JPH06201843A - Investigating method of geological features - Google Patents

Investigating method of geological features

Info

Publication number
JPH06201843A
JPH06201843A JP34784592A JP34784592A JPH06201843A JP H06201843 A JPH06201843 A JP H06201843A JP 34784592 A JP34784592 A JP 34784592A JP 34784592 A JP34784592 A JP 34784592A JP H06201843 A JPH06201843 A JP H06201843A
Authority
JP
Japan
Prior art keywords
hole
survey
image data
ground
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34784592A
Other languages
Japanese (ja)
Other versions
JP2681735B2 (en
Inventor
Kenzo Mizuhara
憲三 水原
Michinao Terada
道直 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP34784592A priority Critical patent/JP2681735B2/en
Publication of JPH06201843A publication Critical patent/JPH06201843A/en
Application granted granted Critical
Publication of JP2681735B2 publication Critical patent/JP2681735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To eliminate a need for a boring machine and to investigate geological features by a borehole camera by a method wherein a small-diameter investigation hole to be used as a borehole is bored in the same manner as the boring operation of a blasted hole. CONSTITUTION:Three small-diameter holes 11A, 11B, 11C are bored by using the boring machine of a blasted hole, the image of the inside of each hole is picked up by a borehole camera 12, and the geological features of the ground as an object to be investigated are grasped three-dimensionally on the basis of the situation of the inner wall surface of each hole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、調査対象の地盤に調査
孔を掘削することによって、当該地盤の地質を調査する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for investigating the geology of a ground to be surveyed by drilling a survey hole in the ground.

【0002】[0002]

【従来の技術】従来より、地盤の地質を調査する方法と
しては、地盤を直接観察する方法と地盤の一部を切り出
してサンプルを採取し、このサンプルを観察する方法と
があった。トンネル掘削工事等においては、事前に調査
対象の地盤を直接目視観察することは不可能であるの
で、対象地盤をボーリング機械でボーリングして、棒状
のボーリングコアを採取し、このコアを観察することに
よって、地質を調べる先進ボーリング調査が採用される
ことが多かった。
2. Description of the Related Art Conventionally, as a method for investigating the geology of the ground, there have been a method of directly observing the ground and a method of cutting out a part of the ground to obtain a sample and observing the sample. In tunnel excavation work, etc., it is not possible to directly visually observe the ground to be surveyed beforehand. Therefore, drill the target ground with a boring machine to collect a rod-shaped boring core and observe this core. Often, advanced boring surveys for geology were adopted.

【0003】しかし、先進ボーリング調査には、以下の
問題があった。 調査対象の地盤の地質が悪ければ悪いほど、観察可
能なボーリングコアの採取は困難となり、断層や破砕帯
等のように、施工上に本当に知りたい部分のボーリング
コアの採取が困難となって地質の情報が得られないとい
う問題があった。 ボーリングコアを得るには専用のボーリング機械を
要するので、そのような専用の機械を、トンネル工事の
切羽へ搬入したり削孔の準備作業をしたりすることは、
時間と労力を要するという問題がある。 ボーリング作業中は、トンネル自体の掘削工事は中
断を余儀無くされるので、一般的に調査費用が嵩むとい
う問題がある。 サンプルとしてのボーリングコアのサイズは、調査
対象の地盤に比して小さいため、信頼性の高い地質調査
ができないという問題がある。
However, the advanced boring survey has the following problems. The poorer the geology of the surveyed ground, the more difficult it is to collect observable boring cores, and the harder it is to collect the parts of the boring core that you really want to know during construction, such as faults and shatter zones. There was a problem that the information of was not obtained. Since a special boring machine is required to obtain a boring core, it is not possible to carry such a special machine into the face of a tunnel or prepare for drilling.
There is a problem that it takes time and labor. During the boring work, the excavation work of the tunnel itself is forced to be interrupted, and thus there is a problem that the survey cost is generally high. Since the size of the boring core as a sample is smaller than the ground to be surveyed, there is a problem that a highly reliable geological survey cannot be performed.

【0004】そこで、ボーリングコアを採取して観察す
る代わりに、ボーリングした調査孔の内壁面をボアホー
ルカメラで撮像する方法がある。これは、ボーリングし
た調査孔の中に、ボアホールカメラを挿入して周囲の壁
面を撮像し、得られた画像の濃淡や色調等を肉眼で観察
して、地質の分類・同定あるいは亀裂等の走向傾斜の解
析が行われている。
Therefore, there is a method of taking an image of the inner wall surface of the bored survey hole with a borehole camera, instead of collecting and observing the bore core. This is because the borehole camera is inserted into the bored survey hole, the surrounding wall surface is imaged, the shade and color tone of the obtained image are observed with the naked eye, and classification / identification of geology or the strike of cracks is performed. The slope is being analyzed.

【0005】そして、得られた画像から亀裂の面や異な
る地質の境界面等の不連続面の走向傾斜を解析するとき
は、得られた画像上における亀裂等の不連続面をひとつ
ずつ手作業でトレースして、手計算によって走向傾斜を
求めていた。しかし、このようなボアホールカメラを用
いた従来の地質の調査方法では、判断基準が曖昧で、観
察者の主観に左右されやすく、観察者の個人差が介入し
やすく、再現性が低いという問題がある。
Then, when analyzing the strike inclination of a discontinuous surface such as a surface of a crack or a boundary surface of different geology from the obtained image, the discontinuous surface of the crack or the like on the obtained image is manually operated one by one. It was traced at and the strike inclination was calculated by hand calculation. However, in the conventional geological survey method using such a borehole camera, there are problems that the judgment criteria are ambiguous, the subjectivity of the observer is apt to be influenced, the individual difference of the observer is likely to intervene, and the reproducibility is low. is there.

【0006】また、同一人による観察の場合でも、判断
基準が曖昧でばらつきがあるため、再現性が低いという
問題がある。また、観察による地質の分類・同定には、
ある程度の経験と専門的知識が必要となるという問題が
ある。また、亀裂の面や異なる地質の境界面等の不連続
面の走向傾斜を解析するには、手作業によるトレースと
手計算による走向傾斜の解析を要するので、時間と労力
を要するという問題がある。特に、亀裂等の不連続面が
多いほど解析により多くの時間と労力が必要となるとい
う問題がある。
Further, even in the case of observation by the same person, there is a problem that the reproducibility is low because the judgment criteria are ambiguous and have variations. In addition, for classification and identification of geology by observation,
The problem is that some experience and expertise are required. In addition, in order to analyze the strike inclination of discontinuity surfaces such as a crack surface and a boundary surface of different geology, it is necessary to trace the stroke manually and to analyze the strike inclination by hand calculation, which requires time and labor. . In particular, the more discontinuous surfaces such as cracks, the more time and labor is required for analysis.

【0007】[0007]

【発明が解決しようとする課題】しかし、ボアホールを
掘削するためにコアボーリング機械を使用すると、前述
したように、コアボーリング機械のような専用の機械
を、トンネル工事の切羽へ搬入したり削孔の準備作業を
したりすることは、時間と労力を要するという問題は、
未だ解決できないとともに、ボアホールを削孔する作業
は、トンネル自体の掘削工事とは別であり、ボーリング
作業中は、トンネル自体の掘削工事が中断され、施工の
能率が悪いという問題も、未だ解決できない。
However, when a core boring machine is used for excavating a borehole, as described above, a dedicated machine such as a core boring machine is used to carry in or cut holes in the face of tunnel construction. The problem that it takes time and labor to do the preparation work of
It is not possible to solve it yet, and the work of drilling the borehole is different from the excavation work of the tunnel itself.During the boring work, the excavation work of the tunnel itself is interrupted and the problem of inefficient construction is still unsolvable. .

【0008】そこで、本発明においては、爆破孔の削孔
作業と同様にボアホールとなる小径の調査孔を削孔する
ことによって、コアボーリング機械を不要にできる地質
の調査方法を提供することを目的としている。
In view of the above, it is an object of the present invention to provide a geological survey method capable of eliminating the need for a core boring machine by drilling a small-diameter survey hole to be a borehole as in the blast hole drilling operation. I am trying.

【0009】[0009]

【課題を解決するための手段】本発明においては、調査
対象の地盤に、少なくとも2本の小径の筒状の調査孔を
穿ち、前記各調査孔の内壁面を連続的に撮像して画像デ
ータを得て、前記各調査孔の画像データに基づいて、前
記調査対象の地盤の地質を二次元的,三次元的に想定す
るように構成した。
According to the present invention, at least two small-diameter tubular inspection holes are bored in the ground to be inspected, and the inner wall surface of each of the inspection holes is continuously imaged to obtain image data. Then, based on the image data of each of the survey holes, the geology of the ground to be surveyed is two-dimensionally and three-dimensionally assumed.

【0010】また、調査対象の地盤に、少なくとも2本
の小径の筒状の調査孔を穿ち、前記各調査孔の内壁面
を、軸に平行に設定した計測線に沿って連続的に撮像し
て画像データを得て、前記各画像データを所定の範囲で
1画素ずつシフトしながら比較し、各画像データが最も
よく一致するときのシフト量を算出し、前記シフト量ず
れた各調査孔間の地質を二次元的,三次元的に同じ地質
と判定するようにした。
In addition, at least two small-diameter cylindrical survey holes are drilled in the ground to be surveyed, and the inner wall surface of each survey hole is continuously imaged along a measurement line set parallel to the axis. Image data is obtained, the image data is compared by shifting each pixel by one pixel in a predetermined range, the shift amount when each image data is best matched is calculated, and the inter-inspection holes with the shift amount shifted It was decided that the geology of the same was judged two-dimensionally and three-dimensionally.

【0011】[0011]

【作用】本発明によれば、調査対象の地盤に穿った筒状
の調査孔の内壁面を連続的に撮像して調査するので、そ
の調査孔の内壁面の地質は把握できる。そして、調査孔
は少なくとも2本削孔したので、各調査孔において観察
された地質を、二次元的,三次元的に関係付けることに
よって、調査対象の地盤の地質の分布を二次元的,三次
元的に把握できる。なお、前記調査孔は、小径でありト
ンネル掘削用の機械を利用することができ、コアボーリ
ング専用の機械を要しない。
According to the present invention, since the inner wall surface of the cylindrical inspection hole bored in the ground to be investigated is continuously imaged and investigated, the geology of the inner wall surface of the investigation hole can be grasped. Since at least two survey holes were drilled, the geology observed in each survey hole was related two-dimensionally and three-dimensionally to determine the two-dimensional and three-dimensional distribution of the geology of the surveyed ground. I can understand it from the beginning. In addition, since the inspection hole has a small diameter, a machine for tunnel excavation can be used, and a machine dedicated to core boring is not required.

【0012】また、前記各調査孔の内壁面を、軸に平行
に設定した計測線に沿って撮像した画像データから、地
質の分布を二次元的,三次元的に把握することができ
る。このときは、各調査孔から得た画像データを1画素
ずつシフトしながら比較し、各画像データが最もよく一
致するときが、同じ地質であると判定し、そのときのシ
フト量に基づいて、調査対象の地盤を二次元的,三次元
的に把握できる。
Further, the geological distribution can be grasped two-dimensionally and three-dimensionally from the image data of the inner wall surface of each survey hole taken along a measurement line set parallel to the axis. At this time, the image data obtained from each survey hole is compared while shifting pixel by pixel, and when each image data best matches, it is determined that the geology is the same, and based on the shift amount at that time, You can grasp the ground to be surveyed two-dimensionally and three-dimensionally.

【0013】[0013]

【実施例】以下に本発明の地質の調査方法を、その実施
例を示した図面に基づいて詳細に説明する。図1は前記
実施例の構成を示すブロック図、図2は同実施例の画像
処理装置のブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The geological survey method of the present invention will be described in detail below with reference to the drawings showing the embodiments. FIG. 1 is a block diagram showing the configuration of the embodiment, and FIG. 2 is a block diagram of the image processing apparatus of the embodiment.

【0014】図1,2に示したように、トンネル工事用
の削孔機械を用いて爆破孔を削孔する作業と並行して、
同削孔機械を用いて簡易ボアホールとして適用可能な小
口径の3本の調査孔11A,11B,11Cを削孔す
る。
As shown in FIGS. 1 and 2, in parallel with the work of drilling a blast hole using a drilling machine for tunnel construction,
The same drilling machine is used to drill three small-diameter inspection holes 11A, 11B, 11C applicable as simple boreholes.

【0015】前記各調査孔に挿入したボアホールカメラ
12によって内壁面を撮像し、展開処理装置14に入力
し、内壁面の展開画像を得て、一端磁気テープ等に保存
する。このとき、前記削孔作業における削孔速度、音、
トルク等の削孔情報も、画像データと対応させて記録す
る。なお、前記展開処理装置14における展開処理の具
体的な技術の一つは、出願人が特開平3-132590号におい
て既に詳細に示した。
An image of the inner wall surface is picked up by the borehole camera 12 inserted in each of the inspection holes, and the image is input to the unfolding processing device 14 to obtain the unfolded image of the inner wall surface, which is once stored in a magnetic tape or the like. At this time, the drilling speed, the sound in the drilling work,
Drilling information such as torque is also recorded in association with the image data. Incidentally, one specific technique of the expansion processing in the expansion processing device 14 has already been shown in detail by the applicant in JP-A-3-132590.

【0016】このようにして得た磁気テープに記録され
た展開画像の画像データを、画像処理装置10に入力す
る。前記削孔情報は削孔情報部16に入力する。画像処
理装置10においては、画像量子化処理、フィルタ処
理、特徴量抽出処理等の前処理を行う前処理部13と、
亀裂のパラメータを抽出するパラメータ抽出処理、走向
傾斜を算出する傾斜算出処理、RQDの算出、岩質や風
化度の判定処理等の画像処理を行う画像処理部15と、
この画像処理部15において得られた結果と前記削孔情
報部16の削孔情報とに基づいて、地質構造予測処理、
岩盤等級予測処理、湧水状況判定処理等の前方予測処理
を行う前方予測部17とを備えている。
The image data of the developed image recorded on the magnetic tape thus obtained is input to the image processing apparatus 10. The drilling information is input to the drilling information section 16. In the image processing device 10, a preprocessing unit 13 that performs preprocessing such as image quantization processing, filter processing, and feature amount extraction processing,
An image processing unit 15 for performing image processing such as parameter extraction processing for extracting crack parameters, inclination calculation processing for calculating strike inclination, RQD calculation, rock quality and weathering degree determination processing,
Based on the result obtained by the image processing unit 15 and the drilling information of the drilling information unit 16, a geological structure prediction process,
A forward prediction unit 17 that performs forward prediction processing such as rock mass grade prediction processing and spring condition determination processing is provided.

【0017】なお、ボアホールカメラによって調査孔の
内壁面を全面撮像しなくても、各調査孔の軸に平行な調
査線を内壁面に沿って設定し、この調査線上の輝度分布
を測定する。このような調査線上の輝度分布を、図3に
示すように、3本の各調査孔について得て、これらの輝
度分布間のシフト量を算出して、対応する地質の走向傾
斜を求めることができる。この処理の具体的な方法の一
つは、出願人が先に提案した特願平4-296048号において
詳細に示した。
Even if the inner wall surface of the inspection hole is not entirely imaged by the borehole camera, an inspection line parallel to the axis of each inspection hole is set along the inner wall surface and the luminance distribution on this inspection line is measured. Such a brightness distribution on the survey line can be obtained for each of the three survey holes as shown in FIG. 3, and the shift amount between these brightness distributions can be calculated to obtain the strike slope of the corresponding geology. it can. One specific method of this processing is shown in detail in Japanese Patent Application No. 4-296048 previously proposed by the applicant.

【0018】特願平4-296048号においては、調査対象の
地盤に筒状の孔を穿ち、前記孔の内壁面に、孔の軸に平
行な少なくとも二本の計測線を設定し、少なくとも前記
計測線上における内壁面を連続的に撮像し、前記両計測
線に相当する画像における走査線上の画像データを所定
の範囲で1画素ずつシフトしながら両走査線間で比較
し、両走査線間の画像データが最もよく一致するときの
シフト量を算出し、前記シフト量ずれた両計測線間の地
質を同じ地質と判定するように構成した。
In Japanese Patent Application No. 4-296048, a cylindrical hole is bored in the ground to be investigated, and at least two measuring lines parallel to the axis of the hole are set on the inner wall surface of the hole, and at least the above-mentioned The inner wall surface on the measurement line is continuously imaged, and the image data on the scanning lines in the images corresponding to the both measurement lines are compared between the two scanning lines while shifting one pixel by one pixel in a predetermined range. The amount of shift when the image data best match each other is calculated, and the geology between the two measurement lines deviated by the shift amount is determined to be the same geology.

【0019】また、調査対象の地盤に筒状の孔を穿ち、
前記孔の内壁面に、孔の軸に平行な少なくとも二本の計
測線を設定し、少なくとも前記計測線上における内壁面
を連続的に撮像し、前記両計測線に相当する画像におけ
る走査線上の所定の範囲で画像データを1画素ずつシフ
トしながら、両走査線間の画像データの差の平方和を算
出し、その平方和が最小となるシフト量を求め、前記シ
フト量ずれた両計測線間の地質を同じ地質と判定しても
よい。
Further, a cylindrical hole is bored in the ground to be surveyed,
At least two measurement lines parallel to the axis of the hole are set on the inner wall surface of the hole, at least the inner wall surface on the measurement line is continuously imaged, and a predetermined value on the scanning line in the image corresponding to the both measurement lines is set. While the image data is being shifted pixel by pixel in the range, the sum of squares of the difference between the image data between the scanning lines is calculated, and the shift amount that minimizes the sum of squares is calculated. May be judged to be the same geology.

【0020】また、調査対象の地盤に筒状の孔を穿ち、
前記孔の内壁面に、孔の軸に平行な第1と第2の計測線
を設定し、前記第1と第2の計測線上における内壁面を
連続的に撮像し、前記第1の計測線に相当する画像にお
ける第1の走査線上に調べたい範囲を設定し、第2の計
測線に相当する画像における第2の走査線上に前記範囲
に対応する範囲とその前後に前記範囲と同じ範囲を設定
し、前記第1の走査線上の画像データと第2の走査線上
の画像データとの差の平方和を、前記第1の範囲の3倍
の範囲で、1画素ずつシフトしながら算出し、その平方
和が最小となるシフト量を求め、前記シフト量ずれた両
計測線間の地質を同じ地質と判定してもよい。
In addition, by making a cylindrical hole in the ground to be surveyed,
First and second measurement lines parallel to the axis of the hole are set on the inner wall surface of the hole, and the inner wall surface on the first and second measurement lines is continuously imaged, and the first measurement line A range to be examined is set on the first scanning line in the image corresponding to, the range corresponding to the range is set on the second scanning line in the image corresponding to the second measurement line, and the same range as the range before and after the range. Set, and calculate the sum of squares of the difference between the image data on the first scanning line and the image data on the second scanning line while shifting by one pixel in a range three times as large as the first range, The shift amount that minimizes the sum of squares may be obtained, and the geology between the two measurement lines deviated by the shift amount may be determined to be the same geology.

【0021】また、調査対象の地質に筒状の孔を穿ち、
前記孔の内壁面に、孔の軸に平行な少なくとも三本の計
測線を設定し、少なくとも前記各計測線上における内壁
面を連続的に撮像し、前記各計測線に相当する画像にお
ける走査線上の所定の範囲で画像データを1画素ずつシ
フトしながら、走査線間の画像データの差の平方和を算
出し、その平方和が最低となるシフト量を求め、このシ
フト量に基づいて、何れか1本の計測線を基準とした他
の計測線上の地質のずれを求めて三次元的な地質を求め
てもよい。
In addition, a cylindrical hole is bored in the geology to be investigated,
On the inner wall surface of the hole, at least three measurement lines parallel to the axis of the hole are set, at least the inner wall surface on each measurement line is continuously imaged, and on the scanning line in the image corresponding to each measurement line. While shifting the image data pixel by pixel within a predetermined range, the sum of squares of the differences of the image data between the scanning lines is calculated, the shift amount that minimizes the sum of squares is obtained, and one of them is calculated based on this shift amount. You may obtain | require three-dimensional geology by calculating | requiring the gap of the geology on another measurement line on the basis of one measurement line.

【0022】なお、前記出願においては、単一の調査孔
の内壁面に、3本の調査線を設定し、それぞれの調査線
上における輝度分布を処理したが、本実施例において
は、3本の調査孔を削孔し、各調査孔にそれぞれ1本の
調査線を設定し、これらの調査線上における輝度分布を
処理するものである。外径が25mm〜30mm程度のボアホー
ルカメラを使用するには、調査孔の口径は36mm〜42mm程
度でよいので、専用のボーリング機械は不要であって、
トンネルの掘削と共用できるというメリットがある。
In the above application, three survey lines are set on the inner wall surface of a single survey hole and the luminance distribution on each survey line is processed. However, in this embodiment, three survey lines are processed. The survey holes are drilled, one survey line is set for each survey hole, and the luminance distribution on these survey lines is processed. In order to use a borehole camera with an outer diameter of about 25 mm to 30 mm, the diameter of the inspection hole can be about 36 mm to 42 mm, so a dedicated boring machine is not required,
It has the advantage that it can be shared with tunnel excavation.

【0023】各画像データの各画素をR,G,Bの各波
長帯域別に分解してA/D変換を行うことにより、原画
像の持つ輝度,色相,彩度等の情報を失うことなく数値
情報に変換する。この数値情報は、一旦磁気ディスク等
の記憶媒体に記憶させておいてもよい。なお、画像デー
タとしては、輝度情報のみを輝度分布曲線として利用し
てもよい。
By decomposing each pixel of each image data for each wavelength band of R, G, B and performing A / D conversion, numerical values can be obtained without losing information such as brightness, hue, and saturation of the original image. Convert to information. This numerical information may be temporarily stored in a storage medium such as a magnetic disk. As the image data, only the brightness information may be used as the brightness distribution curve.

【0024】なお、輝度分布曲線と実際の地質の分布と
を比較すると、調査孔の内壁面に亀裂等の不連続部が存
在すると、その部分の輝度は他の部分の輝度より低くな
ることが判明しているので、輝度分布曲線における落ち
込んだ部分が亀裂に対応していることが判る。
When comparing the brightness distribution curve with the actual geological distribution, if a discontinuity such as a crack exists on the inner wall surface of the survey hole, the brightness of that part may be lower than the brightness of other parts. Since it is known, it can be seen that the depressed portion in the brightness distribution curve corresponds to the crack.

【0025】また、地質によって光学的な性質(屈折率
や反射率)に特有な色情報を持っており、カラー画像に
おけるR(赤),G(緑),B(青)成分と地質とは相
関関係がある。よって、各画素におけるR,G,B成分
と地質との相関データを別途準備しておくことにより、
輝度の高い部分が花崗岩に、低い部分がひん岩に対応し
ていることを知ることができる。
Further, it has color information peculiar to optical properties (refractive index and reflectance) depending on the geology, and the R (red), G (green), B (blue) components and the geology in a color image. There is a correlation. Therefore, by separately preparing the correlation data of the R, G, B components of each pixel and the geology,
It can be seen that the areas with high brightness correspond to granite and the areas with low brightness correspond to porphyry.

【0026】例えば、石英や長石を主要鉱物とする花崗
岩は一般的に優白色を示し、一方、その中にしばしば貫
入岩体として存在するひん岩は角閃石や輝石などの有色
鉱物を含んでいるため、暗緑色を示すことが多い。
For example, granite mainly composed of quartz or feldspar generally shows a white color, while porphyrite, which often exists as an intrusive body, contains colored minerals such as amphibole and pyroxene. Therefore, it often shows a dark green color.

【0027】上記数値情報に基づいて亀裂を判断するプ
ロセスを、図3に基づいて以下に説明する。図3は各孔
の内壁面において設定した調査線に対応する画像データ
上の走査線上における輝度分布曲線である。図3の
〔A〕は孔11A、図3の〔B〕は孔11B、図3の
〔C〕は孔11Cの輝度分布曲線である。
A process of judging a crack based on the above numerical information will be described below with reference to FIG. FIG. 3 is a luminance distribution curve on the scanning line on the image data corresponding to the survey line set on the inner wall surface of each hole. 3A is a brightness distribution curve of the hole 11A, FIG. 3B is a brightness distribution curve of the hole 11B, and FIG. 3C is a brightness distribution curve of the hole 11C.

【0028】まず、輝度が落ち込んだ部分のある深度を
中心にしたn画素分の深度の範囲を解析対象のウインド
ウWとして設定する。そして、R,G,B何れかの画像
について、2本の孔、例えば孔11A,11Bの間で、
孔11Aの走査線上における深度dに存在する輝度分布
曲線の落ち込みの部分を基準にして、両孔の走査線間の
対応する画素を1画素分ずつシフトさせながら、両走査
線の画素間の輝度の差の平方和S12を順次計算して、
平方和S12(0)〜S12(n−1)を求める。この
とき、ある亀裂に対応した画素間で計算した値は、他画
素間で計算した値に比較して最小となるので、計算値が
最小となったときのシフト量δ12を求めることにより、
孔11A,11B間での亀裂の相対位置を確定すること
ができる。
First, a range of depth for n pixels centered on a certain depth where the brightness is lowered is set as the window W to be analyzed. Then, for any of the R, G, and B images, between the two holes, for example, the holes 11A and 11B,
Luminance between pixels of both scanning lines while shifting corresponding pixels between the scanning lines of both holes by one pixel with reference to the drop portion of the luminance distribution curve existing at the depth d on the scanning line of the hole 11A. The sum of squares S12 of the differences is sequentially calculated,
The sum of squares S12 (0) to S12 (n-1) is calculated. At this time, the value calculated between pixels corresponding to a certain crack is the smallest compared to the value calculated between other pixels, so by calculating the shift amount δ 12 when the calculated value becomes the minimum,
It is possible to determine the relative position of the crack between the holes 11A and 11B.

【0029】同様に、孔11A,11C間でのシフト量
δ13を求める。以上の計算式は、数式1に示したよう
に、平方和S12の最小値からシフト量を求めてもよい
が、数式2に示したように、平均で除して無次元化して
から差の平方和S12’の最小値からシフト量を求めて
もよく、または、数式3に示したように、平均値との偏
差に基づいて平方和S12”を求めてその最小値からシ
フト量を求めてもよい。さらに、輝度分布の対応程度を
平方和によって求めることなく、相関係数や共分散を求
める方法によって求めてもよい。
Similarly, the shift amount δ 13 between the holes 11A and 11C is obtained. In the above calculation formula, the shift amount may be obtained from the minimum value of the sum of squares S12 as shown in Formula 1. However, as shown in Formula 2, the shift amount is divided by the average to make it dimensionless, and then the difference is calculated. The shift amount may be obtained from the minimum value of the sum of squares S12 ', or, as shown in Expression 3, the sum of squares S12 "is obtained based on the deviation from the average value and the shift amount is obtained from the minimum value. Further, the degree of correspondence of the luminance distribution may be obtained by a method of obtaining a correlation coefficient or covariance without obtaining the sum of squares.

【0030】[0030]

【数1】 [Equation 1]

【0031】[0031]

【数2】 [Equation 2]

【0032】[0032]

【数3】 [Equation 3]

【0033】ここで、孔11Aの走査線上の位置dと、
前記シフト量δ12,δ13とに基づいて、亀裂面と各孔1
1A,11B,11Cとの交点の3次元座標を確定する
ことができる。
Here, the position d of the hole 11A on the scanning line,
Based on the shift amounts δ 12 and δ 13 , the crack surface and each hole 1
It is possible to determine the three-dimensional coordinates of the intersections with 1A, 11B and 11C.

【0034】以上のようにして確定された亀裂面の法線
ベクトルから、当該亀裂面の走向傾斜も求められる。な
お、画素間の輝度の差の平方和S12,S23,S31の計算
は、それぞれの孔の走査線毎に輝度をその平均値で除し
て無次元化したデータを使用するか、あるいは平均値と
の差をとったデータを使用するかすることにより、ばら
つきの少ないより安定した計算結果を得ることができ
る。
From the normal vector of the crack surface determined as described above, the strike inclination of the crack surface can also be obtained. The calculation of the sum of squares S 12 , S 23 , and S 31 of the difference in luminance between pixels uses the dimensionless data obtained by dividing the luminance for each scanning line of each hole by its average value, or Alternatively, by using the data obtained by taking the difference from the average value, it is possible to obtain a more stable calculation result with less variation.

【0035】上記数値情報に基づいて地質を同定するプ
ロセスを以下に説明する。R,G,Bの何れかの画像に
ついて、上記同様に、2本の孔11A,11Bにおける
走査線間で、孔11Aの走査線上における深度dに存在
する輝度分布曲線の落ち込みの部分を基準にして、両孔
の走査線間の対応する画素を1画素分ずつシフトさせな
がら、孔11A,11Bの走査線間の画素間の輝度の差
の平方和S12を求める。同様に、孔11B,11Cの
走査線間の画素間の輝度の差の平方和S23,孔11
C,11Aの走査線間の画素間の輝度の差の平方和S3
1を計算して、それれの値が最小となるときのシフト量
を求めることにより、地質の同定を定量的に行うことが
できる。
The process of identifying the geology based on the above numerical information will be described below. Similar to the above, for any of the R, G, and B images, between the scanning lines in the two holes 11A and 11B, the portion of the luminance distribution curve existing at the depth d on the scanning line of the hole 11A is used as a reference. Then, the sum of squares S12 of the difference in luminance between the scanning lines of the holes 11A and 11B is obtained while shifting the corresponding pixels between the scanning lines of both holes by one pixel. Similarly, the sum of squares S23 of the brightness differences between the pixels between the scanning lines of the holes 11B and 11C, the hole 11
Sum of squares of difference in luminance between pixels between C and 11A scanning lines S3
Geological identification can be quantitatively performed by calculating 1 and determining the shift amount when the value is minimum.

【0036】さらに、各孔の走査線におけるR,G,B
成分の比の値の分布を求め、二つの孔の走査線間で画像
を1画素ごとシフトさせながら、対応する画素間で比の
値の差の平方和を求め、それらの値が最小となる時のシ
フト量を求めることにより、光量の変動やばらつきによ
る画像情報(輝度,色相,彩度等)の変化を最小限に抑
えて地質の同定を行うことができる。
Further, R, G, B in the scanning line of each hole
The distribution of the ratio values of the components is calculated, the image is shifted pixel by pixel between the scanning lines of the two holes, and the sum of squares of the difference of the ratio values between the corresponding pixels is calculated to minimize those values. By obtaining the shift amount at the time, it is possible to identify the geology while minimizing the change in the image information (luminance, hue, saturation, etc.) due to the fluctuation or variation of the light amount.

【0037】なお、結晶性の岩石では、それを構成する
結晶の種類により光学的性質が異なる上、結晶の粒内と
粒界で光学的性質が異なるため、R,G,Bの各画像に
ついて輝度分布の細かな特性を調べることによって、岩
石の種類や性質をより詳細に分類することができる。こ
のような処理によって、同一の調査対象の地盤内におけ
る同一種類の岩石であるか否かの同定ができる。即ち、
同一種類の岩石の分布が把握できる。
Since crystalline rocks have different optical properties depending on the type of crystals constituting the rocks, and also have different optical properties inside and between grain boundaries of the crystals, the R, G, and B images are different. By examining the detailed characteristics of the brightness distribution, it is possible to classify rock types and properties in more detail. By such processing, it is possible to identify whether or not rocks of the same type in the ground of the same survey object. That is,
The distribution of rocks of the same type can be understood.

【0038】このようにして、地盤の亀裂パラメータ、
走向傾斜等を得るのである。更に、このようにして得た
情報に、削孔作業における削孔速度や削孔音やトルク等
の削孔情報を合わせて判断することによって、切羽前方
の地盤の様子をかなり詳細に予測するすることが可能に
なる。例えば、地質構造や岩盤の等級を予測することも
可能であり、また、湧水の状況も予測できるのである。
In this way, the ground crack parameters,
That is, the strike inclination and the like are obtained. Furthermore, the state of the ground in front of the face is predicted in great detail by judging the information obtained in this manner together with the drilling information such as drilling speed, drilling sound and torque in drilling work. It will be possible. For example, it is possible to predict the geological structure and the grade of the bedrock, and also the condition of spring water.

【0039】なお、以上の実施例においては、3本の調
査孔11A,11B,11Cを削孔したので、三次元的
な地層の把握ができるが、調査孔を2本削孔した場合に
は二次元的な地層の把握が可能である。
In the above embodiment, the three survey holes 11A, 11B, 11C were drilled, so that the three-dimensional stratum can be grasped, but when two survey holes were drilled, It is possible to grasp the two-dimensional strata.

【0040】[0040]

【発明の効果】本発明によれば、調査対象の地盤に小径
の調査孔を、少なくとも2本削孔して、各調査孔の内壁
面の画像を解析して、地質の状態を判定することができ
る。そして、調査孔の2本分を合わせることによって、
調査対象の地盤における地質の分布状態を二次元的に把
握することが可能となる。
According to the present invention, at least two small-diameter survey holes are drilled in the ground to be surveyed, and the image of the inner wall surface of each survey hole is analyzed to determine the geological condition. You can And by combining the two holes,
It becomes possible to grasp the distribution of the geology in the surveyed ground two-dimensionally.

【0041】また、調査孔の3本分を合わせることによ
って、調査対象の地盤における地質の分布状態を三次元
的に把握することが可能となる。更に、少なくとも2本
の調査孔の画像データによって調査対象の地盤の地質を
把握するので、誤差が少ないという効果も得られる。
By combining three survey holes, it becomes possible to three-dimensionally understand the geological distribution of the surveyed ground. Further, since the geology of the ground to be surveyed is grasped by the image data of at least two survey holes, there is an effect that the error is small.

【0042】また、小径の調査孔は、専用のボーリング
機械を要せずトンネル掘削用の機械を利用することがで
きるので、爆破孔の削孔と並行してボアホールとしての
調査孔を削孔でき、トンネル掘削の工事自体を中断する
ことなく、短時間に調査用の画像を得ることができると
いう効果が得られる。
Further, since the small-diameter inspection hole does not require a dedicated boring machine, a machine for tunnel excavation can be used, so that an inspection hole as a borehole can be drilled in parallel with the blast hole drilling. It is possible to obtain an image for investigation in a short time without interrupting the tunnel excavation work itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の地質調査方法に用いる調査装置のブロ
ック構成を示す図である。
FIG. 1 is a diagram showing a block configuration of a survey apparatus used in a geological survey method of the present invention.

【図2】前記調査装置の画像処理装置の構成を示すブロ
ック図である。
FIG. 2 is a block diagram showing a configuration of an image processing device of the investigation device.

【図3】各調査孔にて撮像した画像データの走査線上に
おける輝度分布曲線を示す図である。
FIG. 3 is a diagram showing a luminance distribution curve on a scanning line of image data imaged at each inspection hole.

【符号の説明】[Explanation of symbols]

11A,11B,11C 調査孔 12 ボアホールカメラ 14 画像処理装置 11A, 11B, 11C Inspection hole 12 Borehole camera 14 Image processing device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】調査対象の地盤に、少なくとも2本の小径
の筒状の調査孔を穿ち、前記各調査孔の内壁面を連続的
に撮像して画像データを得て、前記各調査孔の画像デー
タに基づいて、前記調査対象の地盤の地質を二次元的,
三次元的に想定することを特徴とする地質の調査方法。
1. A ground to be surveyed is provided with at least two small-diameter cylindrical survey holes, and the inner wall surface of each survey hole is continuously imaged to obtain image data. Based on the image data, the geology of the surveyed ground is two-dimensional,
A geological survey method characterized by three-dimensional assumptions.
【請求項2】調査対象の地盤に、少なくとも2本の小径
の筒状の調査孔を穿ち、前記各調査孔の内壁面を、軸に
平行に設定した計測線に沿って連続的に撮像して画像デ
ータを得て、前記各画像データを所定の範囲で1画素ず
つシフトしながら比較し、各画像データが最もよく一致
するときのシフト量を算出し、前記シフト量ずれた各調
査孔間の地質を二次元的,三次元的に同じ地質と判定す
ることを特徴とする地質の調査方法。
2. A ground to be surveyed is provided with at least two small-diameter cylindrical survey holes, and the inner wall surface of each survey hole is continuously imaged along a measurement line set parallel to the axis. Image data is obtained, the image data is compared by shifting each pixel by one pixel in a predetermined range, the shift amount when each image data is best matched is calculated, and the inter-inspection holes with the shift amount shifted A geological survey method characterized by determining that the two geological features are the same two-dimensionally and three-dimensionally.
JP34784592A 1992-12-28 1992-12-28 Geological survey method Expired - Fee Related JP2681735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34784592A JP2681735B2 (en) 1992-12-28 1992-12-28 Geological survey method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34784592A JP2681735B2 (en) 1992-12-28 1992-12-28 Geological survey method

Publications (2)

Publication Number Publication Date
JPH06201843A true JPH06201843A (en) 1994-07-22
JP2681735B2 JP2681735B2 (en) 1997-11-26

Family

ID=18393000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34784592A Expired - Fee Related JP2681735B2 (en) 1992-12-28 1992-12-28 Geological survey method

Country Status (1)

Country Link
JP (1) JP2681735B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363676B1 (en) * 2012-09-13 2013-12-11 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ Multipurpose mineral resource survey kit
JP2017201074A (en) * 2016-05-02 2017-11-09 大成建設株式会社 Evaluation method of tunnel surrounding ground and tunnel construction method
CN109236275A (en) * 2018-09-26 2019-01-18 中国电建集团成都勘测设计研究院有限公司 Decomposition method based on borehole television photography structural plane occurrence
CN113190704A (en) * 2021-04-08 2021-07-30 东华理工大学 Geological disaster investigation image processing method, system, terminal and medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102368097B1 (en) * 2021-12-14 2022-02-28 강병수 Method for measuring the verticality of steel pipes in a pipe loop using GPS and an endoscope camera

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132590A (en) * 1989-10-18 1991-06-05 Okumura Corp Method and device for making of developed image of pit wall

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132590A (en) * 1989-10-18 1991-06-05 Okumura Corp Method and device for making of developed image of pit wall

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363676B1 (en) * 2012-09-13 2013-12-11 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ Multipurpose mineral resource survey kit
JP2017201074A (en) * 2016-05-02 2017-11-09 大成建設株式会社 Evaluation method of tunnel surrounding ground and tunnel construction method
CN109236275A (en) * 2018-09-26 2019-01-18 中国电建集团成都勘测设计研究院有限公司 Decomposition method based on borehole television photography structural plane occurrence
CN113190704A (en) * 2021-04-08 2021-07-30 东华理工大学 Geological disaster investigation image processing method, system, terminal and medium

Also Published As

Publication number Publication date
JP2681735B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
CA2673637C (en) Method and apparatus for multi-dimensional data analysis to identify rock heterogeneity
EP3423811B1 (en) System and method for analyzing drill core samples
CA2149647C (en) Method for analysing seismic traces using a stratistical calibration technique for deduction of geological characteristics
US10761003B2 (en) Method and system for analyzing cuttings coming from a wellbore
Chen et al. Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation
US20090260883A1 (en) Continuous measurement of heterogeneity of geomaterials
JPH067068B2 (en) Color tone logging device and logging method using the same
US20050206890A1 (en) Method and device to ascertain physical characteristics of porous media
Harraden et al. Automated core logging technology for geotechnical assessment: A study on core from the Cadia East porphyry deposit
CN111261236A (en) Tunnel igneous rock weathering degree determining system and method
US11320378B2 (en) Methods, systems, and devices for measuring in situ saturations of petroleum and NAPL in soils
JPH06201843A (en) Investigating method of geological features
Harraden et al. Proposed methodology for utilising automated core logging technology to extract geotechnical index parameters
US8596383B2 (en) Method for detecting hydrocarbon zones in a geological formation
Germay et al. High-resolution core data and machine learning schemes applied to rock facies classification
US20210407156A1 (en) Property based image modulation for formation visualization
JPH06147846A (en) Geological surveying method
JPH07117532B2 (en) Method to analyze the structure of bedrock, concrete, etc.
Tiruneh et al. Discontinuity mapping using Ground-Based LiDAR: Case study from an open pit mine
JPH0743262A (en) Method for identifying spring water point in image analysis of tunnel face
Dasenbrock et al. Bring Your A-GaME!
Sokalski et al. Application of terrestrial laser scanning for the evaluation of geokinematics of selected structural phenomena in mine workings in the rudna mine (SW POLAND)
Harraden et al. University of Tasmania Open Access Repository Cover sheet
Thapa et al. Observations of joint persistence and connectivity across boreholes
Johnson et al. Extracting consistent geotechnical data from drill core imagery using Computer Vision at the Carrapateena deposit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees