JPH06204593A - Optical amplifier and semiconductor laser device - Google Patents

Optical amplifier and semiconductor laser device

Info

Publication number
JPH06204593A
JPH06204593A JP101993A JP101993A JPH06204593A JP H06204593 A JPH06204593 A JP H06204593A JP 101993 A JP101993 A JP 101993A JP 101993 A JP101993 A JP 101993A JP H06204593 A JPH06204593 A JP H06204593A
Authority
JP
Japan
Prior art keywords
wavelength
optical fiber
light
rare earth
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP101993A
Other languages
Japanese (ja)
Inventor
Masato Ishino
正人 石野
Yasushi Matsui
康 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP101993A priority Critical patent/JPH06204593A/en
Publication of JPH06204593A publication Critical patent/JPH06204593A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rare earth-doped fiber optical amplifier having high reliability in low power consumption and a semiconductor laser device, from which a high fiber optical output is acquired in low bias. CONSTITUTION:The constitution of an optical amplifier is shown. A multiple wavelength light source 1 simultaneously emits the wavelengths of 1.47mum, 1.48mum and 1.49mum while being multiplexed. The wavelength synthetic excitation light 16 is projected to an Er-doped fiber (EDFA) 12, and the doped fiber is excited. Signal light having a 1.55mum wavelength is projected to the EDFA 12 under the state, thus outputting amplified light 14 through a wavelength filter 15. Each wavelength used at that time can excites EDFA with high efficiency even in any wavelength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超長距離・超多分配光フ
ァイバー通信実現に必要不可欠な光ファイバーアンプ装
置およびそれを構成する半導体レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber amplifier device which is indispensable for realizing ultra-long-distance / ultra-multi-distribution optical fiber communication and a semiconductor laser device constituting the optical fiber amplifier device.

【0002】[0002]

【従来の技術】近年Er等の希土類ドープの光ファイバ
ーを用いた光増幅技術が急速に進歩し超長距離無中継光
伝送や超多分配光伝送が実現されつつある。ここでは図
4に示すように波長1.48μmの励起用半導体レーザ11
をErドープの光ファイバー(以下、EDFA)12に
入射して励起状態にした上で波長1.55μmの信号光13
をEDFA12に入射することにより増幅された信号光
14を出射することができる。ここで高い増幅率を得る
にはEDFAを高い励起状態にする必要があり、そのた
めには非常に高出力の励起用半導体レーザが必要とな
る。一般的には100mW以上の光出力があることが望
ましいと言われている。
2. Description of the Related Art In recent years, an optical amplification technique using an optical fiber doped with a rare earth element such as Er has rapidly progressed, and ultra-long-distance unrepeatered optical transmission and ultra-multi-distribution optical transmission are being realized. Here, as shown in FIG. 4, a pumping semiconductor laser 11 having a wavelength of 1.48 μm is used.
Is injected into an Er-doped optical fiber (hereinafter referred to as EDFA) 12 to be excited and then a signal light 13 having a wavelength of 1.55 μm
The signal light 14 thus amplified can be emitted by entering the signal light into the EDFA 12. Here, in order to obtain a high amplification factor, it is necessary to bring the EDFA into a highly excited state, and for that purpose, a very high output semiconductor laser for excitation is required. It is generally said that it is desirable to have an optical output of 100 mW or more.

【0003】図5に従来励起用光源として用いられてい
るInGaAsP/InP系材料を用いた1.48μm半導体レーザの
代表的ファイバー光出力−バイアス電流特性を示すが、
100mW以上の光ファイバー出力をを得るためには6
00mA以上の大電流を必要となる。しかしながら図5
を見れば明かなように、半導体レーザにおいてはバイア
ス電流の増加により活性層の発熱やリーク電流の増加に
よりその発光効率は著しく低下する。さらに一つの半導
体レーザ共振器にこのような大電流を注入することは素
子の寿命を低下させ、高い信頼性を得ることは難しい。
FIG. 5 shows a typical fiber light output-bias current characteristic of a 1.48 μm semiconductor laser using an InGaAsP / InP material which has been used as a conventional pumping light source.
6 to obtain optical fiber output of 100 mW or more
A large current of 00 mA or more is required. However, FIG.
As is apparent from the graph, in the semiconductor laser, the luminous efficiency thereof is remarkably lowered due to the increase of the bias current and the heat generation of the active layer and the increase of the leak current. Further, injecting such a large current into one semiconductor laser resonator shortens the life of the device and it is difficult to obtain high reliability.

【0004】一方、レーザの負荷の低減のために2台の
励起用レーザを用いる方法がある。図6にこの方式の例
を示す。ここでは励起用レーザ11、11’からの出射
光ははそれぞれ偏波保存ファイバー18、18’を介し
て偏向ビームスプリッター17で合成されEDFA12
に入射される。ここでは偏波保存ファイバー18、1
8’からの出射光は偏向ビームスプリッターに対してそ
れぞれTE、TM入射とすることにより合成が可能とな
るものである。
On the other hand, there is a method of using two pumping lasers to reduce the laser load. FIG. 6 shows an example of this method. Here, the lights emitted from the pumping lasers 11 and 11 'are combined by the polarization beam splitter 17 via the polarization maintaining fibers 18 and 18', respectively, and the EDFA 12 is generated.
Is incident on. Here, polarization-maintaining fibers 18, 1
The light emitted from 8'can be combined by making TE and TM incident on the deflecting beam splitter, respectively.

【0005】この方法では各レーザは60mW程度の光
出力で100mWの合成出力を得ることができ各レーザ
のバイアス電流を低減することができる。しかしながら
この場合でも各レーザへのバイアス電流は400mA程
度必要であり発光効率・信頼性の立場からまだまだ不十
分で、さらに多くのレーザを用いる必要があるが、偏波
合成では2台以上の光を合成することはできない。
In this method, each laser can obtain a combined output of 100 mW with an optical output of about 60 mW, and the bias current of each laser can be reduced. However, even in this case, the bias current to each laser is about 400 mA, which is still insufficient from the standpoint of light emission efficiency and reliability. It is necessary to use more lasers, but in polarization combining, two or more lights are used. It cannot be synthesized.

【0006】[0006]

【発明が解決しようとする課題】このように従来の方法
では充分な増幅率を有する光ファイバーアンプを得るた
めには1台の励起用半導体レーザに大電流を必要とし発
光効率の低下による大消費電力を要するとともに大きな
バイアス負荷により半導体レーザの寿命の低減が生じ信
頼性の高い光増幅器を得ることができないという問題が
あった。さらにレーザへの負荷低減のために複数台の励
起光源を用いる場合も従来の偏波合成の手法では2台が
限界で大きな改善に至っていないという問題があった。
As described above, according to the conventional method, in order to obtain an optical fiber amplifier having a sufficient amplification factor, a large current is required for one pumping semiconductor laser and a large power consumption is caused by a decrease in luminous efficiency. In addition, there is a problem in that the life of the semiconductor laser is shortened by a large bias load and an optical amplifier with high reliability cannot be obtained. Further, even when a plurality of pumping light sources are used to reduce the load on the laser, the conventional polarization combining method has a problem in that the number of two pumps is limited and has not been greatly improved.

【0007】そこで本発明では、低消費電力で高い信頼
性を有する希土類ドープファイバー光増幅器および低バ
イアスで高いファイバー光出力の得られる半導体レーザ
装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a rare earth-doped fiber optical amplifier having low power consumption and high reliability, and a semiconductor laser device which can obtain a high fiber optical output with a low bias.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するために、発振波長が希土類添加光ファイバーの励
起波長範囲内で相発振波長が異なる複数の単一波長発振
レーザがアレイ状に集積された半導体素子と希土類添加
光ファイバー、および前記アレイ状半導体素子からの各
出射光を前記希土類添加光ファイバーに集光・結合する
機能および前記希土類光ファイバーに増幅感度を有する
波長の信号光を入出力する機能を有することを特徴とす
る光増幅装置であり、同一半導体基板上に各共振器で相
異なる単一発振波長レーザ光を出射するとともに前記各
共振器の光軸と出射端面との角度が相異なる複数の共振
器が集積されていることを特徴とする半導体レーザ素子
である。
In order to solve the above-mentioned problems, the present invention integrates a plurality of single-wavelength oscillation lasers having different oscillation wavelengths within the excitation wavelength range of a rare earth-doped optical fiber in an array form. Semiconductor element and rare-earth-doped optical fiber, and a function of condensing and coupling each light emitted from the array-shaped semiconductor element to the rare-earth-doped optical fiber and a function of inputting and outputting a signal light having a wavelength having amplification sensitivity to the rare-earth optical fiber. An optical amplifying device characterized in that each resonator emits laser light of a single oscillation wavelength different from each other on the same semiconductor substrate, and the angle between the optical axis of each resonator and the emission end face is different. A semiconductor laser device having a plurality of resonators integrated therein.

【0009】[0009]

【作用】上記の手段により、低バイアス電流で各励起レ
ーザを駆動できることにより高い発光効率を得られ低消
費電力・高信頼性の光ファイバーアンプ装置を得るとと
もに、簡単な構成により複数のレーザ光を効率良くファ
イバーに結合できる半導体レーザ装置を得ることができ
るものである。
With the above-mentioned means, each pump laser can be driven with a low bias current, so that a high luminous efficiency can be obtained and an optical fiber amplifier device with low power consumption and high reliability can be obtained. It is possible to obtain a semiconductor laser device which can be well coupled to a fiber.

【0010】[0010]

【実施例】以下本発明の実施例について記載する。EXAMPLES Examples of the present invention will be described below.

【0011】図1は本発明の実施例としての光増幅装置
の構成を示すものである。ここで、1は多波長光源であ
り、本実施例では波長1.47μm、1.48μm、
1.49μmの波長を同時に出射するとともに合波され
ている。この波長合成励起光16がErドープファイバ
ー(EDFA)12に入射されドープファイバーを励起
する。この状態で波長1.55μmの信号光13をED
FA12に入射することにより、増幅光14は波長フィ
ルター15を通して出力される。ここで用いた各波長は
どの波長においても高い効率でEDFAを励起すること
ができる。
FIG. 1 shows the configuration of an optical amplifier as an embodiment of the present invention. Here, 1 is a multi-wavelength light source, and in the present embodiment, wavelengths 1.47 μm, 1.48 μm,
The wavelengths of 1.49 μm are simultaneously emitted and combined. The wavelength-combined pumping light 16 is incident on the Er-doped fiber (EDFA) 12 to pump the doped fiber. In this state, the signal light 13 having a wavelength of 1.55 μm is ED
Upon entering the FA 12, the amplified light 14 is output through the wavelength filter 15. Each wavelength used here can excite the EDFA with high efficiency at any wavelength.

【0012】次に図2に多波長光源の例を詳細に記載す
る。多波長集積化レーザアレイ2においては3本の共振
器ストライプ(3、3’、3”)で構成されている。各
共振器は等価周期が異なる回折格子を含む分布帰還型レ
ーザを構成し、λ1=1.49μm、λ2=1.48μ
m、λ3=1.47μmの単一発振波長の光をそれぞれ
出射端(4、4’、4”)から放射される。各出射光は
コリメートレンズ5により平行光となり回折格子6に入
射される。ここで集積化レーザアレイの共振器ストライ
プ(3、3’、3”)と出射端面(4、4’、4”)の
成す各(θ1、θ2、θ3)は 相異っていることにより、
回折格子6上の同一スポット上に異なる入射角(α1
α2、α3)で入射することができる。
Next, FIG. 2 shows an example of the multi-wavelength light source in detail. The multi-wavelength integrated laser array 2 is composed of three resonator stripes (3, 3 ′, 3 ″). Each resonator constitutes a distributed feedback laser including a diffraction grating having a different equivalent period, λ 1 = 1.49 μm, λ 2 = 1.48 μ
Light having a single oscillation wavelength of m, λ 3 = 1.47 μm is radiated from the respective output ends (4, 4 ′, 4 ″). The respective output lights are collimated by the collimator lens 5 and are incident on the diffraction grating 6. Here, the respective (θ 1 , θ 2 , θ 3 ) formed by the resonator stripes (3, 3 ′, 3 ″) and the emission end faces (4, 4 ′, 4 ″) of the integrated laser array are different. By
On the same spot on the diffraction grating 6, different incident angles (α 1 ,
It can be incident at α 2 , α 3 ).

【0013】ここで1次回折角βは入射角αと次の関係
がある。 α=sin-1(λ/Λーsinβ) ここでΛは回折格子のピッチである。本実施例において
はΛ=1.4μm、β=70゜とするためには、入射角
αとしてλ1=1.49μmに対してはα1=7.16
゜、λ2=1.48μmに対してはα2=6.74゜、λ
3=1.47μmに対してはα3=6.33゜となる。ま
た回折格子6と多波長集積レーザアレイの距離をL1
2.8cm、アレイ間隔を200μm、アレイの各出射
端面とストライプの角θ1=89.82゜、θ2=90.
00゜、θ3=90.18゜とすることにより同一回折
角の合成光を得ることができる。このとき各波長の光は
回折効率として80%以上の値を得られる。この回折光
を集光レンズ7を通して光ファイバー8に効率よく結合
することができる。このように本発明においては各共振
器の光軸と出射端面との角度が相異なることとすること
により簡単な構成により多波長合成光源を形成すること
ができる。
The first-order diffraction angle β has the following relationship with the incident angle α. α = sin −1 (λ / Λ−sin β) where Λ is the pitch of the diffraction grating. In this embodiment, in order to set Λ = 1.4 μm and β = 70 °, α 1 = 7.16 for λ 1 = 1.49 μm as the incident angle α.
Α 2 = 6.74 ° for λ, λ 2 = 1.48 μm, λ
For 3 = 1.47 μm, α 3 = 6.33 °. Further, the distance between the diffraction grating 6 and the multi-wavelength integrated laser array is L 1 2.8 cm, the array interval is 200 μm, the angles θ 1 = 89.82 ° and θ 2 = 90.
By setting 00 ° and θ 3 = 90.18 °, it is possible to obtain combined light having the same diffraction angle. At this time, the light of each wavelength can obtain a value of 80% or more as the diffraction efficiency. This diffracted light can be efficiently coupled to the optical fiber 8 through the condenser lens 7. As described above, in the present invention, the multi-wavelength synthetic light source can be formed with a simple structure by setting the angles of the optical axis of each resonator and the emission end face to be different from each other.

【0014】図3は図2におけるアレーへのトータルの
バイアス電流に対する合成光のファイバー光出力を示
す。図5に示した従来例の場合に比べてトータル電流は
400mA程度で光出力は100mW以上得ることがで
き、光出力の飽和が小さく高い光出力まで高い発光効率
を示していることがわかる。これは各波長のレーザのバ
イアス電流は133mA程度の低バイアス電流で動作し
ているからである。このことにより従来の高バイアス電
流による素子の寿命低下がなくなり高い信頼性の半導体
レーザおよび光増幅器を得ることができる。
FIG. 3 shows the fiber light output of the combined light with respect to the total bias current to the array in FIG. It can be seen that compared with the case of the conventional example shown in FIG. 5, the total current is about 400 mA, the light output can be 100 mW or more, the light output saturation is small, and the high light output shows high luminous efficiency. This is because the laser of each wavelength operates at a low bias current of about 133 mA. As a result, it is possible to obtain a highly reliable semiconductor laser and optical amplifier in which the life of the element is not shortened by the conventional high bias current.

【0015】尚、本実施例においては3波長の集積光源
について記載したがEDFAの励起波長内であれば多重
数、波長間隔はこれに限定されない。また本発明の多波
長集積化レーザアレイは光増幅装置のみならず波長多重
伝送用光源としても良好に使用することができる。
In the present embodiment, an integrated light source of three wavelengths is described, but the number of multiplexes and wavelength intervals are not limited to this as long as it is within the excitation wavelength of the EDFA. Further, the multi-wavelength integrated laser array of the present invention can be favorably used not only as an optical amplifier but also as a light source for wavelength division multiplexing transmission.

【0016】[0016]

【発明の効果】以上本発明は、発振波長が希土類添加光
ファイバーの励起波長範囲内で相発振波長が異なる複数
の単一波長発振レーザがアレイ状に集積された半導体素
子と希土類添加光ファイバー、および前記アレイ状半導
体素子からの各出射光を前記希土類添加光ファイバーに
集光・結合する機能および前記希土類光ファイバーに増
幅感度を有する波長の信号光を入出力する機能を有する
ことを特徴とする光増幅装置であり、低バイアス電流で
各励起レーザを駆動できることにより高い発光効率を得
られ低消費電力・高信頼性の光ファイバーアンプ装置を
得ることができる。
As described above, the present invention provides a semiconductor element and a rare earth-doped optical fiber in which a plurality of single wavelength oscillation lasers having different oscillation wavelengths within the excitation wavelength range of the rare earth-doped optical fiber are integrated in an array, and An optical amplifying device having a function of condensing and coupling each light emitted from an array-shaped semiconductor element to the rare earth-doped optical fiber and a function of inputting and outputting a signal light having a wavelength having amplification sensitivity to the rare earth optical fiber. Since each pump laser can be driven with a low bias current, a high luminous efficiency can be obtained, and an optical fiber amplifier device with low power consumption and high reliability can be obtained.

【0017】さらに本発明は同一半導体基板上に各共振
器で相異なる複数の発振波長を出射するとともに前記各
共振器の光軸と出射端面との角度が相異なる複数の共振
器が集積されていることを特徴とする半導体レーザ装置
であり、簡単な構成により複数の波長のレーザ光を効率
良くファイバーに結合できる半導体レーザ装置を得るこ
とができるもので、その実用的価値は大である。
Further, according to the present invention, a plurality of resonators which emit different oscillation wavelengths in the respective resonators on the same semiconductor substrate and have different angles between the optical axis of the respective resonators and the emission end face are integrated. The semiconductor laser device is characterized in that it is possible to obtain a semiconductor laser device capable of efficiently coupling laser light of a plurality of wavelengths to a fiber with a simple configuration, and its practical value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光増幅器構成図FIG. 1 is a block diagram of an optical amplifier of the present invention.

【図2】本発明の半導体レーザ装置の構成図FIG. 2 is a configuration diagram of a semiconductor laser device of the present invention.

【図3】本発明の励起用光源の光出力ー電流特性図FIG. 3 is a light output-current characteristic diagram of the excitation light source of the present invention.

【図4】従来の光増幅器の構成図FIG. 4 is a configuration diagram of a conventional optical amplifier.

【図5】従来の励起光源の光出力ー電流特性図FIG. 5: Optical output-current characteristic diagram of conventional pumping light source

【図6】従来の構成の光増幅器の構成図FIG. 6 is a configuration diagram of an optical amplifier having a conventional configuration.

【符号の説明】[Explanation of symbols]

1 多波長光源 2 多波長集積化レーザアレイ 3 共振器ストライプ 4 出射端面 5 コリメートレンズ 6 回折格子 7 集光レンズ 8 シングルモードファイバー 11 励起用半導体レーザ 12 Erドープファイバーアンプ(EDFA) 13 信号光 14 増幅光 1 Multi-wavelength light source 2 Multi-wavelength integrated laser array 3 Resonator stripe 4 Emitting facet 5 Collimating lens 6 Diffraction grating 7 Condensing lens 8 Single-mode fiber 11 Pumping semiconductor laser 12 Er-doped fiber amplifier (EDFA) 13 Signal light 14 Amplification light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】発振波長が希土類添加光ファイバーの励起
波長範囲内で相発振波長が異なる複数の単一波長発振レ
ーザがアレイ状に集積された半導体素子と、希土類添加
光ファイバーと、前記アレイ状半導体素子からの各出射
光を前記希土類添加光ファイバーに集光・結合する手段
と、前記希土類光ファイバーに増幅感度を有する波長の
信号光を入出力する手段とを有することを特徴とする光
増幅装置。
1. A semiconductor element in which a plurality of single-wavelength oscillation lasers having different oscillation wavelengths within an excitation wavelength range of a rare earth-doped optical fiber are integrated in an array, a rare earth-doped optical fiber, and the arrayed semiconductor element. An optical amplifying device comprising means for condensing / combining each emitted light from the optical fiber to the rare earth-doped optical fiber, and means for inputting / outputting signal light of a wavelength having an amplification sensitivity to the rare earth optical fiber.
【請求項2】相異なる複数の発振波長の光を所望の角度
および間隔で出射するアレイ状半導体レーザと、光ファ
イバーの間にコリメータレンズおよび平面回折格子およ
び集光レンズがこの順で位置し、前記各波長のコリメー
トビームが前記平面回折格子に対し同一スポットに入射
するとともに各波長の回折角が同一となるべく入射角と
なるように前記アレイ状レーザからの各出射角・出射ビ
ーム間隔および各発振波長および前記回折格子ピッチが
設定されていることを特徴とする請求項1記載の光増幅
装置。
2. An array-shaped semiconductor laser that emits light having a plurality of different oscillation wavelengths at desired angles and intervals, and a collimator lens, a plane diffraction grating, and a condenser lens are arranged in this order between the optical fibers. The emission angles and emission beam intervals from the arrayed lasers and the oscillation wavelengths are set so that the collimated beams of the respective wavelengths are incident on the same spot with respect to the planar diffraction grating and the diffraction angles of the respective wavelengths are as close to each other as possible. The optical amplifier according to claim 1, wherein the diffraction grating pitch is set.
【請求項3】同一半導体基板上に各共振器で相異なる単
一発振波長レーザ光を出射するとともに前記各共振器の
光軸と出射端面との角度が相異なる複数の共振器が集積
されていることを特徴とする半導体レーザ装置。
3. A plurality of resonators emitting different single-oscillation wavelength laser beams from the respective resonators on the same semiconductor substrate and having different angles between the optical axis of each of the resonators and the emission end face. A semiconductor laser device characterized in that
JP101993A 1993-01-07 1993-01-07 Optical amplifier and semiconductor laser device Pending JPH06204593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP101993A JPH06204593A (en) 1993-01-07 1993-01-07 Optical amplifier and semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP101993A JPH06204593A (en) 1993-01-07 1993-01-07 Optical amplifier and semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH06204593A true JPH06204593A (en) 1994-07-22

Family

ID=11489861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP101993A Pending JPH06204593A (en) 1993-01-07 1993-01-07 Optical amplifier and semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH06204593A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200178A (en) * 1996-11-15 1998-07-31 Matsushita Electric Ind Co Ltd Optical fiber amplifier, semiconductor laser module for excitation and optical signal transmission system
US6052394A (en) * 1997-09-12 2000-04-18 Samsung Electronics Co., Ltd. High power pumping device for optical fiber amplification
JP6652684B1 (en) * 2018-10-10 2020-02-26 三菱電機株式会社 Laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200178A (en) * 1996-11-15 1998-07-31 Matsushita Electric Ind Co Ltd Optical fiber amplifier, semiconductor laser module for excitation and optical signal transmission system
US6052394A (en) * 1997-09-12 2000-04-18 Samsung Electronics Co., Ltd. High power pumping device for optical fiber amplification
JP6652684B1 (en) * 2018-10-10 2020-02-26 三菱電機株式会社 Laser device
WO2020075246A1 (en) * 2018-10-10 2020-04-16 三菱電機株式会社 Laser device

Similar Documents

Publication Publication Date Title
US5566196A (en) Multiple core fiber laser and optical amplifier
CN100414793C (en) Fiber grating-stabilized, semiconductor pump source
Blaize et al. Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate
US5530709A (en) Double-clad upconversion fiber laser
US5163058A (en) Semiconductor laser pump source
US6353499B2 (en) Optical fiber amplifier with oscillating pump energy
Park et al. Multiple wavelength operation of an erbium-doped fiber laser
US6697192B1 (en) High power, spectrally combined laser systems and related methods
KR100638820B1 (en) Up-conversion fiber laser apparatus
US6831778B2 (en) Hybrid component and method for combining two pumping lights and depolarizing them simultaneously and optical amplifier therefor
WO2014129613A1 (en) Optical amplifier and laser oscillator
US6363088B1 (en) All solid-state power broadband visible light source
KR100394457B1 (en) Erbium-doped fiber laser for long wavelength band
US6947463B2 (en) Semiconductor laser device for use in a laser module
US5923684A (en) Fiber amplifier with multiple pass pumping
CN115360569A (en) Multi-wavelength random fiber laser based on inclined parallel writing fiber grating array
JPH0997940A (en) Optical amplifier
JP2003243755A (en) Long-band erbium doped fiber amplifier
Dagenais et al. Wavelength stability characteristics of a high-power, amplified superfluorescent source
JPH05310440A (en) Optical fiber, optical amplifier, optical transmitting system and solid laser
US6020991A (en) Optical amplifier
JP4712178B2 (en) Semiconductor laser module, laser unit, Raman amplifier, and method for suppressing Brillouin scattering and polarization degree of optical semiconductor laser module used in Raman amplifier
EP1096703A9 (en) Long-band light source for testing optical elements using feedback loop
JPH06204593A (en) Optical amplifier and semiconductor laser device
EP1318583A2 (en) Semiconductor laser with two active layers and optical fiber amplifier using the same