

ID=18472497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36117492A Pending JPH06204732A (en) 1992-12-28 1992-12-28 Driver for satellite antenna

Country Status (1)

Country Link
JP (1) JPH06204732A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287216A (en) * 2001-03-26 2002-10-03 Yasuo Doi Simple type equatorial for astrophotography
JP2007243795A (en) * 2006-03-10 2007-09-20 Toshiba Corp Satellite communication system and method and apparatus for adjusting antenna orientation direction
CN104617389A (en) * 2014-12-23 2015-05-13 中国人民解放军63655部队 Rapid sighting device and method for waveguide antenna
CN109149057A (en) * 2018-08-01 2019-01-04 苏州频聿精密机械有限公司 A kind of universal satellite antenna support fixed structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496403A (en) * 1990-08-10 1992-03-27 Misawa Homes Co Ltd Antenna following-up device for satellite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496403A (en) * 1990-08-10 1992-03-27 Misawa Homes Co Ltd Antenna following-up device for satellite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287216A (en) * 2001-03-26 2002-10-03 Yasuo Doi Simple type equatorial for astrophotography
JP2007243795A (en) * 2006-03-10 2007-09-20 Toshiba Corp Satellite communication system and method and apparatus for adjusting antenna orientation direction
CN104617389A (en) * 2014-12-23 2015-05-13 中国人民解放军63655部队 Rapid sighting device and method for waveguide antenna
CN109149057A (en) * 2018-08-01 2019-01-04 苏州频聿精密机械有限公司 A kind of universal satellite antenna support fixed structure

Similar Documents

Publication Publication Date Title
US4126865A (en) Satellite tracking dish antenna
US4202321A (en) Solar tracking device
EP1882312B1 (en) Portable antenna positioner apparatus and method
US4290411A (en) Solar energy collector sun-tracking apparatus and method
KR102479537B1 (en) Antenna system with active array on tracking pedestal
US7212170B1 (en) Antenna beam steering via beam-deflecting lens and single-axis mechanical rotator
CA2156402A1 (en) Drive arrangement for mechanically-steered antennas
US6017003A (en) Satellite operating system and method
JPH06204732A (en) Driver for satellite antenna
AU2010200237A1 (en) A tracking system
US4689635A (en) Apparatus for orientating TV antennas for satellite reception
US4821047A (en) Mount for satellite tracking devices
JP2806659B2 (en) Direction tracking device
RU2052895C1 (en) Bearing and turning gear
US11901606B1 (en) Pan/tilt assembly for antenna apparatus
IE50678B1 (en) Ground station antennae for satellite communication systems
JPH04304005A (en) Antenna system
US6695262B2 (en) Spacecraft methods and structures for enhanced service-attitude accuracy
JP4472240B2 (en) Communication satellite system
RU2070757C1 (en) Pencil-beam antenna for communication with geostationary artificial earth satellite
JP2001313506A (en) Antenna direction setting method and antenna system for receiving satellite broadcast
JPH04266203A (en) Mount for antenna system
JPH0565106U (en) Satellite tracking antenna
CA1252194A (en) Device and method for automatically tracking satellite by receiving antenna
JPH07321532A (en) Azimuth angle reading device for bs/cs antenna driver