JPH06203846A - Reaction gas compression system utilizing regenerative braking - Google Patents

Reaction gas compression system utilizing regenerative braking

Info

Publication number
JPH06203846A
JPH06203846A JP4360450A JP36045092A JPH06203846A JP H06203846 A JPH06203846 A JP H06203846A JP 4360450 A JP4360450 A JP 4360450A JP 36045092 A JP36045092 A JP 36045092A JP H06203846 A JPH06203846 A JP H06203846A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
hydrogen
regenerative braking
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4360450A
Other languages
Japanese (ja)
Other versions
JP3136015B2 (en
Inventor
Takafumi Okamoto
隆文 岡本
Manabu Tanaka
学 田中
Ichiro Baba
一郎 馬場
Hideo Kato
英男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP04360450A priority Critical patent/JP3136015B2/en
Publication of JPH06203846A publication Critical patent/JPH06203846A/en
Application granted granted Critical
Publication of JP3136015B2 publication Critical patent/JP3136015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To operate a fuel cell to yield high outputs by utilizing regenerative braking energy in compressing the reaction gas of the fuel cell, and storing the energy in gas so that it is used in operations such as separation and refinement. CONSTITUTION:When an automobile (FC-EV) carrying a hydrogen-oxygen fuel call is braked at some speed, a reaction gas compression system 01 stops the supply of power from a fuel cell 31 to a drive motor 34 and releases the clutch 35 to open a valve 17a and close a valve 17c. Then methanol gas from a reformer 15 is forcibly fed to a fuel-gas separator 12 by a force feed pump 11. The separator 12 separates H2 from CO2 and the H2 is stored in a hydrogen tank 23. Then air A is allowed to pass through a valve 27a and O2 is separated therefrom by an oxidizer-gas separator 22 and stored in an oxygen tank 23. Therefore the concentrations of H2 and O2 for supply to the fuel cell are increased, so that high-output operation is made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池搭載の自動車
における回生制動による燃料電池の反応ガス圧縮システ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction gas compression system for a fuel cell using regenerative braking in a vehicle equipped with a fuel cell.

【0002】[0002]

【従来の技術】従来、水素−酸素型燃料電池を動力源と
して搭載する自動車(以下「FC−EV」という)にお
いて、水素を金属に吸蔵させた金属水素化物の形で搭載
するとともに、回生制動によって発生する電力で水を電
気分解し、これにより得られる水素を上記金属水素化物
に導き、また得られた酸素は燃料電池へそのまま送り込
み貯蔵、再利用するように構成した回生制動による反応
ガス生成システムが提案されている(特開昭50−15
8016号公報、特開昭50−158017号公報)。
なお、車の制動時にブレーキペダルを踏むとブレーキ機
構に組み込まれた切り換えスイッチが作動し、駆動モー
タは発電機になって電力を発生し車に制動作用を与える
ようになっており、この方式は回生制動として周知であ
る。ところで、前記回生制動による反応ガス生成システ
ム50においては、図2に示すように、燃料電池51
に、金属水素化物から発生した水素H2 および大気中か
ら空気(酸素O2 )Aがそれぞれ導管59a、59bか
ら供給される。また、水電解装置55で消費される水と
しては、燃料電池51で生成される水H2 Oを導管59
cにより導入する。水電解装置55で発生した分解水素
2 は、導管59dから金属水素化物貯蔵タンク57に
水素圧縮機56によって圧送され、ガス状または金属水
素化物として貯えられ、必要に応じ燃料電池51に供給
される。一方、分解酸素O2 は、導管59e、59bを
通り燃料電池51に導かれ酸化剤として使用される。な
お、52、54は、コントローラ53にそれぞれ導線に
より接続されたブレーキペダル、駆動モータで、回生制
動を生ずるものである。金属水素化物は、所定温度に加
熱することにより水素H2 を放出するが、この加熱は適
宜の方法で行ない得るものであり、その加熱の制御は例
えば、金属水素化物貯蔵タンク57の内圧を検知する圧
力検知器58などの作動によりコントローラ53の指令
によって行なわれる。
2. Description of the Related Art Conventionally, in a vehicle equipped with a hydrogen-oxygen type fuel cell as a power source (hereinafter referred to as "FC-EV"), hydrogen is loaded in the form of a metal hydride and regenerative braking is applied. Water is electrolyzed by the electric power generated by the above, the hydrogen obtained by this is led to the above metal hydride, and the obtained oxygen is sent to the fuel cell as it is for storage and reuse. A system has been proposed (Japanese Patent Laid-Open No. 50-15).
8016, JP-A-50-158017).
It should be noted that when the brake pedal is depressed during braking of the vehicle, the changeover switch incorporated in the brake mechanism is activated, and the drive motor acts as a generator to generate electric power to apply braking action to the vehicle. This is known as regenerative braking. By the way, in the reaction gas generation system 50 based on the regenerative braking, as shown in FIG.
Further, hydrogen H 2 generated from the metal hydride and air (oxygen O 2 ) A from the atmosphere are supplied from the conduits 59a and 59b, respectively. In addition, as water consumed in the water electrolysis device 55, water H 2 O generated in the fuel cell 51 is used as a conduit 59.
Introduced by c. The decomposed hydrogen H 2 generated in the water electrolyzer 55 is pressure-fed from the conduit 59d to the metal hydride storage tank 57 by the hydrogen compressor 56, stored in the form of gas or metal hydride, and supplied to the fuel cell 51 as necessary. It On the other hand, the decomposed oxygen O 2 is introduced into the fuel cell 51 through the conduits 59e and 59b and used as an oxidant. Reference numerals 52 and 54 denote brake pedals and drive motors, which are connected to the controller 53 by lead wires, respectively, and generate regenerative braking. The metal hydride releases hydrogen H 2 by heating it to a predetermined temperature, but this heating can be performed by an appropriate method, and the heating is controlled, for example, by detecting the internal pressure of the metal hydride storage tank 57. The operation is performed by a command from the controller 53 by operating the pressure detector 58 or the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の回生制動による反応ガス生成システムでは、回生制
動により得られた電力を利用して水の電気分解を行な
い、本来損失となるべき制動エネルギーを有効に活用し
て燃料補充を行なうことを可能にはしているが、高出力
運転あるいは低負荷時における純反応ガスの供給や、ま
た発進・加速時など高出力を必要とする場合の高負荷・
高効率運転を実現するなど、きめ細かに燃料電池を運用
することは不可能である。
However, in the above-mentioned conventional reaction gas generation system by regenerative braking, the electric power obtained by regenerative braking is used to electrolyze water to effectively use the braking energy that would otherwise be a loss. However, it is possible to refuel by using it to supply the pure reaction gas during high-power operation or low load, and high load when high power is required such as when starting or accelerating.
It is impossible to operate the fuel cell in detail, such as realizing high-efficiency operation.

【0004】本発明は、このような従来の問題点を背景
になされたもので、回生制動エネルギーを燃料電池の反
応ガスの圧縮に用いてガスにエネルギーを蓄え分離・精
製などの仕事を行なわせるととともに、高出力、低負荷
時を問わず純反応ガスの供給により高出力・高効率運転
ができる回生制動による反応ガス圧縮システムを提供す
ることを目的とする。
The present invention has been made against the background of such conventional problems. The regenerative braking energy is used for compressing a reaction gas of a fuel cell to store energy in the gas and perform work such as separation and purification. Another object of the present invention is to provide a reaction gas compression system by regenerative braking that enables high output and high efficiency operation by supplying pure reaction gas regardless of high output and low load.

【0005】[0005]

【課題を解決するための手段】本発明は、ブレーキの動
作により回生制動を行なわせるコントローラを介して水
素−酸素型燃料電池から駆動モータへ動力を送らせ走行
する自動車において、メタノールおよび水を気化器を介
して吸入する改質器から、変速機に連結の圧送ポンプ、
燃料ガス分離器、逆止弁、水素タンクおよび背圧弁を経
由する通常ルートによるか、またはバイパス導管による
バイパスルートを経て燃料電池へ水素を供給し、燃料電
池からは別の背圧弁を有する還流ルートにより未反応ガ
スを改質器へ導く構成とした回生制動によるメタノール
改質ガス中の水素濃縮システムと、空気を吸入し圧縮供
給する、変速機に連結の圧送ポンプから酸化剤ガス分離
器、逆止弁、酸素タンクおよび背圧弁を経由する通常ル
ートによるか、またはバイパス導管によるバイパスルー
トを経て燃料電池へ酸素を供給し、燃料電池からは別の
背圧弁を有する還流ルートにより未反応ガスを改質器へ
導く構成とした回生制動による空気中の酸素濃縮システ
ムとを組み合わせてなることを特徴とした回生制動によ
る反応ガス圧縮システムを提供するものである。
DISCLOSURE OF THE INVENTION The present invention vaporizes methanol and water in a vehicle which is driven by a hydrogen-oxygen fuel cell to drive a drive motor through a controller for regenerative braking by the operation of a brake. From the reformer that inhales through the device, the pressure pump connected to the transmission,
A return route that supplies hydrogen to the fuel cell by the normal route via the fuel gas separator, the check valve, the hydrogen tank and the back pressure valve, or via the bypass route by the bypass conduit, and has another back pressure valve from the fuel cell. A system for concentrating hydrogen in methanol reformed gas by regenerative braking, in which unreacted gas is guided to the reformer by means of a refueling system, and an oxidant gas separator from a pressure feed pump connected to the transmission, and a reverse compressor Oxygen is supplied to the fuel cell by a normal route through a stop valve, an oxygen tank and a back pressure valve or by a bypass route by a bypass conduit, and the unreacted gas is rectified from the fuel cell by a reflux route having another back pressure valve. The reaction gas compression system by regenerative braking, which is characterized by being combined with an oxygen concentration system in the air by regenerative braking configured to lead to a quality device. It is intended to provide a Temu.

【0006】[0006]

【作用】上記構成とした本発明の回生制動による反応ガ
ス圧縮システムでは、FC−EVがある速度からブレー
キをかけるとき、燃料電池から駆動モータへの電力供給
を停止するとともに、クラッチを切りバイパス導管を閉
鎖することによって両方の圧送ポンプは圧縮ポンプとな
り、メタノール改質ガス中の水素濃縮システムにおいて
は、改質器からの水素・二酸化炭素混合ガスは圧縮さ
れ、続いてガス分離器で分離された水素は、水素タンク
に貯蔵される。一方、空気中の酸素濃縮システムにおい
ては、大気中の空気を圧送しガス分離器で分離された酸
素は、酸素タンクに貯蔵される。低負荷時の燃料電池へ
の反応ガスの供給は、通常ルートを閉鎖しバイパスルー
トを経由するようにして圧送ポンプをガス供給ポンプと
して使用する。高負荷・高効率運転時、発進・加速時な
ど高出力を必要とする場合は、バイパスルートを経由し
通常ルートで反応ガス圧を上昇させ、高電流密度運転時
の燃料電池の電圧低下を防ぎ高負荷運転を実現する。な
お、燃料電池で作用の終わった反応ガスおよび未反応ガ
スは、還流ルートにより改質器内の燃焼部へ導かれる。
また、それぞれのガス分離器で分離された不要な二酸化
炭素や窒素は、ガス分離器からそのまま外部へ排除され
る。
In the reaction gas compression system by regenerative braking according to the present invention having the above-mentioned structure, when the FC-EV is braked from a certain speed, the power supply from the fuel cell to the drive motor is stopped and the clutch is disengaged to bypass the bypass conduit. Both pressure pumps became compression pumps by closing, and in the hydrogen concentration system in methanol reformed gas, the hydrogen / carbon dioxide mixed gas from the reformer was compressed and subsequently separated by the gas separator. Hydrogen is stored in the hydrogen tank. On the other hand, in the oxygen concentration system in air, the oxygen in the atmosphere is sent under pressure and separated by the gas separator is stored in the oxygen tank. The supply of the reaction gas to the fuel cell at the time of low load uses the pressure pump as a gas supply pump by closing the normal route and passing through the bypass route. When high output is required during high load / high efficiency operation, starting / accelerating, etc., the reaction gas pressure is increased via the bypass route along the normal route to prevent fuel cell voltage drop during high current density operation. Achieve high load operation. The reaction gas and the unreacted gas that have finished working in the fuel cell are guided to the combustion section in the reformer through the reflux route.
Further, unnecessary carbon dioxide and nitrogen separated by the respective gas separators are directly removed from the gas separators to the outside.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を参照して説明
するが、本発明は、この実施例に限定されるものではな
い。本発明を適用するFC−EVは、ブレーキペダル3
2の動作により回生制動を行なうコントローラ33を介
して水素−酸素型の燃料電池31からクラッチ35に連
結する駆動モータ34へ動力を送る車輪駆動装置30
と、クラッチ35に連結する変速機41、推進軸42、
差動機43、駆動軸44および後車輪45からなる駆動
力伝達装置40とを備えている。
Embodiments of the present invention will now be described with reference to the drawings, but the present invention is not limited to these embodiments. The FC-EV to which the present invention is applied is a brake pedal 3
The wheel drive device 30 that sends power from the hydrogen-oxygen type fuel cell 31 to the drive motor 34 connected to the clutch 35 via the controller 33 that performs regenerative braking by the operation of 2.
And the transmission 41, the propulsion shaft 42, which are connected to the clutch 35,
The driving force transmission device 40 includes a differential gear 43, a drive shaft 44, and a rear wheel 45.

【0008】ところで、本実施例の回生制動による反応
ガス圧縮システム01は、図1に示すように、メタノー
ル改質ガス中の水素濃縮システム10と、空気中の酸素
濃縮システム20とが、車輪駆動装置30に組み合って
構成されている。メタノール改質ガス中の水素濃縮シス
テム10では、供給されるメタノールMと水Wとをヒー
タ加熱する気化器16と、メタノールMの改質器15
と、メタノール改質ガス(CO2 、H2 )を回生制動に
より圧縮して供給する圧送ポンプ11と、弁17aと、
メタノール改質ガス中の水素、二酸化炭素および微量の
一酸化炭素を吸着分離・膜分離などのガス分離法によっ
て燃料電池反応に用いる水素H2 を分離・濃縮して純水
素とする燃料ガス分離器12と、逆止弁18と、水素タ
ンク13と、背圧弁19aと、弁17bとを連結して燃
料電池31に達する通常ルート10aが形成されてい
る。また、圧送ポンプ11から燃料電池31に弁17c
を介して連結されるバイパス導管14を有するバイパス
ルート10bも設けられている。さらに、燃料電池31
で作用の終わった水素H2 および未反応H2 は、背圧弁
19bを介して改質器15へ導かれるように配管された
還流ルート10cを備えている。
By the way, in the reaction gas compression system 01 by regenerative braking of the present embodiment, as shown in FIG. 1, the hydrogen concentration system 10 in the methanol reformed gas and the oxygen concentration system 20 in the air drive the wheels. It is configured in combination with the device 30. In the hydrogen concentration system 10 in the reformed gas of methanol, a vaporizer 16 for heating the supplied methanol M and water W by a heater and a reformer 15 for the methanol M are provided.
A pressure feed pump 11 for compressing and supplying the methanol reformed gas (CO 2 , H 2 ) by regenerative braking, a valve 17a,
Fuel gas separator for separating and concentrating hydrogen H 2 used for fuel cell reaction into pure hydrogen by gas separation methods such as adsorption separation and membrane separation of hydrogen, carbon dioxide and a trace amount of carbon monoxide in methanol reformed gas 12, the check valve 18, the hydrogen tank 13, the back pressure valve 19a, and the valve 17b are connected to form a normal route 10a reaching the fuel cell 31. In addition, the valve 17c is connected from the pressure pump 11 to the fuel cell 31.
A bypass route 10b is also provided having a bypass conduit 14 connected via the. Further, the fuel cell 31
The hydrogen H 2 and the unreacted H 2 that have finished their action in step 1 are equipped with a reflux route 10c that is piped so as to be guided to the reformer 15 via the back pressure valve 19b.

【0009】空気中の酸素濃縮システム20では、吸入
した大気中の空気Aを圧縮供給する圧送ポンプ21から
弁27aと、回生制動により圧縮した空気中の酸素・窒
素を吸着分離や膜分離などのガス分離法によって分離
(酸素の分離・濃縮)する酸化剤ガス分離器22と、逆
止弁28と、酸素タンク23と、背圧弁29aと、弁2
7bとを連結して燃料電池31に達する通常ルート20
aが形成されている。また、圧送ポンプ21から燃料電
池31に弁27cを介して連結されるバイパス導管24
を有するバイパスルート20bも設けられている。さら
に、燃料電池31で作用の終わった酸素O2 および未反
応O2 は、背圧弁29bを介して改質器15へ導かれる
ように配管された還流ルート20cを備えている。
In the air oxygen enrichment system 20, a pressure feed pump 21 for compressing and supplying the inhaled air A in the atmosphere, a valve 27a, and oxygen and nitrogen in the air compressed by regenerative braking are separated by adsorption or membrane separation. An oxidant gas separator 22 for separating (separation / concentration of oxygen) by a gas separation method, a check valve 28, an oxygen tank 23, a back pressure valve 29a, and a valve 2
Normal route 20 connecting to 7b and reaching fuel cell 31
a is formed. Further, a bypass conduit 24 connected from the pressure pump 21 to the fuel cell 31 via a valve 27c.
A bypass route 20b having the above is also provided. Further, oxygen O 2 and unreacted O 2 which have finished working in the fuel cell 31 are provided with a reflux route 20c which is piped so as to be guided to the reformer 15 via the back pressure valve 29b.

【0010】上記構成となっているので、本実施例の回
生制動による反応ガス圧縮システム01において、回生
制動によるメタノール改質ガス中の水素H2 を濃縮する
には、FC−EVのある速度からブレーキをかけると
き、燃料電池31から駆動モータ34への電力供給を停
止し、クラッチ35を切った状態で弁17aを開き、弁
17cを閉じることにより圧送ポンプ11は圧縮ポンプ
となり、改質器15からの水素H2 と二酸化炭素CO2
との混合ガスは、燃料ガス分離器12へ圧送されて来
る。そこでその分離器12は、所定圧力(6〜7kg/
cm2 ・G)で水素H2 と二酸化炭素CO2 の分離を行
ない、分離された水素H2 は、水素タンク13に送られ
逆止弁18により逆流を阻止されて貯蔵される。一方、
分離された二酸化炭素CO2 は外部へ排除される。
With the above-mentioned structure, in the reaction gas compression system 01 by regenerative braking of this embodiment, in order to concentrate the hydrogen H 2 in the methanol reformed gas by regenerative braking, a certain speed of FC-EV is required. When the brake is applied, the power supply from the fuel cell 31 to the drive motor 34 is stopped, the valve 17a is opened with the clutch 35 disengaged, and the valve 17c is closed, so that the pressure pump 11 becomes a compression pump and the reformer 15 Hydrogen H 2 and carbon dioxide CO 2 from
The mixed gas of and is sent under pressure to the fuel gas separator 12. Therefore, the separator 12 has a predetermined pressure (6 to 7 kg /
cm 2 · G) hydrogen H 2 and carbon dioxide CO 2 are separated, and the separated hydrogen H 2 is sent to the hydrogen tank 13 and stored by the check valve 18 blocking the reverse flow. on the other hand,
The separated carbon dioxide CO 2 is excluded to the outside.

【0011】また、回生制動による空気A中の酸素濃縮
は、クラッチ35が切られた場合、前記とほぼ同様に弁
27aが開き、弁27cが閉じられ回生制動源として圧
送ポンプ21が圧縮ポンプとなって作動し、大気中の空
気Aは圧縮されて酸化剤ガス分離器22へ圧送され、そ
の分離器22により所定圧力(6〜7kg/cm2
G)で酸素O2 と窒素N2 とに分離され、その窒素N2
は外部へ排除される。一方、分離された酸素O2 は、酸
素タンク23へ送られ逆止弁28により逆流を阻止され
て貯蔵される。なお、自動車停止中のブレーキペダル3
2の踏み込み操作では、上記の弁開閉作動は起こらな
い。
When the clutch 35 is disengaged, the valve 27a opens and the valve 27c closes when the clutch 35 is disengaged, so that the pressure pump 21 serves as a regenerative braking source and the compression pump 21 as a regenerative braking source. The air A in the atmosphere is compressed and pressure-fed to the oxidant gas separator 22, and the separator 22 causes a predetermined pressure (6 to 7 kg / cm 2 ·
G) is separated into oxygen O 2 and nitrogen N 2, and the nitrogen N 2
Are excluded to the outside. On the other hand, the separated oxygen O 2 is sent to the oxygen tank 23 and stored by being blocked by the check valve 28 from backflow. Brake pedal 3 when the vehicle is stopped
The above-mentioned valve opening / closing operation does not occur in the stepping-in operation of 2.

【0012】低負荷時の燃料電池への反応ガス供給は、
燃料ガスの場合、メタノール改質ガス中の水素濃縮シス
テム10において、弁17a、弁17bを閉じ、弁17
cを開いたバイパスルート10b使用の状態で圧送ポン
プ11を供給に用い、H2 ・CO2 混合ガスの状態で燃
料電池に供給する。このときの燃料ガス圧は圧送ポンプ
11のガス供給量と背圧弁19bの開度によって決ま
る。なお、圧送ポンプ11は、ガス供給とガス圧縮との
両機能を有している。すなわち、背圧弁が全開の状態で
は通常ルート10aと還流ルート10cとを経由する流
れを作るガス供給ポンプの役目を果たすが、背圧弁があ
る設定まで閉じた状態になると、ガス圧縮ポンプに変わ
る。一方、酸化剤ガスの場合、空気中の酸素濃縮システ
ム20において、弁27a、27bを閉じ、弁27cを
開いたバイパスルート20b使用の状態で圧送ポンプ2
1を供給に用い、酸素O2 を空気Aに含めた状態で燃料
電池31に供給する。このときの酸化剤ガス圧は、圧送
ポンプ21のガス供給量と背圧弁29bの開度によって
決まる。なお、圧送ポンプ21は、ガス供給とガス圧縮
との両機能を有している。すなわち、背圧弁が全開の状
態では通常ルート20aと還流ルート20cとを経由す
る流れを作るガス供給ポンプの役目を果たすが、背圧弁
がある設定まで閉じた状態になると、ガス圧縮ポンプに
変わる。
The reaction gas supply to the fuel cell at low load is
In the case of fuel gas, in the hydrogen concentration system 10 in the reformed methanol gas, the valves 17a and 17b are closed, and the valve 17
The pressure feed pump 11 is used for supply in the state where the bypass route 10b in which c is opened is used, and the gas is supplied to the fuel cell in the state of H 2 CO 2 mixed gas. The fuel gas pressure at this time is determined by the gas supply amount of the pressure pump 11 and the opening degree of the back pressure valve 19b. The pressure pump 11 has both functions of gas supply and gas compression. That is, when the back pressure valve is fully opened, it functions as a gas supply pump that creates a flow through the normal route 10a and the reflux route 10c, but when the back pressure valve is closed to a certain setting, it changes to a gas compression pump. On the other hand, in the case of the oxidant gas, in the oxygen concentration system 20 in the air, the pressure feed pump 2 is used with the bypass route 20b in which the valves 27a and 27b are closed and the valve 27c is opened.
1 is used for supply, and oxygen O 2 is supplied to the fuel cell 31 in a state of being included in the air A. The oxidant gas pressure at this time is determined by the gas supply amount of the pressure pump 21 and the opening degree of the back pressure valve 29b. The pressure pump 21 has both a gas supply function and a gas compression function. That is, when the back pressure valve is fully opened, it functions as a gas supply pump that creates a flow through the normal route 20a and the return route 20c, but when the back pressure valve is closed to a certain setting, it changes to a gas compression pump.

【0013】高負荷・高効率運転時、発進・加速など高
出力を必要とする場合は、前記の水素濃縮システム10
において、弁17cを閉じ、弁17bを開いた通常ルー
ト10aの状態で燃料ガス内の水素圧を上昇させ、高電
流密度運転時の燃料電池31の電圧低下を防ぎ(圧力利
得による圧力上昇効果)、高負荷運転を実現することが
できる。このとき、弁17aを開いた状態で水素分離も
同時に行なう。高負荷時でも圧送ポンプ11は作動して
いるので、弁17c閉の状態で弁17aを開くと、圧送
ポンプ11と燃料ガス分離器12との間でガス昇圧が起
こり6〜7kg/cm2 ・Gに達した段階で水素分離可
能となる。一方、前記の酸素濃縮システム20において
は、弁27c開、弁27b閉の状態で酸化剤ガス内の酸
素圧を上昇させ、前記同様に高負荷運転を実現すること
ができる。このとき、弁27a開の通常ルート10aの
状態で酸素濃縮も同時に行なう。
When high output such as starting and acceleration is required during high load and high efficiency operation, the hydrogen concentration system 10 described above is used.
In the state of the normal route 10a in which the valve 17c is closed and the valve 17b is opened, the hydrogen pressure in the fuel gas is increased to prevent the voltage drop of the fuel cell 31 during high current density operation (pressure increase effect by pressure gain). It is possible to realize high load operation. At this time, hydrogen separation is also performed with the valve 17a open. Since the pressure feed pump 11 is operating even under a high load, when the valve 17a is opened while the valve 17c is closed, gas pressure rise occurs between the pressure feed pump 11 and the fuel gas separator 12 and the pressure is 6 to 7 kg / cm 2. When G is reached, hydrogen can be separated. On the other hand, in the oxygen concentrating system 20, the oxygen pressure in the oxidant gas can be increased with the valve 27c open and the valve 27b closed to realize the high load operation as described above. At this time, oxygen concentration is also performed at the same time in the state of the normal route 10a with the valve 27a opened.

【0014】なお、燃料電池31の起動および純反応ガ
スの不足時には、補助二次電池の電力によってシステム
が起動し、FC−EVの発進を行なう。水素−酸素型燃
料電池の単電池自体は、室温状態からでも起動は可能で
あるため、起動時にエネルギーを必要とするのは、燃料
電池スタックへの燃料ガスおよび酸化剤ガスの供給と改
質器の起動である。水素タンク13に水素が存在すれ
ば、その水素によって燃料電池31を起動することがで
きるが、無い場合には次のステップSが必要である。 S1 改質器15内の特定の改質管を補助二次電池によ
りヒータで加熱 S2 改質器15手前の気化器16をヒータで加熱 S3 改質器15へメタノールMと水Wとを供給して改
質開始 S4 二次電池により駆動モータ34を回し、クラッチ
35を接続 S5 変速機41内において駆動モータ34の動力が圧
送ポンプ11、21だけに伝達するように切り換える
(燃料電池31起動)。 S6 上記の各ステップS1〜5の電気エネルギーを補
助二次電池から燃料電池31へと徐々に供給元を切り換
える。 以上、本発明の実施例を説明したが、本発明はこの実施
例に必ずしも限定されることはなく、要旨を逸脱しない
範囲での設計変更などがあっても本発明に含まれる。
When the fuel cell 31 is activated and the amount of pure reaction gas is insufficient, the system is activated by the electric power of the auxiliary secondary battery to start FC-EV. Since the hydrogen-oxygen fuel cell unit cell itself can be started even at room temperature, it is necessary to supply energy at the time of start-up to supply the fuel gas and the oxidant gas to the fuel cell stack and the reformer. Is the start of. If hydrogen is present in the hydrogen tank 13, the fuel cell 31 can be started by the hydrogen, but if not, the next step S is required. S1 Reforming a specific reforming tube in the reformer 15 with an auxiliary secondary battery by a heater S2 Reheating the vaporizer 16 in front of the reformer 15 with a heater S3 Supplying methanol M and water W to the reformer 15 Then, the reforming is started. S4 The drive motor 34 is rotated by the secondary battery, and the clutch 35 is connected. S5 The power of the drive motor 34 is switched so as to be transmitted only to the pressure pumps 11 and 21 in the transmission 41 (fuel cell 31 startup). S6 The supply source of the electric energy in each of the above steps S1 to 5 is gradually switched from the auxiliary secondary battery to the fuel cell 31. Although the embodiment of the present invention has been described above, the present invention is not necessarily limited to this embodiment, and a design change and the like without departing from the scope of the invention are included in the present invention.

【0015】[0015]

【発明の効果】本発明の回生制動による反応ガス圧縮シ
ステムは、回生制動エネルギーを燃料電池の反応ガスの
圧縮に用いて、ガスにエネルギーを貯え、分離・精製な
どの仕事を行なわせる。回生制動により燃料電池の反応
ガス、すなわち酸化剤ガスである空気/酸素および燃料
ガスであるメタノール改質水素をそれぞれ圧縮すること
により燃料電池へ供給する水素および酸素の分圧を高
め、部分負荷時の対応も含めて燃料電池の高出力運転を
行なうことができる。また、回生制動により圧縮したメ
タノール改質ガス中の水素、二酸化炭素および微量の一
酸化炭素を、また空気中の酸素や窒素をそれぞれ吸着分
離・膜分離などのガス分離法によって燃料電池反応に用
いる水素や酸素それぞれの分離・濃縮を行なうことによ
り、燃料電池へ純水素と純酸素とを供給し、部分負荷時
の対応も含めて燃料電池の高出力運転ができる。さら
に、未反応ガスを改質器に戻して利用するので、ガス利
用率が向上する。なお、回生制動により圧縮・分離した
メタノール改質ガス中の水素および空気中の酸素を、回
生制動により昇圧・貯蔵し、高い圧力状態で燃料電池へ
の供給を行ない、高出力運転に対応させることができ
る。
The reaction gas compression system by regenerative braking of the present invention uses regenerative braking energy to compress the reaction gas of the fuel cell to store energy in the gas and perform work such as separation and purification. The partial pressure of hydrogen and oxygen supplied to the fuel cell is increased by compressing the reaction gas of the fuel cell by regenerative braking, that is, air / oxygen that is the oxidant gas and methanol reformed hydrogen that is the fuel gas. The high output operation of the fuel cell can be performed including the above. In addition, hydrogen, carbon dioxide and a trace amount of carbon monoxide in the methanol reformed gas compressed by regenerative braking, and oxygen and nitrogen in the air are used for the fuel cell reaction by gas separation methods such as adsorption separation and membrane separation. By separating and concentrating hydrogen and oxygen, respectively, pure hydrogen and pure oxygen can be supplied to the fuel cell, and high output operation of the fuel cell can be performed, including measures for partial load. Furthermore, since the unreacted gas is returned to the reformer for use, the gas utilization rate is improved. It should be noted that hydrogen in the methanol reformed gas compressed and separated by regenerative braking and oxygen in the air are boosted and stored by regenerative braking and supplied to the fuel cell at high pressure to support high power operation. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例の回生制動による反応ガス
圧縮システムの系統図である。
FIG. 1 is a system diagram of a reaction gas compression system by regenerative braking according to an embodiment of the present invention.

【図2】従来の回生制動による反応ガス生成システムの
系統図である。
FIG. 2 is a system diagram of a conventional reaction gas generation system by regenerative braking.

【符号の説明】[Explanation of symbols]

01 回生制動による反応ガス圧縮システム 10 メタノール改質ガス中の水素濃縮システム 10a 通常ルート 10b バイパスルート 10c 還流ルート 11 圧送ポンプ 12 燃料ガス分離器 13 水素タンク 14 バイパス導管 15 改質器 16 気化器 18 逆止弁 19a 背圧弁 19b 背圧弁 20 空気中の酸素濃縮システム 20a 通常ルート 20b バイパスルート 20c 還流ルート 21 圧送ポンプ 22 酸化剤ガス分離器 23 酸素タンク 24 バイパス導管 28 逆止弁 29a 背圧弁 29b 背圧弁 31 燃料電池 32 ブレーキペダル 33 コントローラ 34 駆動モータ 41 変速機 M メタノール W 水 A 空気 01 Reaction gas compression system by regenerative braking 10 Hydrogen concentration system in methanol reformed gas 10a Normal route 10b Bypass route 10c Reflux route 11 Pressure feed pump 12 Fuel gas separator 13 Hydrogen tank 14 Bypass conduit 15 Reformer 16 Vaporizer 18 Reverse Stop valve 19a Back pressure valve 19b Back pressure valve 20 Oxygen enrichment system in air 20a Normal route 20b Bypass route 20c Reflux route 21 Pressure pump 22 Oxidizer gas separator 23 Oxygen tank 24 Bypass conduit 28 Check valve 29a Back pressure valve 29b Back pressure valve 31 Fuel cell 32 Brake pedal 33 Controller 34 Drive motor 41 Transmission M Methanol W Water A Air

フロントページの続き (72)発明者 加藤 英男 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内Front page continuation (72) Inventor Hideo Kato 1-4-1 Chuo 1-4-1, Wako-shi, Saitama Honda R & D Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ブレーキの動作により回生制動を行なわ
せるコントローラを介して水素−酸素型燃料電池から駆
動モータへ動力を送らせ走行する自動車において、メタ
ノールおよび水を気化器を介して吸入する改質器から、
変速機に連結の圧送ポンプ、燃料ガス分離器、逆止弁、
水素タンクおよび背圧弁を経由する通常ルートによる
か、またはバイパス導管によるバイパスルートを経て燃
料電池へ水素を供給し、燃料電池からは別の背圧弁を有
する還流ルートにより未反応ガスを改質器へ導く構成と
した回生制動によるメタノール改質ガス中の水素濃縮シ
ステムと、空気を吸入し圧縮供給する、変速機に連結の
圧送ポンプから酸化剤ガス分離器、逆止弁、酸素タンク
および背圧弁を経由する通常ルートによるか、またはバ
イパス導管によるバイパスルートを経て燃料電池へ酸素
を供給し、燃料電池からは別の背圧弁を有する還流ルー
トにより未反応ガスを改質器へ導く構成とした回生制動
による空気中の酸素濃縮システムとを組み合わせてなる
ことを特徴とした回生制動による反応ガス圧縮システ
ム。
1. A reformer in which methanol and water are sucked in through a vaporizer in a vehicle that runs by sending power from a hydrogen-oxygen fuel cell to a drive motor through a controller that performs regenerative braking by operating a brake. From the vessel
Pressure pump connected to transmission, fuel gas separator, check valve,
Hydrogen is supplied to the fuel cell by the normal route via the hydrogen tank and the back pressure valve or by the bypass route by the bypass conduit, and the unreacted gas is fed from the fuel cell to the reformer by the reflux route having another back pressure valve. A hydrogen concentration system in the methanol reformed gas by regenerative braking that is configured to lead, and an oxidant gas separator, a check valve, an oxygen tank and a back pressure valve from a pressure-feeding pump connected to the transmission that sucks and compresses air and supplies it. Regenerative braking configured to supply oxygen to the fuel cell via the normal route via the bypass conduit or via the bypass route via the bypass conduit, and to guide the unreacted gas from the fuel cell to the reformer via the reflux route with another back pressure valve. The reaction gas compression system by regenerative braking characterized by being combined with the oxygen concentration system in the air.
JP04360450A 1992-12-28 1992-12-28 Automotive reaction gas compression system Expired - Fee Related JP3136015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04360450A JP3136015B2 (en) 1992-12-28 1992-12-28 Automotive reaction gas compression system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04360450A JP3136015B2 (en) 1992-12-28 1992-12-28 Automotive reaction gas compression system

Publications (2)

Publication Number Publication Date
JPH06203846A true JPH06203846A (en) 1994-07-22
JP3136015B2 JP3136015B2 (en) 2001-02-19

Family

ID=18469458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04360450A Expired - Fee Related JP3136015B2 (en) 1992-12-28 1992-12-28 Automotive reaction gas compression system

Country Status (1)

Country Link
JP (1) JP3136015B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897825A1 (en) * 1997-07-23 1999-02-24 dbb fuel cell engines GmbH Vehicle with fuel cell
KR20030083515A (en) * 2002-04-23 2003-10-30 현대자동차주식회사 an auxiliary brake system of fuel cell commercial vehicles
JP2005510391A (en) * 2001-08-23 2005-04-21 ゼネラル・モーターズ・コーポレーション Vehicle chassis having a system responsive to non-mechanical control signals
JP2006216283A (en) * 2005-02-01 2006-08-17 Ishikawajima Harima Heavy Ind Co Ltd Town gas supply device for solid polymer electrolyte fuel cell power generation device
JP2006523373A (en) * 2003-04-04 2006-10-12 クアンタム テクノロジーズ インコーポレイテッド Mobile fuel cell generator
JP2007024567A (en) * 2005-07-13 2007-02-01 Toppan Printing Co Ltd Hydrogen sensor, fuel cell, and vehicle equipped therewith
JP2007024568A (en) * 2005-07-13 2007-02-01 Toppan Printing Co Ltd Hydrogen sensor, fuel cell, and vehicle equipped therewith
JP2007024566A (en) * 2005-07-13 2007-02-01 Toppan Printing Co Ltd Hydrogen sensor, fuel cell, and vehicle equipped therewith
CN102259595A (en) * 2011-05-13 2011-11-30 北京工业大学 Device and method for preparing hydrogen and oxygen on vehicle by recycling braking energy
CN102259596A (en) * 2011-05-19 2011-11-30 北京工业大学 Device and method for recycling automobile braking energy
JP5494799B2 (en) * 2010-04-28 2014-05-21 コニカミノルタ株式会社 Fuel cell device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897825A1 (en) * 1997-07-23 1999-02-24 dbb fuel cell engines GmbH Vehicle with fuel cell
JP2005510391A (en) * 2001-08-23 2005-04-21 ゼネラル・モーターズ・コーポレーション Vehicle chassis having a system responsive to non-mechanical control signals
KR20030083515A (en) * 2002-04-23 2003-10-30 현대자동차주식회사 an auxiliary brake system of fuel cell commercial vehicles
JP2006523373A (en) * 2003-04-04 2006-10-12 クアンタム テクノロジーズ インコーポレイテッド Mobile fuel cell generator
JP2006216283A (en) * 2005-02-01 2006-08-17 Ishikawajima Harima Heavy Ind Co Ltd Town gas supply device for solid polymer electrolyte fuel cell power generation device
JP2007024567A (en) * 2005-07-13 2007-02-01 Toppan Printing Co Ltd Hydrogen sensor, fuel cell, and vehicle equipped therewith
JP2007024568A (en) * 2005-07-13 2007-02-01 Toppan Printing Co Ltd Hydrogen sensor, fuel cell, and vehicle equipped therewith
JP2007024566A (en) * 2005-07-13 2007-02-01 Toppan Printing Co Ltd Hydrogen sensor, fuel cell, and vehicle equipped therewith
JP5494799B2 (en) * 2010-04-28 2014-05-21 コニカミノルタ株式会社 Fuel cell device
CN102259595A (en) * 2011-05-13 2011-11-30 北京工业大学 Device and method for preparing hydrogen and oxygen on vehicle by recycling braking energy
CN102259596A (en) * 2011-05-19 2011-11-30 北京工业大学 Device and method for recycling automobile braking energy

Also Published As

Publication number Publication date
JP3136015B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
US6007930A (en) Method for initiating a fuel cell
US5346778A (en) Electrochemical load management system for transportation applications
US6311650B1 (en) Vehicle having a driving internal-combustion engine and having a fuel cell system for the power supply to electric consuming devices of the vehicle and method for operating such a vehicle
US6408966B1 (en) Fuel cell vehicle
JP4081238B2 (en) Production of electrical energy from natural gas using solid oxide fuel cells
CN102047484B (en) Fuel cell system
US7147072B2 (en) Method and apparatus for providing hybrid power in vehicle
CN110277578A (en) A kind of ammonia fuel cell system and electric device
US7045232B1 (en) Fuel cell system and method for producing electric energy using a fuel cell system
US6472091B1 (en) Fuel cell system and method for supplying electric power in a motor vehicle
US20070292727A1 (en) Fuel Cell System and Method for Generating Electrical Energy Using a Fuel Cell System
JPH0917438A (en) Fuel cell system in movable body having fuel cell
US20020039673A1 (en) Fuel cell pressurization system and method of use
JP2005516348A (en) High temperature fuel cell power generator
JPH06203846A (en) Reaction gas compression system utilizing regenerative braking
US6329091B1 (en) Fuel reformer system for a fuel cell
US6516905B1 (en) Vehicle with a fuel cell system and method for operating the same
CA2604650A1 (en) Fuel cell system
US8268139B2 (en) Hydrogen generation apparatus
JP4530176B2 (en) Fuel cell vehicle
JP4133614B2 (en) Fuel cell system
US20040146760A1 (en) Hydrogen supply unit
CA2499860C (en) Energy recovery method and system on a vehicle equipped with a reformer/fuel cell
CN105609822B (en) Fuel cell system, moving body and control method
JP2007048574A (en) Cathode gas supply method of fuel cell and cathode gas supply device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees