JPH06203845A - Generating system simultaneously generating power and collecting carbon dioxide by using solid oxide fuel cell - Google Patents
Generating system simultaneously generating power and collecting carbon dioxide by using solid oxide fuel cellInfo
- Publication number
- JPH06203845A JPH06203845A JP4248488A JP24848892A JPH06203845A JP H06203845 A JPH06203845 A JP H06203845A JP 4248488 A JP4248488 A JP 4248488A JP 24848892 A JP24848892 A JP 24848892A JP H06203845 A JPH06203845 A JP H06203845A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- gas
- solid oxide
- fuel cell
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】化石燃料からエネルギー変換によ
って動力を得る際、必然的に発生する二酸化炭素をその
まま大気に放出すると、地球温暖化の原因となる可能性
が指摘されている。本発明は、この二酸化炭素を動力発
生源において分離回収することを目的とするものであ
り、固体酸化物燃料電池を用いた熱併給・分散型発電、
あるいは将来の可能性として、事業用大規模発電、海中
動力源などに利用される。[Industrial field of application] It has been pointed out that when carbon dioxide, which is inevitably generated when fossil fuel is used for energy conversion by energy conversion, is directly emitted to the atmosphere, it may cause global warming. The present invention is intended to separate and recover this carbon dioxide in a power generation source, and cogeneration / dispersive power generation using a solid oxide fuel cell,
Or as a future possibility, it will be used for large-scale power generation for business, underwater power source, etc.
【0002】[0002]
【従来の技術】エネルギー変換に伴って発生する二酸化
炭素の分離回収技術はまだ研究開発の段階にある。従来
提示されている案としては、在来型熱機関を対象とし
て、(1)その燃焼排気ガス中から分離する方式、
(2)化石燃料を高温下で改質した燃料ガス中から分離
する方式、(3)酸化剤として酸素だけを用いて燃焼ガ
ス中から分離する方式などがある。2. Description of the Related Art The technology for separating and recovering carbon dioxide generated by energy conversion is still in the research and development stage. The conventional proposals are (1) a method of separating from the combustion exhaust gas for a conventional heat engine,
(2) A method of separating the fossil fuel from the fuel gas reformed at high temperature, and (3) a method of separating the fossil fuel from the combustion gas by using only oxygen as an oxidant.
【0003】[0003]
【発明が解決しようとする課題】従来の技術(1)で
は、発生する二酸化炭素が大量の燃焼排気ガス中に混入
し、その濃度が薄くなるとともに、処理すべきガス量が
膨大となって、装置が極めて大規模になる。(2)、
(3)はその点を考慮して提案されたものであるが、空
気からの酸素分離に余分のエネルギーが必要であるこ
と、処理ガス量低減の効果が充分でないことなどの欠点
がある。In the prior art (1), the generated carbon dioxide is mixed in a large amount of combustion exhaust gas, the concentration thereof becomes thin, and the amount of gas to be processed becomes enormous. The equipment becomes extremely large. (2),
Although (3) has been proposed in consideration of this point, it has drawbacks such as extra energy required for separating oxygen from air and insufficient effect of reducing the amount of processing gas.
【0004】以上要するに、本発明で解決しようとする
課題は、二酸化炭素を出来る限り他のガスと混合させな
いで高濃度の状態に保ち、処理体積量を減少させること
によって、分離装置を小型・高効率化し、二酸化炭素分
離回収技術の実用化の可能性を高めることである。In summary, the problem to be solved by the present invention is to keep the carbon dioxide in a high concentration state without mixing with other gas as much as possible, and to reduce the processing volume, thereby reducing the size and size of the separation device. It is to increase the efficiency and increase the possibility of commercialization of carbon dioxide separation and capture technology.
【0005】[0005]
【課題を解決するための手段】図1は本発明で用いた手
段を示したものであり、つぎの三点からなる。まず、固
体酸化物燃料電池1を動力源として用いることである。FIG. 1 shows the means used in the present invention, which consists of the following three points. First, the solid oxide fuel cell 1 is used as a power source.
【0006】つぎに、二酸化炭素を含む燃料極3側のガ
スを循環させ空気極4側と区分することである。Next, the gas on the fuel electrode 3 side containing carbon dioxide is circulated to be separated from the air electrode 4 side.
【0007】そして、その循環流路中にガスを冷却する
ための凝縮器5と二酸化炭素分離装置6を組み込むこと
である。The condenser 5 and the carbon dioxide separator 6 for cooling the gas are incorporated in the circulation passage.
【0008】[0008]
【作用】固体酸化物燃料電池の構成要素である固体酸化
物電解質2は、図2にその原理を示すように、空気12
中の酸素16だけを燃料極側に供給するものである。そ
して、燃料13と水蒸気14とが改質反応して出来る水
素と一酸化炭素との混合ガス18と、この酸素が反応し
て二酸化炭素9と水蒸気14が生成される。その際、上
記の電解質2は、発電要素の一部として作用すると同時
に、発生する二酸化炭素を空気極側の窒素などの大量の
排気ガス10から分離する作用がある。The solid oxide electrolyte 2, which is a constituent element of the solid oxide fuel cell, has the air 12 as shown in FIG.
Only oxygen 16 in the inside is supplied to the fuel electrode side. Then, the mixed gas 18 of hydrogen and carbon monoxide formed by the reforming reaction of the fuel 13 and the steam 14 reacts with this oxygen to generate the carbon dioxide 9 and the steam 14. At that time, the electrolyte 2 acts as a part of the power generation element and at the same time acts to separate the generated carbon dioxide from a large amount of exhaust gas 10 such as nitrogen on the air electrode side.
【0009】つぎに、燃料極側ガス11の循環は、電池
出口の未反応燃料18を燃焼等によらず電池反応に有効
に利用し、二酸化炭素が空気極側の排気ガス中に混入す
るのを防ぐ作用をする。Next, the circulation of the fuel electrode side gas 11 makes effective use of the unreacted fuel 18 at the cell outlet for the cell reaction regardless of combustion etc., and carbon dioxide is mixed in the exhaust gas on the air electrode side. Acts to prevent.
【0010】燃料極側ガスの凝縮器5による冷却は、同
ガス中の水蒸気を凝縮水15として分離することによ
り、処理ガスの体積量を大幅に減少させる作用、ならび
に、未反応燃料としての一酸化炭素をシフト反応と称さ
れる反応で水素と二酸化炭素に変化させ、分離の対象と
する作用がある。The cooling of the fuel electrode side gas by the condenser 5 separates the water vapor in the gas as condensed water 15 to significantly reduce the volume of the treated gas, and also serves as unreacted fuel. There is an action of converting carbon oxide into hydrogen and carbon dioxide by a reaction called a shift reaction, which is a target of separation.
【0011】以上の作用によって、分離装置6の入口部
におけるガス中の二酸化炭素濃度は極めて高くなり、分
離装置内での分離効率が増加するとともに、その処理ガ
ス体積量は大幅に低減され、分離装置を小型化すること
が可能となる。With the above operation, the carbon dioxide concentration in the gas at the inlet of the separation device 6 becomes extremely high, the separation efficiency in the separation device is increased, and the volume of the treated gas is greatly reduced. It is possible to downsize the device.
【0012】[0012]
【実施例】図1のシステムのほか図3に示すように、全
体の熱量バランスを保つため、燃料極側ガスの一部を空
気側に導いて補助燃焼器19で燃焼させる方式(A)が
考えられる。この場合は、排気ガス中に若干の二酸化炭
素が混入することになる。EXAMPLE In addition to the system of FIG. 1, as shown in FIG. 3, in order to maintain the overall heat balance, a method (A) in which a part of the fuel electrode side gas is guided to the air side and burned in the auxiliary combustor 19 is used. Conceivable. In this case, some carbon dioxide is mixed in the exhaust gas.
【0013】また、ガス予熱用の熱交換器20やタービ
ン・圧縮機類21、22、23と複合化させ、システム
全体の熱効率を向上させる方式(B)などが考えられ
る。Further, a method (B) in which the heat efficiency of the entire system is improved by combining it with the heat exchanger 20 for gas preheating and the turbines / compressors 21, 22, and 23 can be considered.
【0014】二酸化炭素の分離装置としては、膜分離、
圧縮液化法、アミン液等による化学吸収、ゼオライト等
による物理吸着など種々の方法が適用可能である。As a carbon dioxide separator, a membrane separator,
Various methods such as compression liquefaction method, chemical absorption by amine solution, physical adsorption by zeolite, etc. can be applied.
【0015】また、燃料としては、LNG、メタンが適
しているが、その他の燃料(例えば、石炭など)も改質
処理を前提として適用可能である。Although LNG and methane are suitable as fuels, other fuels (for example, coal) can be applied on the premise of reforming treatment.
【0016】[0016]
【発明の効果】本発明によって、動力源から放出される
排気ガス中の二酸化炭素濃度を、在来の熱機関の場合に
比べ極めて低い値に保持できる。According to the present invention, the carbon dioxide concentration in the exhaust gas emitted from the power source can be maintained at a value extremely lower than that of the conventional heat engine.
【0017】また、二酸化炭素分離のための処理ガス量
を大幅に低減できる。例えば、燃料としてメタンを用い
る場合、在来機関と比較して、排出濃度は1/10以
下、分離装置入口濃度は10倍すなわち処理ガス量は1
/10程度になる。Further, the amount of processing gas for carbon dioxide separation can be greatly reduced. For example, when methane is used as the fuel, the exhaust concentration is 1/10 or less, the separator inlet concentration is 10 times, that is, the treated gas amount is 1 compared with the conventional engine.
It will be about / 10.
【0018】したがって、分離装置は大幅に小型化で
き、分離効率も高くなるため、二酸化炭素分離回収技術
の実用化の可能性が極めて高くなる。Therefore, the separation device can be significantly downsized and the separation efficiency can be improved, and the possibility of practical application of the carbon dioxide separation and capture technology becomes extremely high.
【図1】固体酸化物燃料電池による発電/二酸化炭素分
離のシステム図である。FIG. 1 is a system diagram of power generation / carbon dioxide separation by a solid oxide fuel cell.
【図2】固体電解質の原理説明図である。FIG. 2 is a diagram illustrating the principle of a solid electrolyte.
【図3】発電システムの実施例を示す図である。 (A)補助燃焼器によって熱量バランスを保つ方式 (B)予熱用熱交換器、タービン類を複合化させ熱効率
を向上させる方式FIG. 3 is a diagram showing an example of a power generation system. (A) Method to maintain heat balance by auxiliary combustor (B) Method to improve heat efficiency by combining heat exchanger for preheating and turbines
1 固体酸化物燃料電池、 14 水蒸
気、2 固体酸化物電解質、 15
凝縮水、3 燃料極、 1
6 酸素、4 空気極、
17 窒素等、5 凝縮器、
18 水素+ 一酸化炭素、6 二酸化炭素分離装
置、 19 補助燃焼器、7 排熱回収
ボイラ (蒸気発生装置)、 20 予熱用熱交換器、
8 電力発生端、 21 ガス
タービン、9 二酸化炭素 (分離回収)、
22 圧縮機、10 空気極側排気ガス(大気放出)、
23 蒸気タービン 11 燃料極側ガス (循環流路)、12 空気、1
3 燃料、1 Solid Oxide Fuel Cell, 14 Water Vapor, 2 Solid Oxide Electrolyte, 15
Condensed water, 3 fuel electrode, 1
6 oxygen, 4 air electrodes,
17 nitrogen, etc., 5 condensers,
18 hydrogen + carbon monoxide, 6 carbon dioxide separator, 19 auxiliary combustor, 7 exhaust heat recovery boiler (steam generator), 20 preheat heat exchanger,
8 power generation end, 21 gas turbine, 9 carbon dioxide (separation and recovery),
22 compressor, 10 air side exhaust gas (release to the atmosphere),
23 steam turbine 11 fuel electrode side gas (circulation flow path), 12 air, 1
3 fuel,
Claims (1)
空気中の酸素だけを燃料極側に通過させる固体酸化物電
解質膜の特性を利用し、電池反応の結果生じる二酸化炭
素を、大量の排気ガスと混合させることなく高濃度のま
ま小型の分離装置に導き、効率よく回収する発電システ
ムWhen generating electric power in a solid oxide fuel cell,
Utilizing the characteristics of the solid oxide electrolyte membrane that allows only oxygen in the air to pass to the fuel electrode side, the carbon dioxide generated as a result of the cell reaction can be used as a small separation device with high concentration without mixing with a large amount of exhaust gas. A power generation system that guides and collects efficiently
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4248488A JP3000118B2 (en) | 1992-08-04 | 1992-08-04 | Method of separating and recovering carbon dioxide while generating power using solid oxide fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4248488A JP3000118B2 (en) | 1992-08-04 | 1992-08-04 | Method of separating and recovering carbon dioxide while generating power using solid oxide fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06203845A true JPH06203845A (en) | 1994-07-22 |
JP3000118B2 JP3000118B2 (en) | 2000-01-17 |
Family
ID=17178913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4248488A Expired - Lifetime JP3000118B2 (en) | 1992-08-04 | 1992-08-04 | Method of separating and recovering carbon dioxide while generating power using solid oxide fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3000118B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999010945A1 (en) * | 1997-08-26 | 1999-03-04 | Shell Internationale Research Maatschappij B.V. | Producing electrical energy from natural gas using a solid oxide fuel cell |
EP0948070A1 (en) * | 1998-02-17 | 1999-10-06 | Mitsubishi Heavy Industries, Ltd. | Solid electrolyte fuel cell power generating system |
WO2004066467A2 (en) * | 2003-01-17 | 2004-08-05 | Shell Internationale Research Maatschappij B.V. | Solid oxide fuel cell with anode offgas afterburner charged with oxygen |
WO2005083826A1 (en) * | 2004-03-02 | 2005-09-09 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
JP2006509345A (en) * | 2002-12-10 | 2006-03-16 | アカー クバナー エンジニアリングアンドテクノロジー | Exhaust gas treatment method for solid oxide fuel cell power plant |
JP2006139984A (en) * | 2004-11-11 | 2006-06-01 | Mitsubishi Heavy Ind Ltd | Fuel cell system |
JP2011508949A (en) * | 2007-12-28 | 2011-03-17 | サンゴバン・セラミックス・アンド・プラスティックス・インコーポレイティッド | Fuel cell system |
CN102762493A (en) * | 2009-12-22 | 2012-10-31 | Zeg动力股份公司 | Method and device for simultaneous production of energy in the forms electricity, heat and hydrogen gas |
US11581559B2 (en) | 2018-02-06 | 2023-02-14 | Tokyo Gas Co., Ltd. | Carbon dioxide production system |
WO2024086733A1 (en) * | 2022-10-21 | 2024-04-25 | Versa Power Systems, Ltd | Fuel cell system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101564165B1 (en) * | 2014-03-07 | 2015-10-28 | 한국에너지기술연구원 | Carbon dioxide capture apparatus and process for using self-generating power means |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51100989A (en) * | 1975-03-05 | 1976-09-06 | Hitachi Ltd | |
JPS5669775A (en) * | 1979-11-12 | 1981-06-11 | Hitachi Ltd | Generation of molten-carbonate fuel cell |
JPS63166158A (en) * | 1986-12-26 | 1988-07-09 | Mitsubishi Heavy Ind Ltd | Fuel cell power generating system |
-
1992
- 1992-08-04 JP JP4248488A patent/JP3000118B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51100989A (en) * | 1975-03-05 | 1976-09-06 | Hitachi Ltd | |
JPS5669775A (en) * | 1979-11-12 | 1981-06-11 | Hitachi Ltd | Generation of molten-carbonate fuel cell |
JPS63166158A (en) * | 1986-12-26 | 1988-07-09 | Mitsubishi Heavy Ind Ltd | Fuel cell power generating system |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999010945A1 (en) * | 1997-08-26 | 1999-03-04 | Shell Internationale Research Maatschappij B.V. | Producing electrical energy from natural gas using a solid oxide fuel cell |
AU725897B2 (en) * | 1997-08-26 | 2000-10-26 | Shell Internationale Research Maatschappij B.V. | Producing electrical energy from natural gas using a solid oxide fuel cell |
US6432565B1 (en) | 1997-08-26 | 2002-08-13 | Shell Oil Company | Producing electrical energy from natural gas using a solid oxide fuel cell |
EP0948070A1 (en) * | 1998-02-17 | 1999-10-06 | Mitsubishi Heavy Industries, Ltd. | Solid electrolyte fuel cell power generating system |
US6309770B1 (en) | 1998-02-17 | 2001-10-30 | Mitsubishi Heavy Industries, Ltd. | Solid electrolyte fuel cell power generating system |
JP2006509345A (en) * | 2002-12-10 | 2006-03-16 | アカー クバナー エンジニアリングアンドテクノロジー | Exhaust gas treatment method for solid oxide fuel cell power plant |
WO2004066467A3 (en) * | 2003-01-17 | 2004-09-30 | Shell Int Research | Solid oxide fuel cell with anode offgas afterburner charged with oxygen |
WO2004066467A2 (en) * | 2003-01-17 | 2004-08-05 | Shell Internationale Research Maatschappij B.V. | Solid oxide fuel cell with anode offgas afterburner charged with oxygen |
WO2005083826A1 (en) * | 2004-03-02 | 2005-09-09 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
US7718294B2 (en) | 2004-03-02 | 2010-05-18 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
JP2006139984A (en) * | 2004-11-11 | 2006-06-01 | Mitsubishi Heavy Ind Ltd | Fuel cell system |
JP4681277B2 (en) * | 2004-11-11 | 2011-05-11 | 三菱重工業株式会社 | Fuel cell system |
JP2011508949A (en) * | 2007-12-28 | 2011-03-17 | サンゴバン・セラミックス・アンド・プラスティックス・インコーポレイティッド | Fuel cell system |
CN102762493A (en) * | 2009-12-22 | 2012-10-31 | Zeg动力股份公司 | Method and device for simultaneous production of energy in the forms electricity, heat and hydrogen gas |
JP2013515344A (en) * | 2009-12-22 | 2013-05-02 | ゼグ パワー アーエス | Method and apparatus for the simultaneous production of energy in the form of electricity, heat and hydrogen gas |
CN102762493B (en) * | 2009-12-22 | 2017-02-08 | Zeg动力股份公司 | Method and device for simultaneous production of energy in the forms electricity, heat and hydrogen gas |
US11581559B2 (en) | 2018-02-06 | 2023-02-14 | Tokyo Gas Co., Ltd. | Carbon dioxide production system |
WO2024086733A1 (en) * | 2022-10-21 | 2024-04-25 | Versa Power Systems, Ltd | Fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JP3000118B2 (en) | 2000-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101137207B1 (en) | Integrated high efficiency fossil fuel power plant/fuel cell system with co2 emissions abatement | |
RU2199172C2 (en) | Method for generating electrical energy from natural gas using solid oxyl fuel cell | |
KR102132600B1 (en) | Power production gas separation system and method | |
US7438733B2 (en) | Fossil fuel combined cycle power generation method | |
US20050123810A1 (en) | System and method for co-production of hydrogen and electrical energy | |
JP6799078B2 (en) | Methaneization of anode exhaust gas to enhance carbon dioxide capture | |
RU2013153197A (en) | FUEL CELL AND HYBRID SYSTEM OF GAS PISTON / DIESEL ENGINE | |
JP3000118B2 (en) | Method of separating and recovering carbon dioxide while generating power using solid oxide fuel cell | |
JP2002319428A (en) | Molten carbonate fuel cell power generating device | |
JPH11297336A (en) | Composite power generating system | |
JPH1126004A (en) | Power generating system | |
US20220093950A1 (en) | Solid oxide fuel cell arrangement generating ammonia as byproduct and utilizing ammonia as secondary fuel | |
JPH11169661A (en) | Carbon dioxide recovering device | |
JPH0845523A (en) | Fuel cell/gas turbine combined generation system | |
KR102289495B1 (en) | System for capturing carbon dioxide using fuel cell and method thereof | |
US9647285B2 (en) | Fossil fuel power plant with integrated carbon separation facility | |
JP2934517B2 (en) | Direct reduction method of metal ore | |
JPH03258902A (en) | Electric power plant | |
EP4114584A1 (en) | Steam concentration energy converter | |
JP2000297656A (en) | Thermal power generation plant | |
Gour et al. | Application of fuel cell in power plant to reduce the carbon-dioxide emission | |
JPS63126173A (en) | Power generating system of fused carbonate type fuel cell | |
JP2024158051A (en) | Fuel Cell Systems | |
JP2003036876A (en) | Molten carbonate type fuel cell power generator | |
JP2024147869A (en) | Fuel Cell Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |