JPH06200746A - Exhaust device for engine with pressure wave supercharger - Google Patents

Exhaust device for engine with pressure wave supercharger

Info

Publication number
JPH06200746A
JPH06200746A JP170293A JP170293A JPH06200746A JP H06200746 A JPH06200746 A JP H06200746A JP 170293 A JP170293 A JP 170293A JP 170293 A JP170293 A JP 170293A JP H06200746 A JPH06200746 A JP H06200746A
Authority
JP
Japan
Prior art keywords
engine
passage
exhaust gas
catalyst
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP170293A
Other languages
Japanese (ja)
Inventor
Mitsunori Kondo
光徳 近藤
Hirobumi Yamauchi
博文 山内
Yasuyuki Terasawa
保幸 寺沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP170293A priority Critical patent/JPH06200746A/en
Publication of JPH06200746A publication Critical patent/JPH06200746A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To maintain the high supercharging efficiency of a supercharger so as to heighten responsiveness at the accelerating time of an engine and reduce a torque shock at the time of switching to steady operation from acceleration by switching gradually while raising the temperature or a catalyst by exhaust gas at the time or switching an exhaust gas passage to a catalyst passage from a by-pass passage. CONSTITUTION:Intake air in an intake passage 3 is supercharged in a pressure wave supercharger 6 by the pressure wave of exhaust gas in an exhaust passage 4. The exhaust passage 4 upstream of the pressure wave supercharger 6 is provided with a catalyst means 7 and a by-pass passage 10 by-passing the catalyst means 7, and the exhaust gas passage is switched by a passage switching means 25 provided with a catalyst side switching valve 11 and a by-pas side switching valve 12. When an engine is returned to steady operation after acceleration, the catalyst side switching valve 11 is gradually opened while the by-pass side switching valve 12 is gradually closed by the control of a control unit 31. In the accelerating state, the by-pass side switching valve 12 is fully opened while the catalyst side switching valve 11 is closed so as to supply the supercharger 6 with the exhaust gas not cooled by the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、排気ガスの圧力波に
より吸気通路内の吸気を過給する圧力波過給機を備えた
過給機付エンジンの排気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust system for a supercharged engine equipped with a pressure wave supercharger for supercharging intake air in an intake passage by pressure waves of exhaust gas.

【0002】[0002]

【従来の技術】一般に、この種の圧力波過給機を備えた
エンジンの排気ガス浄化の要求を満たすために、排気通
路に排気ガス浄化用の触媒装置を配置する場合において
は、その触媒装置の浄化性能が排気ガス温度に依存し、
排気ガス温度が高いほど浄化性能が高くなることから、
上記過給機上流側の排気通路に触媒装置を配置すること
が行われる。
2. Description of the Related Art Generally, when an exhaust gas purifying catalyst device is arranged in an exhaust passage in order to meet the exhaust gas purifying requirements of an engine equipped with this type of pressure wave supercharger, the catalyst device is used. Purification performance depends on the exhaust gas temperature,
The higher the exhaust gas temperature, the higher the purification performance,
A catalyst device is arranged in the exhaust passage on the upstream side of the supercharger.

【0003】ところが、その場合、触媒装置により排気
ガスの熱が奪われ、過給機に流れる排気ガスの温度が下
がってその容積が下がるために、過給機の効率が下が
り、特にエンジン加速時に過給機による過給圧が低下し
て加速応答性が悪くなるという問題がある。
However, in that case, the heat of the exhaust gas is taken by the catalyst device, the temperature of the exhaust gas flowing to the supercharger is lowered, and the volume thereof is reduced, so that the efficiency of the supercharger is lowered, especially at the time of engine acceleration. There is a problem that the supercharging pressure by the supercharger is lowered and the acceleration response is deteriorated.

【0004】そこで、従来、斯かる問題に対処するため
に、特開平4―140411号公報に示されるもので
は、圧力波過給機上流側の排気通路に配設された排気浄
化用触媒装置の上下流側の排気通路をバイパス通路で接
続するとともに、排気ガスを上記触媒装置又はバイパス
通路に択一的に流れるようにその流路を切り換える切換
弁を設け、エンジンの加速時には、排気ガスがバイパス
通路に流れるように切換弁を切り換えることにより、加
速時の応答性を高めるようになされている。
Therefore, in order to deal with such a problem, in the prior art, the one disclosed in Japanese Patent Laid-Open No. 4-140411 discloses an exhaust gas purification catalyst device arranged in an exhaust passage upstream of a pressure wave supercharger. The exhaust passage on the upstream and downstream sides is connected by a bypass passage, and a switching valve is provided to switch the passage so that the exhaust gas selectively flows to the catalyst device or the bypass passage, and the exhaust gas bypasses when the engine is accelerated. By switching the switching valve so as to flow into the passage, the response during acceleration is enhanced.

【0005】[0005]

【発明が解決しようとする課題】しかし、この従来のも
のでも問題が全くないわけではない。つまり、エンジン
の加速時の応答性については良好に維持できるが、この
加速状態では、排気ガスがバイパス通路を流れるので、
その間、触媒装置の温度が低下することとなる。このた
め、エンジンが加速状態の後に定常運転状態に戻るため
に、排気ガスを触媒装置に流れるように切換弁を切り換
えたとき、上記触媒装置を通過してそれで冷やされた低
い温度の排気ガスが過給機に流れることとなり、上記と
同じ理由により過給機の過給圧が落ち込んでその性能が
下がり、エンジンの出力トルクが不足してトルクショッ
クが生じる。
However, even this conventional one is not completely free of problems. In other words, the responsiveness of the engine during acceleration can be maintained well, but in this accelerated state, exhaust gas flows through the bypass passage, so
During that time, the temperature of the catalyst device is lowered. Therefore, in order to return the engine to the steady operation state after the acceleration state, when the switching valve is switched so that the exhaust gas flows to the catalyst device, the low temperature exhaust gas passing through the catalyst device and cooled by For the same reason as above, the supercharging pressure of the supercharger drops and its performance deteriorates, and the output torque of the engine becomes insufficient, causing torque shock.

【0006】本発明は斯かる諸点に鑑みてなされたもの
で、その目的とするところは、エンジンが加速状態から
定常運転状態に戻るときの制御形態を変えることで、排
気ガス流路の切換えに伴うエンジンの出力トルク不足を
解消し、トルクショックを抑制することにある。
The present invention has been made in view of the above points, and an object of the present invention is to switch the exhaust gas flow path by changing the control mode when the engine returns from the acceleration state to the steady operation state. It is to eliminate the torque shortage that accompanies the output torque of the engine and suppress the torque shock.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成すべ
く、請求項1の発明では、排気ガスの流路をバイパス通
路から触媒装置に切り換えるとき、その切換えを徐々に
行うことにより、排気ガスにより触媒の温度を上昇させ
ながら切り換えることとした。
In order to achieve the above object, in the invention of claim 1, the exhaust gas flow path is switched from the bypass passage to the catalyst device by gradually switching the exhaust gas. It was decided to switch while raising the temperature of the catalyst.

【0008】すなわち、この発明では、図1に示すよう
に、上記した如く、排気通路4における排気ガスの圧力
波により吸気通路3内の吸気を過給する圧力波過給機6
と、この圧力波過給機6上流側の排気通路4に配設され
た排気浄化用の触媒手段7と、この触媒手段7をバイパ
スするバイパス通路10と、排気ガスが上記触媒手段7
又はバイパス通路10に択一的に流れるように流路を切
り換える流路切換手段25とを備えた圧力波過給機付エ
ンジンの排気装置が前提である。
That is, in the present invention, as shown in FIG. 1, as described above, the pressure wave supercharger 6 for supercharging the intake air in the intake passage 3 by the pressure wave of the exhaust gas in the exhaust passage 4.
An exhaust gas purifying catalyst means 7 disposed in the exhaust passage 4 on the upstream side of the pressure wave supercharger 6, a bypass passage 10 bypassing the catalyst means 7, and the exhaust gas being the catalyst means 7
Alternatively, it is premised on an exhaust device for an engine with a pressure wave supercharger, which is provided with a flow path switching means 25 for switching a flow path so as to selectively flow in the bypass passage 10.

【0009】そして、エンジン1の運転状態を検出する
運転状態検出手段35と、この運転状態検出手段35に
よりエンジン1の加速状態が検出されたとき、排気ガス
がバイパス通路10を流れるように上記流路切換手段2
5を第1の切換速度で制御する一方、エンジン1が加速
状態から定常運転状態に戻ったときには、排気ガスが触
媒手段7を流れるように上記流路切換手段25を上記第
1の切換速度よりも遅い第2の切換速度で制御する制御
手段36とを設けたことを特徴としている。
The operating state detecting means 35 for detecting the operating state of the engine 1 and the above-mentioned flow so that the exhaust gas flows through the bypass passage 10 when the operating state detecting means 35 detects the accelerating state of the engine 1. Road switching means 2
5 is controlled at the first switching speed, and when the engine 1 returns from the accelerating state to the steady operating state, the flow passage switching means 25 is set at the first switching speed so that the exhaust gas flows through the catalyst means 7. And a control means 36 for controlling at a slower second switching speed.

【0010】請求項2の発明では、請求項1の圧力波過
給機付エンジンの排気装置において、エンジン1への燃
料噴射量を可変とする燃料噴射量可変手段5を設け、制
御手段36は、エンジン1が加速状態から定常運転状態
に戻ったときに、エンジン1への燃料噴射量を所定量だ
け増量するように上記燃料噴射量可変手段5を制御する
構成とする。
According to a second aspect of the invention, in the exhaust system for an engine with a pressure wave supercharger according to the first aspect, a fuel injection amount varying means 5 for varying the fuel injection amount to the engine 1 is provided, and the control means 36 is provided. The fuel injection amount varying means 5 is controlled so that the fuel injection amount to the engine 1 is increased by a predetermined amount when the engine 1 returns from the acceleration state to the steady operation state.

【0011】請求項3の発明では、エンジン1への燃料
噴射時期を可変とする燃料噴射時期可変手段5を設け、
制御手段36は、エンジン1が加速状態から定常運転状
態に戻ったときには、エンジン1への燃料噴射時期を所
定値だけ進角させるように上記燃料噴射時期可変手段5
を制御する構成とする。
According to the third aspect of the invention, the fuel injection timing changing means 5 for changing the fuel injection timing to the engine 1 is provided,
The control means 36, when the engine 1 returns from the accelerating state to the steady operation state, advances the fuel injection timing to the engine 1 by a predetermined value.
Is controlled.

【0012】[0012]

【作用】上記の構成により、請求項1の発明では、エン
ジン1の運転状態が運転状態検出手段35により検出さ
れ、このエンジン1の運転状態が加速状態と検出された
ときには、制御手段36により、排気ガスがバイパス通
路10を流れるように流路切換手段25が第1の切換速
度で制御される。このエンジン1の加速時の排気ガスの
バイパス通路10への流れにより、排気ガスが触媒手段
7で冷却されないで高温度のまま過給機6に流れるの
で、その過給機6の過給効率を大に保つことができ、エ
ンジン加速時の応答性を高めることができる。
With the above construction, in the invention of claim 1, the operating state of the engine 1 is detected by the operating state detecting means 35, and when the operating state of the engine 1 is detected as the accelerating state, the control means 36 The flow path switching means 25 is controlled at the first switching speed so that the exhaust gas flows through the bypass passage 10. Due to the flow of the exhaust gas into the bypass passage 10 at the time of acceleration of the engine 1, the exhaust gas flows to the supercharger 6 at a high temperature without being cooled by the catalyst means 7, so that the supercharge efficiency of the supercharger 6 is improved. It can be kept large and the responsiveness at the time of engine acceleration can be improved.

【0013】一方、この後、エンジン1が加速状態から
定常運転状態に戻ったときには、制御手段36により、
排気ガスが触媒手段7を流れるように上記流路切換手段
25が上記第1の切換速度よりも遅い第2の切換速度で
制御される。このとき、流路切換手段25の切換速度が
加速開始時よりも遅いので、触媒手段7には徐々に排気
ガスが流れて温度上昇が図られ、その状態を保ちながら
切換えが行われる。このことにより、過給機6に流れる
排気ガスの温度変化が緩やかになり、その過給機6の過
給効率の変動が小さくて、エンジン1の出力トルクの変
動が少なく、よって加速状態から定常運転状態への切換
えに伴うトルクショックを低減することができる。
On the other hand, thereafter, when the engine 1 returns from the acceleration state to the steady operation state, the control means 36 causes
The flow passage switching means 25 is controlled at a second switching speed lower than the first switching speed so that the exhaust gas flows through the catalyst means 7. At this time, since the switching speed of the flow path switching means 25 is slower than that at the start of acceleration, the exhaust gas gradually flows through the catalyst means 7 to increase the temperature, and the switching is performed while maintaining that state. As a result, the temperature change of the exhaust gas flowing through the supercharger 6 becomes gradual, the fluctuation of the supercharging efficiency of the supercharger 6 is small, and the fluctuation of the output torque of the engine 1 is small. Torque shock associated with switching to the operating state can be reduced.

【0014】請求項2の発明では、エンジン1が加速状
態から定常運転状態に戻ったときには、上記流路切換手
段25の切換制御と同時に、制御手段36により燃料噴
射量可変手段5が制御されて、エンジン1への燃料噴射
量が所定量だけ増量される。この燃料噴射量の増量補正
により排気ガス温度が上昇して触媒手段7に対する加熱
効果が高くなり、この触媒手段7を通過する排気ガスの
温度降下を抑えて過給機6の過給効率を向上させること
ができ、切換えに伴うトルクショックをさらに有効に抑
制できるとともに、切換完了までの時間を短くすること
ができる。
According to the second aspect of the present invention, when the engine 1 returns from the acceleration state to the steady operation state, the control means 36 controls the fuel injection amount varying means 5 simultaneously with the switching control of the flow passage switching means 25. , The fuel injection amount to the engine 1 is increased by a predetermined amount. Due to this increase correction of the fuel injection amount, the exhaust gas temperature rises and the heating effect on the catalyst means 7 becomes high, and the temperature drop of the exhaust gas passing through this catalyst means 7 is suppressed to improve the supercharging efficiency of the supercharger 6. It is possible to suppress the torque shock caused by the switching, and it is possible to shorten the time until the completion of the switching.

【0015】請求項3の発明では、エンジン1が加速状
態から定常運転状態に戻ったとき、流路切換手段25の
切換制御と同時に、制御手段36により燃料噴射時期可
変手段5が制御されて、エンジン1への燃料噴射時期が
所定値だけ進角される。この燃料噴射時期の進角補正に
よりエンジン1の出力トルク自体が増大するので、その
トルク増大分だけ過給機6の過給効率の低下によるトル
クダウンを補償することができ、よって、この場合でも
切換えに伴うトルクショックを有効に抑制できるととも
に、切換完了までの時間を短くすることができる。
According to the third aspect of the present invention, when the engine 1 returns from the accelerating state to the steady operating state, the control means 36 controls the fuel injection timing varying means 5 simultaneously with the switching control of the flow passage switching means 25, The fuel injection timing to the engine 1 is advanced by a predetermined value. Since the output torque itself of the engine 1 is increased by the advance correction of the fuel injection timing, the torque reduction due to the decrease in the supercharging efficiency of the supercharger 6 can be compensated by the amount of the torque increase. It is possible to effectively suppress the torque shock caused by the switching and shorten the time until the switching is completed.

【0016】[0016]

【実施例】以下、本発明の実施例を図2以下の図面に基
づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

【0017】(実施例1)図4は本発明の実施例1の全
体構成を示し、1は4つの気筒2,2,…を有するディ
ーゼルエンジン、3は各気筒2に吸気(空気)を供給す
る吸気通路であって、この吸気通路3は下流部が4つに
分岐されてそれぞれ各気筒2に接続され、吸気通路3の
上流端は図外のエアクリーナに接続されている。4は各
気筒2内の排気ガスを排出する排気通路で、この排気通
路4は上流部が4つに分岐されてそれぞれ各気筒2に接
続されている。5はエンジン1により駆動されて燃料を
加圧しながら噴射時期にある気筒2に燃料噴射ノズル
(図示せず)を介して噴射供給する燃料噴射ポンプであ
って、エンジン1の燃料噴射量及び燃料噴射時期をそれ
ぞれ可変とする燃料噴射量可変手段及び燃料噴射時期可
変手段を構成している。
(Embodiment 1) FIG. 4 shows the overall construction of Embodiment 1 of the present invention, wherein 1 is a diesel engine having four cylinders 2, 2, ... And 3 supplies intake air (air) to each cylinder 2. The intake passage 3 is connected to each cylinder 2 with its downstream portion branched into four, and the upstream end of the intake passage 3 is connected to an air cleaner (not shown). Reference numeral 4 denotes an exhaust passage for discharging the exhaust gas in each cylinder 2. The exhaust passage 4 has its upstream portion branched into four and connected to each cylinder 2. Reference numeral 5 denotes a fuel injection pump which is driven by the engine 1 to inject fuel into the cylinder 2 at an injection timing while pressurizing the fuel through a fuel injection nozzle (not shown). A fuel injection amount varying means and a fuel injection timing varying means for varying the timing are configured.

【0018】上記吸気通路3及び排気通路4の各集合部
の間には、排気通路4における排気ガスの圧力波により
吸気通路3内の吸気を過給する圧力波過給機6が配設さ
れている。この過給機6は、周知の如く排気ガスの圧力
波をロータの一端からスリット状の空間に導入してロー
タ他端の空間内で吸気を圧縮し、これら空間の連続的な
回転により吸気を過給するものである。
A pressure wave supercharger 6 for supercharging the intake air in the intake passage 3 by the pressure wave of the exhaust gas in the exhaust passage 4 is arranged between the respective collecting portions of the intake passage 3 and the exhaust passage 4. ing. As is well known, the supercharger 6 introduces a pressure wave of exhaust gas into the slit-shaped space from one end of the rotor, compresses the intake air in the space at the other end of the rotor, and continuously rotates the space to intake the intake air. It is supercharged.

【0019】また、上記圧力波過給機6上流側でかつ分
岐部下流側の排気通路4には排気ガス浄化用の酸化反応
触媒装置7が配設されている。この触媒装置7は触媒を
担持するメタル担体からなる担体8をハウジング9内に
収容してなるものである。
An oxidation reaction catalyst device 7 for purifying exhaust gas is disposed in the exhaust passage 4 upstream of the pressure wave supercharger 6 and downstream of the branch portion. The catalyst device 7 has a housing 9 containing a carrier 8 made of a metal carrier carrying a catalyst.

【0020】さらに、上記触媒装置7上下流側の排気通
路4,4同士は触媒装置7をバイパスするバイパス通路
10により接続されている。また、バイパス通路10へ
の分岐部よりも下流側で触媒装置7上流側の排気通路4
には該排気通路4を開閉するバタフライ式の触媒側開閉
弁11が、またバイパス通路10には該バイパス通路1
0を開閉する同様のバイパス側開閉弁12がそれぞれ配
設されている。これら両開閉弁11,12は互いに逆方
向に同期して開閉するようにリンク13,14及びロッ
ド15により連結されている。上記ロッド15の端部は
ダイアフラム式アクチュエータ16に駆動連結されてい
る。このアクチュエータ16は、ロッド15に連結され
たダイアフラム17と、このダイアフラム17により区
画形成された圧力室18と、この圧力室18に縮装さ
れ、ダイアフラム17及びロッド15を介して触媒側開
閉弁11を開弁方向に、またバイパス側開閉弁12を閉
弁方向にそれぞれ付勢するばね19とを備えている。上
記圧力室18は圧力導入通路20を介して三方ソレノイ
ドバルブ21に接続され、この三方ソレノイドバルブ2
1は負圧導入通路22を介して真空ポンプ23に接続さ
れ、かつ大気開放通路24を介して大気中に開放されて
いる。そして、この三方ソレノイドバルブ21の制御に
よりアクチュエータ16の圧力室18に対する負圧又は
大気圧の導入を切り換えて、排気ガスを触媒装置7又は
バイパス通路10に択一的に流れるように排気ガス流路
を切り換える流路切換装置25が構成されており、三方
ソレノイドバルブ21をアクチュエータ16の圧力室1
8が大気に開放されるように切り換えたときには、圧力
室18に大気圧を導入して該大気圧及びばね19の付勢
力により、触媒側開閉弁11を開きかつバイパス側開閉
弁12を閉じてバイパス通路10を閉じ、排気ガスを触
媒装置7に流す。一方、三方ソレノイドバルブ21を圧
力室18が真空ポンプ23に連通するように切り換えた
ときには、圧力室18に負圧を導入し、ダイアフラム1
7をばね19の付勢力に抗して偏倚させて触媒側開閉弁
11を閉じかつバイパス側開閉弁12を開いてバイパス
通路10を全開にし、排気ガスを触媒装置7をバイパス
させてバイパス通路10に流すようになっている。
Further, the exhaust passages 4, 4 on the upstream and downstream sides of the catalyst device 7 are connected by a bypass passage 10 bypassing the catalyst device 7. Further, the exhaust passage 4 on the upstream side of the catalyst device 7 downstream of the branch portion to the bypass passage 10
Is a butterfly-type catalyst-side on-off valve 11 for opening and closing the exhaust passage 4, and the bypass passage 10 is for the bypass passage 1
Similar bypass side opening / closing valves 12 for opening / closing 0 are provided respectively. The on-off valves 11 and 12 are connected by links 13 and 14 and a rod 15 so as to open and close in synchronization with each other in opposite directions. The end of the rod 15 is drivingly connected to a diaphragm type actuator 16. The actuator 16 is provided with a diaphragm 17 connected to the rod 15, a pressure chamber 18 defined by the diaphragm 17, and the pressure chamber 18, which is contracted, and the catalyst-side opening / closing valve 11 is provided via the diaphragm 17 and the rod 15. And a spring 19 for urging the bypass side opening / closing valve 12 in the valve closing direction. The pressure chamber 18 is connected to a three-way solenoid valve 21 via a pressure introducing passage 20.
1 is connected to a vacuum pump 23 via a negative pressure introduction passage 22 and is open to the atmosphere via an atmosphere opening passage 24. Then, the introduction of negative pressure or atmospheric pressure to the pressure chamber 18 of the actuator 16 is switched by the control of the three-way solenoid valve 21 so that the exhaust gas selectively flows through the catalyst device 7 or the bypass passage 10. A flow path switching device 25 for switching between the pressure chamber 1 of the actuator 16 and the three-way solenoid valve 21 is configured.
When 8 is switched to open to the atmosphere, atmospheric pressure is introduced into the pressure chamber 18 and the catalyst side opening / closing valve 11 is opened and the bypass side opening / closing valve 12 is closed by the atmospheric pressure and the biasing force of the spring 19. The bypass passage 10 is closed and exhaust gas is allowed to flow into the catalyst device 7. On the other hand, when the three-way solenoid valve 21 is switched so that the pressure chamber 18 communicates with the vacuum pump 23, a negative pressure is introduced into the pressure chamber 18 and the diaphragm 1
7 is biased against the urging force of the spring 19 to close the catalyst-side opening / closing valve 11 and open the bypass-side opening / closing valve 12 to fully open the bypass passage 10 to bypass exhaust gas to the catalyst device 7 to bypass the bypass passage 10 It is designed to be flushed to.

【0021】上記燃料噴射ポンプ5及び三方ソレノイド
バルブ21の作動はコントロールユニット31からの制
御信号を受けて行われるようになっている。このコント
ロールユニット31には、図外のアクセルペダルの開度
を検出するアクセル開度センサ32の出力信号と、バイ
パス通路10への分岐部よりも上流側の排気通路4に配
置されて触媒装置7上流側の排気ガス温度T1 を検出す
る触媒上流側排気温センサ33の出力信号と、触媒装置
7直下流側の排気通路4に配置されて触媒装置7下流側
の排気ガス温度T2 を検出する触媒下流側排気温センサ
34の出力信号とが少なくとも入力されている。
The operation of the fuel injection pump 5 and the three-way solenoid valve 21 is performed by receiving a control signal from the control unit 31. In the control unit 31, an output signal of an accelerator opening sensor 32 for detecting the opening of an accelerator pedal (not shown) and an exhaust passage 4 upstream of a branch portion to the bypass passage 10 are arranged and the catalyst device 7 is provided. An output signal of a catalyst upstream side exhaust temperature sensor 33 for detecting the exhaust gas temperature T1 on the upstream side and a catalyst for detecting the exhaust gas temperature T2 on the downstream side of the catalyst device 7 arranged in the exhaust passage 4 immediately downstream of the catalyst device 7. At least the output signal of the downstream side exhaust temperature sensor 34 is input.

【0022】上記コントロールユニット31において、
三方ソレノイドバルブ21の制御により両開閉弁11,
12を開閉制御するための信号処理動作を図3により説
明する。まず、スタート後に初期化を行った後、ステッ
プS1 でアクセル開度センサ32の出力信号を基にアク
セル開度を検出し、ステップS2 では、上記アクセル開
度の一定時間当たりの変化量を基準値と比較することで
エンジン1が加速状態にあるか否かを判定する。この判
定がYESのときには、ステップS3 において、流路切
換装置25の三方ソレノイドバルブ21をアクチュエー
タ16の圧力室18が真空ポンプ23に連通するように
短時間に(第1の切換時間で)切り換えることにより、
触媒側開閉弁11を全閉にしかつバイパス側開閉弁12
を全開にしてバイパス通路10を直ちに開く。その後、
ステップS4 に進んでエンジン1が加速後に定常運転状
態に戻ったかどうかを判定し、この判定がNOのときに
は上記ステップS3 に戻る。エンジン1が定常運転状態
に戻ってステップS4 の判定がYESになると、ステッ
プS5 において、三方ソレノイドバルブ21をアクチュ
エータ16の圧力室18が大気に開放されるように徐々
に、つまり上記第1の切換時間よりも長い第2の切換時
間をかけて切り換えることにより、触媒側開閉弁11を
徐々に開きかつバイパス側開閉弁12を徐々に閉じてバ
イパス通路10を閉じるとともに、ステップS6 で燃料
噴射ポンプ5から各気筒2への燃料噴射量を所定時間t
だけ増量補正する。この後、ステップS7 で上記両排気
温センサ33,34でそれぞれ検出された排気ガス温度
T1 ,T2 の差の絶対値|T1−T2 |が基準値T0 以
下になったかどうかを判定し、この判定が|T1 −T2
|>T0 のNOのときには上記ステップS5 に戻る。判
定が|T1 −T2 |≦T0 のYESのときには、触媒装
置7を通過した排気ガス温度の降下度が所定値以下にな
ったと見做し、ステップS8 に進んで三方ソレノイドバ
ルブ21をアクチュエータ16の圧力室18が大気に開
放されるように完全に切り換えることにより、触媒側開
閉弁11を全開にしかつバイパス側開閉弁12を全閉に
してバイパス通路10を全閉状態に閉じる。
In the control unit 31,
By controlling the three-way solenoid valve 21, both on-off valves 11,
A signal processing operation for controlling opening / closing of 12 will be described with reference to FIG. First, after initialization after the start, in step S1 the accelerator opening is detected based on the output signal of the accelerator opening sensor 32, and in step S2, the amount of change in the accelerator opening per constant time is set as a reference value. By comparing with, it is determined whether the engine 1 is in an accelerating state. When this determination is YES, in step S3, the three-way solenoid valve 21 of the flow path switching device 25 is switched in a short time (with the first switching time) so that the pressure chamber 18 of the actuator 16 communicates with the vacuum pump 23. Due to
The catalyst side opening / closing valve 11 is fully closed and the bypass side opening / closing valve 12
To open the bypass passage 10 immediately. afterwards,
In step S4, it is determined whether or not the engine 1 has returned to the steady operation state after acceleration. If this determination is NO, the process returns to step S3. When the engine 1 returns to the steady operation state and the determination in step S4 becomes YES, the three-way solenoid valve 21 is gradually opened in step S5 so that the pressure chamber 18 of the actuator 16 is opened to the atmosphere, that is, the first switching. By switching over the second switching time longer than the time, the catalyst side opening / closing valve 11 is gradually opened and the bypass side opening / closing valve 12 is gradually closed to close the bypass passage 10, and at the same time, in step S6, the fuel injection pump 5 From the fuel injection amount to each cylinder 2 for a predetermined time t
Only increase correction. Thereafter, in step S7, it is determined whether or not the absolute value | T1-T2 | of the difference between the exhaust gas temperatures T1 and T2 detected by the exhaust temperature sensors 33 and 34 has become equal to or less than the reference value T0. Is | T1-T2
When |> T0 is NO, the process returns to step S5. When the determination is YES in the case of | T1−T2 | ≦ T0, it is considered that the degree of decrease in the temperature of the exhaust gas passing through the catalyst device 7 has become equal to or less than the predetermined value, and the process proceeds to step S8 to set the three-way solenoid valve 21 to the actuator 16. By completely switching the pressure chamber 18 to the atmosphere, the catalyst-side opening / closing valve 11 is fully opened and the bypass-side opening / closing valve 12 is fully closed, so that the bypass passage 10 is closed.

【0023】また、上記ステップS2 の判定がNOのと
き(エンジン1が定常運転状態にあると判定されたと
き)には、そのまま上記ステップS8 に進み、触媒側開
閉弁11を全開にしかつバイパス側開閉弁12を全閉に
してバイパス通路10を全閉状態にする。
When the determination in step S2 is NO (when it is determined that the engine 1 is in the steady operation state), the process directly proceeds to step S8, the catalyst side opening / closing valve 11 is fully opened and the bypass side is opened. The on-off valve 12 is fully closed and the bypass passage 10 is fully closed.

【0024】この実施例では、上記フローのステップS
1 ,S2 により、エンジン1の運転状態を検出する運転
状態検出手段35が構成されている。
In this embodiment, step S of the above flow is performed.
1 and S2 form an operating state detecting means 35 for detecting the operating state of the engine 1.

【0025】また、ステップS3 〜S7 により、上記運
転状態検出手段35によりエンジン1の加速状態が検出
されたとき、排気ガスがバイパス通路10を流れるよう
に上記流路切換装置25を即座に(第1の切換速度で)
制御する一方、エンジン1が加速状態から定常運転状態
に戻ったときには、排気ガスが触媒装置7を流れるよう
に上記流路切換装置25を徐々に(第1の切換速度より
も遅い第2の切換速度で)制御し、かつエンジン1への
燃料噴射量が所定量だけ増量するように上記燃料噴射量
可変手段たる燃料噴射ポンプ5を制御する制御手段36
が構成されている。
Further, when the acceleration state of the engine 1 is detected by the operating state detecting means 35 in steps S3 to S7, the flow passage switching device 25 is immediately (first) so that the exhaust gas flows through the bypass passage 10. At a switching speed of 1)
On the other hand, when the engine 1 returns from the acceleration state to the steady operation state while controlling, the flow passage switching device 25 is gradually moved to the exhaust gas so that the exhaust gas flows through the catalyst device 7 (the second switching speed slower than the first switching speed). Control means 36 for controlling the fuel injection pump 5 as the fuel injection amount varying means so that the fuel injection amount to the engine 1 is increased by a predetermined amount.
Is configured.

【0026】したがって、上記実施例においては、エン
ジン1の運転中、コントロールユニット31でアクセル
開度センサ32により検出されるアクセル開度の一定時
間当たりの変化量が基準値と比較されてエンジン1の加
速状態の有無が判定され、エンジン1が定常運転状態に
あると判定されたときには、アクチュエータ16の圧力
室18が大気に開放されるように三方ソレノイドバルブ
21が切り換えられて、触媒側開閉弁11が全開状態に
なりかつバイパス側開閉弁12は全閉状態になってバイ
パス通路10が閉じる。このことで排気ガスは触媒装置
7を流れることとなり、そこで酸化反応して浄化され
る。
Therefore, in the above-described embodiment, during the operation of the engine 1, the change amount of the accelerator opening detected by the accelerator opening sensor 32 in the control unit 31 per unit time is compared with the reference value, and the engine 1 is operated. When the presence or absence of the acceleration state is determined, and when it is determined that the engine 1 is in the steady operation state, the three-way solenoid valve 21 is switched so that the pressure chamber 18 of the actuator 16 is opened to the atmosphere, and the catalyst side opening / closing valve 11 Is in a fully open state, the bypass side on-off valve 12 is in a fully closed state, and the bypass passage 10 is closed. As a result, the exhaust gas flows through the catalyst device 7, where it is oxidized and purified.

【0027】これに対し、図2に示すように、エンジン
1が加速状態と判定されたときには、それと同時に、ま
ず、アクチュエータ16の圧力室18が真空ポンプ23
に連通するように三方ソレノイドバルブ21が切り換え
られ、バイパス側開閉弁12が全開状態になりかつ触媒
側開閉弁11が全閉状態になってバイパス通路10の開
度が最大になる(図2(a)参照)。このことで排気ガ
スは触媒装置7をバイパスするようにバイパス通路10
を流れることとなり、触媒装置7で冷却されない高温度
の排気ガスがバイパス通路10を経由してそのまま過給
機6に供給され、このことにより、過給機6の過給効率
を大に保ってエンジン1の加速応答性を高めることがで
きる。
On the other hand, as shown in FIG. 2, when it is determined that the engine 1 is in the accelerated state, at the same time, first, the pressure chamber 18 of the actuator 16 is moved to the vacuum pump 23.
The three-way solenoid valve 21 is switched so that the bypass side opening / closing valve 12 is fully opened and the catalyst side opening / closing valve 11 is fully closed to maximize the opening of the bypass passage 10 (see FIG. 2 ( See a)). As a result, the exhaust gas bypasses the catalyst device 7 and bypass passage 10
The exhaust gas of high temperature that is not cooled by the catalyst device 7 is directly supplied to the supercharger 6 via the bypass passage 10, whereby the supercharging efficiency of the supercharger 6 is kept large. The acceleration response of the engine 1 can be improved.

【0028】そして、その後、エンジン1が加速状態か
ら定常運転状態に戻ると、三方ソレノイドバルブ21は
アクチュエータ16の圧力室18が大気に開放されるよ
うに徐々に切り換えられる。このことにより、触媒側開
閉弁11が徐々に開きかつバイパス側開閉弁12は徐々
に閉じてバイパス通路10が上記加速時よりも遅い速度
で閉じる(図2(a)参照)。また、図2(b)に示す
如く燃料噴射ポンプ5から各気筒2へ供給される燃料噴
射量が所定時間tだけ増量補正される。
Then, when the engine 1 returns from the acceleration state to the steady operation state thereafter, the three-way solenoid valve 21 is gradually switched so that the pressure chamber 18 of the actuator 16 is opened to the atmosphere. As a result, the catalyst-side opening / closing valve 11 gradually opens and the bypass-side opening / closing valve 12 gradually closes, so that the bypass passage 10 closes at a slower speed than during acceleration (see FIG. 2A). Further, as shown in FIG. 2B, the fuel injection amount supplied from the fuel injection pump 5 to each cylinder 2 is increased and corrected for a predetermined time t.

【0029】このとき、上記三方ソレノイドバルブ21
の切換速度が上記エンジン1の加速開始時よりも遅いの
で、触媒装置7に徐々に排気ガスが流れてその温度上昇
が図られ、その状態で切換えが行われる。その結果、過
給機6に流れる排気ガスの温度変化が緩やかになり、そ
の過給機6の過給効率の変動が小さくてエンジン1の出
力トルクの変動が少なく、エンジン1の加速状態から定
常運転状態への切換えに伴うトルクショックを低減する
ことができる。
At this time, the three-way solenoid valve 21
Since the switching speed is lower than that at the start of acceleration of the engine 1, the exhaust gas gradually flows to the catalyst device 7 to increase its temperature, and the switching is performed in that state. As a result, the temperature change of the exhaust gas flowing to the supercharger 6 becomes gentle, the fluctuation of the supercharging efficiency of the supercharger 6 is small, the fluctuation of the output torque of the engine 1 is small, and the steady state from the acceleration state of the engine 1 is maintained. Torque shock associated with switching to the operating state can be reduced.

【0030】しかも、上記流路切換装置25の三方ソレ
ノイドバルブ21の切換制御と同時に、燃料噴射ポンプ
5からエンジン1の各気筒2に噴射される燃料噴射量も
増量されるので、この燃料噴射量の増量補正により排気
ガス温度が上昇して触媒装置7に対する加熱効果が高く
なり、触媒装置7を通過する排気ガスの温度降下を抑え
て、過給機6の過給効率を向上させることができる。そ
れ故、切換えに伴うトルクショックをさらに有効に抑制
できるとともに、切換完了までの時間を短縮することが
できる。
Moreover, at the same time as the switching control of the three-way solenoid valve 21 of the flow path switching device 25, the fuel injection amount injected from the fuel injection pump 5 into each cylinder 2 of the engine 1 is also increased. The exhaust gas temperature rises and the heating effect on the catalyst device 7 increases due to the increase correction of the above, the temperature drop of the exhaust gas passing through the catalyst device 7 can be suppressed, and the supercharging efficiency of the supercharger 6 can be improved. . Therefore, the torque shock associated with the switching can be suppressed more effectively, and the time until the switching is completed can be shortened.

【0031】この後、両排気温センサ33,34でそれ
ぞれ検出される排気ガス温度T1 ,T2 の差の絶対値|
T1 −T2 |が基準値T0 以下になった時点で、触媒装
置7による排気ガスの温度降下が収まったと見做され、
アクチュエータ16の圧力室18が大気に開放されるよ
うに三方ソレノイドバルブ21の切換えが終了する。こ
のことで、触媒側開閉弁11が全開になりかつバイパス
側開閉弁12が全閉になって、バイパス通路10が元の
全閉状態に閉じ、排気ガスが触媒装置7を流れて浄化さ
れる。
Thereafter, the absolute value of the difference between the exhaust gas temperatures T1 and T2 detected by the exhaust temperature sensors 33 and 34, respectively |
When T1−T2 | falls below the reference value T0, it is considered that the temperature drop of the exhaust gas due to the catalyst device 7 has subsided,
The switching of the three-way solenoid valve 21 is completed so that the pressure chamber 18 of the actuator 16 is opened to the atmosphere. As a result, the catalyst side opening / closing valve 11 is fully opened and the bypass side opening / closing valve 12 is fully closed, the bypass passage 10 is closed in the original fully closed state, and the exhaust gas flows through the catalyst device 7 and is purified. .

【0032】(実施例2)図5は実施例2を示し(尚、
図4と同じ部分については同じ符号を付してその詳細な
説明は省略する)、触媒装置7′の構造を変えたもので
ある。
(Embodiment 2) FIG. 5 shows Embodiment 2 (note that
The same parts as those in FIG. 4 are designated by the same reference numerals and detailed description thereof will be omitted), and the structure of the catalyst device 7'is changed.

【0033】すなわち、この実施例では、触媒装置7′
の担体8′は、ハウジング9内において上流側端部から
下流側に向かってハウジング9の大半部に収容されたセ
ラミック担体8a′と、ハウジング9内の下流側端部の
みに配置されたメタル担体8b′とからなる2層構造と
されている。上記メタル担体8b′のメッシュ粗さはセ
ラミック担体8a′よりも細かくされている。
That is, in this embodiment, the catalyst device 7 '
The carrier 8'is a ceramic carrier 8a 'housed in most of the housing 9 from the upstream end to the downstream side in the housing 9 and a metal carrier arranged only in the downstream end in the housing 9. It has a two-layer structure composed of 8b '. The mesh roughness of the metal carrier 8b 'is finer than that of the ceramic carrier 8a'.

【0034】この実施例の場合、触媒装置7′の担体
8′の大半部が熱容量の大きいセラミック担体8a′で
あるので、エンジン1の運転状態が変動しても触媒温度
を高い温度に保持して、その温度変化を小さくすること
ができ、上記エンジン1の加速状態から定常運転状態の
復帰時でも触媒の温度低下を有効に防止して、トルクシ
ョックをさらに一層低減することができる。
In the case of this embodiment, most of the carrier 8'of the catalyst device 7'is the ceramic carrier 8a 'having a large heat capacity, so that the catalyst temperature is maintained at a high temperature even if the operating condition of the engine 1 changes. As a result, the temperature change can be reduced, and even when the engine 1 returns from the accelerated state to the steady operation state, the catalyst temperature can be effectively prevented from lowering, and the torque shock can be further reduced.

【0035】また、上記セラミック担体8a′の下流側
にセラミック担体8a′よりもメッシュ粗さの細かいメ
タル担体8b′が配置されているので、万一、セラミッ
ク担体8a′が熱や衝撃等で破損したとしても、その破
片をメタル担体8b′で受け止めて下流側の過給機6に
飛散するのを防ぐことができ、過給機6等の損傷を防止
することができる。
Further, since the metal carrier 8b 'having a smaller mesh roughness than that of the ceramic carrier 8a' is arranged on the downstream side of the ceramic carrier 8a ', the ceramic carrier 8a' should be damaged by heat or impact. Even if it does, it is possible to prevent the broken pieces from being caught by the metal carrier 8b 'and to be scattered to the supercharger 6 on the downstream side, and to prevent damage to the supercharger 6 and the like.

【0036】尚、上記実施例では、エンジン1の加速状
態から定常運転状態への復帰時、エンジン1への燃料噴
射量を増量補正するようにしているが、この他、エンジ
ン1への燃料噴射時期を所定値だけ進角させるように燃
料噴射ポンプ5を制御する構成としてもよい。その場
合、燃料噴射時期の進角補正によりエンジン1の出力ト
ルク自体が増大するので、そのトルク増大分だけ過給機
6の過給効率の低下によるトルクダウンを補償すること
ができ、よって上記切換えに伴うトルクショックを有効
に抑制できるとともに、切換完了までの時間を短くする
ことができる。また、このような燃料噴射時期の進角補
正を上記燃料噴射量の増量補正と組み合わせることもで
きる。
In the above embodiment, when the engine 1 is returned from the acceleration state to the steady operation state, the fuel injection amount to the engine 1 is increased and corrected. The fuel injection pump 5 may be controlled so as to advance the timing by a predetermined value. In this case, since the output torque of the engine 1 itself increases due to the advance correction of the fuel injection timing, the torque reduction due to the decrease in the supercharging efficiency of the supercharger 6 can be compensated by the amount of the torque increase. It is possible to effectively suppress the torque shock caused by, and to shorten the time until the completion of switching. Further, such advance correction of the fuel injection timing can be combined with the increase correction of the fuel injection amount.

【0037】[0037]

【発明の効果】以上説明したように、請求項1の発明に
よると、排気ガスの圧力波により吸気通路内の吸気を過
給する圧力波過給機上流側の排気通路に排気浄化用の触
媒手段が配設され、この触媒手段をバイパスするバイパ
ス通路を備え、排気ガス流路を触媒手段又はバイパス通
路に選択切換えするようにした圧力波過給機付エンジン
の排気装置に対し、エンジンの加速状態では、排気ガス
がバイパス通路を流れるように短時間で切換えを行う一
方、エンジンが加速状態から定常運転状態に戻ったとき
には、排気ガスが触媒手段を流れるように上記切換速度
よりも遅い速度で徐々に切換えを行うようにしたことに
より、エンジン加速時の応答性を良好に確保できるとと
もに、定常運転時への切換時には、触媒手段に徐々に排
気ガスを流してその温度上昇を図りつつ切換えを行い、
過給機に流れる排気ガスの温度変化を緩やかにして過給
機の過給効率の変動を小さくでき、エンジンの加速状態
から定常運転状態への切換えに伴うトルクショックの低
減を図ることができる。
As described above, according to the invention of claim 1, an exhaust gas purification catalyst is provided in the exhaust passage upstream of the pressure wave supercharger for supercharging the intake air in the intake passage by the pressure wave of the exhaust gas. Means is provided and a bypass passage for bypassing the catalyst means is provided, and the engine is accelerated with respect to the exhaust device of the engine equipped with the pressure wave supercharger in which the exhaust gas passage is selectively switched to the catalyst means or the bypass passage. In the state, the exhaust gas is switched in a short time so as to flow through the bypass passage, while when the engine returns from the acceleration state to the steady operation state, the exhaust gas flows at a slower speed than the above switching speed so as to flow through the catalyst means. By gradually changing the engine, it is possible to ensure good responsiveness during engine acceleration, and when switching to steady operation, gradually discharge exhaust gas through the catalyst means. It performs a switching while reducing the temperature rise,
It is possible to reduce the temperature change of the exhaust gas flowing to the supercharger to reduce the fluctuation of the supercharging efficiency of the supercharger, and reduce the torque shock that accompanies the change from the engine acceleration state to the steady operation state.

【0038】請求項2の発明によると、エンジンが加速
状態から定常運転状態に戻るときに、排気ガス流路の触
媒手段側への切換制御と同時に、エンジンへの燃料噴射
量を所定量だけ増量させるようにしたことにより、排気
ガス温度を積極的に上昇させて触媒手段に対する加熱効
果を高め、この触媒手段を通過する排気ガスの温度降下
を抑えて、過給機の過給効率を向上させることができ、
切換えに伴うトルクショックをさらに有効に抑制できる
とともに、切換完了までの時間の短縮化を図ることがで
きる。
According to the second aspect of the invention, when the engine returns from the acceleration state to the steady operation state, the fuel injection amount to the engine is increased by a predetermined amount at the same time as the switching control of the exhaust gas passage to the catalyst means side. By doing so, the exhaust gas temperature is positively increased to enhance the heating effect on the catalyst means, the temperature drop of the exhaust gas passing through this catalyst means is suppressed, and the supercharging efficiency of the supercharger is improved. It is possible,
It is possible to more effectively suppress the torque shock caused by the switching, and it is possible to shorten the time until the switching is completed.

【0039】請求項3の発明によれば、エンジンが加速
状態から定常運転状態に戻るとき、エンジンへの燃料噴
射時期を進角するようにしたことにより、エンジンの出
力トルク自体を増大させて過給機の過給効率の低下によ
るトルクダウンを補償でき、よって、上記と同様に切換
えに伴うトルクショックを有効に抑制できるとともに、
切換完了までの時間を短くすることができる。
According to the third aspect of the present invention, when the engine returns from the acceleration state to the steady operation state, the fuel injection timing to the engine is advanced, so that the output torque of the engine itself is increased. It is possible to compensate for torque down due to a decrease in supercharging efficiency of the feeder, and thus, similarly to the above, it is possible to effectively suppress the torque shock due to switching,
The time until the switching is completed can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成図である。FIG. 1 is a configuration diagram of the present invention.

【図2】本発明の実施例1においてエンジンの加速時の
各種状態量の変化を示すタイミングチャート図である。
FIG. 2 is a timing chart showing changes in various state quantities during engine acceleration according to the first embodiment of the present invention.

【図3】コントロールユニットで両開閉弁の制御のため
に行われる信号処理動作を概略的に示すフローチャート
図である。
FIG. 3 is a flowchart schematically showing a signal processing operation performed by the control unit for controlling both open / close valves.

【図4】実施例1の全体構成を示す説明図である。FIG. 4 is an explanatory diagram showing the overall configuration of the first embodiment.

【図5】実施例2における触媒装置の概略断面図であ
る。
FIG. 5 is a schematic sectional view of a catalyst device according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 ディーゼルエンジン 2 気筒 3 吸気通路 4 排気通路 5 燃料噴射ポンプ(燃料噴射量可変手段、燃料噴射時
期可変手段) 6 圧力波過給機 7,7′ 触媒装置(触媒手段) 10 バイパス通路 11 触媒側開閉弁 12 バイパス側開閉弁 16 アクチュエータ 21 三方ソレノイドバルブ 25 流路切換装置(流路切換手段) 31 コントロールユニット 35 運転状態検出手段 36 制御手段
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Cylinder 3 Intake passage 4 Exhaust passage 5 Fuel injection pump (fuel injection amount varying means, fuel injection timing varying means) 6 Pressure wave supercharger 7, 7'catalyst device (catalyst means) 10 Bypass passage 11 Catalyst side Open / close valve 12 Bypass side open / close valve 16 Actuator 21 Three-way solenoid valve 25 Flow path switching device (flow path switching means) 31 Control unit 35 Operating state detection means 36 Control means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/04 335 F 8011−3G 43/00 301 T 7536−3G H 7536−3G J 7536−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical display area F02D 41/04 335 F 8011-3G 43/00 301 T 7536-3G H 7536-3G J 7536-3G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排気通路における排気ガスの圧力波によ
り吸気通路内の吸気を過給する圧力波過給機と、該過給
機上流側の排気通路に配設された排気浄化用の触媒手段
と、該触媒手段をバイパスするバイパス通路と、排気ガ
スが上記触媒手段又はバイパス通路に択一的に流れるよ
うに流路を切り換える流路切換手段とを備えた圧力波過
給機付エンジンの排気装置において、 エンジンの運転状態を検出する運転状態検出手段と、 上記運転状態検出手段によりエンジンの加速状態が検出
されたとき、排気ガスがバイパス通路を流れるように上
記流路切換手段を第1の切換速度で制御する一方、エン
ジンが加速状態から定常運転状態に戻ったときには、排
気ガスが触媒手段を流れるように上記流路切換手段を上
記第1の切換速度よりも遅い第2の切換速度で制御する
制御手段とを設けたことを特徴とする圧力波過給機付エ
ンジンの排気装置。
1. A pressure wave supercharger for supercharging intake air in an intake passage by a pressure wave of exhaust gas in an exhaust passage, and a catalyst means for exhaust purification arranged in an exhaust passage upstream of the supercharger. And an exhaust gas of a pressure wave supercharger engine including a bypass passage for bypassing the catalyst means and a flow passage switching means for switching a flow passage so that exhaust gas selectively flows through the catalyst means or the bypass passage. In the apparatus, an operating state detecting means for detecting an operating state of the engine, and the flow path switching means for allowing the exhaust gas to flow through the bypass passage when the operating state detecting means detects the acceleration state of the engine. While controlling at the switching speed, when the engine returns from the accelerating state to the steady operating state, the flow path switching means is switched to the second switching speed slower than the first switching speed so that the exhaust gas flows through the catalyst means. Exhaust system of the pressure wave supercharger with the engine, characterized in that a control means for controlling a speed.
【請求項2】 請求項1記載の圧力波過給機付エンジン
の排気装置において、 エンジンへの燃料噴射量を可変とする燃料噴射量可変手
段を設け、 制御手段は、エンジンが加速状態から定常運転状態に戻
ったときに、エンジンへの燃料噴射量を所定量だけ増量
するように上記燃料噴射量可変手段を制御する構成とさ
れていることを特徴とする圧力波過給機付エンジンの排
気装置。
2. The exhaust system for an engine with a pressure supercharger according to claim 1, further comprising a fuel injection amount varying means for varying a fuel injection amount to the engine, wherein the control means keeps the engine steady from an accelerating state. Exhaust of a pressure wave supercharged engine, characterized in that the fuel injection amount varying means is controlled so as to increase the fuel injection amount to the engine by a predetermined amount when returning to the operating state. apparatus.
【請求項3】 請求項1又は2記載の圧力波過給機付エ
ンジンの排気装置において、 エンジンへの燃料噴射時期を可変とする燃料噴射時期可
変手段を設け、 制御手段は、エンジンが加速状態から定常運転状態に戻
ったときに、エンジンへの燃料噴射時期を所定値だけ進
角させるように上記燃料噴射時期可変手段を制御する構
成とされていることを特徴とする圧力波過給機付エンジ
ンの排気装置。
3. The exhaust system for an engine with a pressure wave supercharger according to claim 1, further comprising a fuel injection timing changing means for changing a fuel injection timing to the engine, wherein the control means is an acceleration state of the engine. From the fuel injection timing varying means for advancing the fuel injection timing to the engine by a predetermined value when returning from the normal operation state to the pressure wave supercharger. Exhaust system of the engine.
JP170293A 1993-01-08 1993-01-08 Exhaust device for engine with pressure wave supercharger Withdrawn JPH06200746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP170293A JPH06200746A (en) 1993-01-08 1993-01-08 Exhaust device for engine with pressure wave supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP170293A JPH06200746A (en) 1993-01-08 1993-01-08 Exhaust device for engine with pressure wave supercharger

Publications (1)

Publication Number Publication Date
JPH06200746A true JPH06200746A (en) 1994-07-19

Family

ID=11508884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP170293A Withdrawn JPH06200746A (en) 1993-01-08 1993-01-08 Exhaust device for engine with pressure wave supercharger

Country Status (1)

Country Link
JP (1) JPH06200746A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033080A1 (en) * 1996-03-05 1997-09-12 Swissauto Engineering S.A. Spark ignition engine with pressure-wave supercharger
DE102010055516A1 (en) * 2010-12-22 2012-06-28 Volkswagen Ag Method for operating internal combustion engine mounted in vehicle, involves switching OFF the cylinders of engine so that load-off of cylinder of internal combustion engine is cancelled
JP2012167668A (en) * 2011-02-09 2012-09-06 Benteler Automobiltechnik Gmbh Pressure wave supercharging device and method for operating pressure wave supercharging device
JP2013007267A (en) * 2011-06-22 2013-01-10 Ihi Corp Device and method for removing dust from exhaust gas
JP2013087772A (en) * 2011-10-17 2013-05-13 Benteler Automobiltechnik Gmbh Method for controlling exhaust temperature in inlet to pressure wave supercharger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033080A1 (en) * 1996-03-05 1997-09-12 Swissauto Engineering S.A. Spark ignition engine with pressure-wave supercharger
US6089211A (en) * 1996-03-05 2000-07-18 Swissauto Engineering S.A. Spark ignition engine with pressure-wave supercharger
DE102010055516A1 (en) * 2010-12-22 2012-06-28 Volkswagen Ag Method for operating internal combustion engine mounted in vehicle, involves switching OFF the cylinders of engine so that load-off of cylinder of internal combustion engine is cancelled
JP2012167668A (en) * 2011-02-09 2012-09-06 Benteler Automobiltechnik Gmbh Pressure wave supercharging device and method for operating pressure wave supercharging device
JP2013007267A (en) * 2011-06-22 2013-01-10 Ihi Corp Device and method for removing dust from exhaust gas
JP2013087772A (en) * 2011-10-17 2013-05-13 Benteler Automobiltechnik Gmbh Method for controlling exhaust temperature in inlet to pressure wave supercharger

Similar Documents

Publication Publication Date Title
JP3090536B2 (en) Exhaust system for turbocharged engine
JPH06101463A (en) Exhaust gas purifying device for engine
JPH06257518A (en) Exhaust reflux device of engine with supercharger
JPH06200746A (en) Exhaust device for engine with pressure wave supercharger
JP3361841B2 (en) Diesel engine with exhaust gas recirculation device
JPS6161920A (en) Supercharge pressure controller for supercharged engine
JPH08284763A (en) Egr supercharging system
JP4311021B2 (en) Exhaust control device for turbocharged engine
JP2687019B2 (en) Exhaust gas recirculation controller for engine with mechanical supercharger
JP2003214192A (en) Intake shutter valve control device for diesel engine and computer program therefor
JPH11210477A (en) Intake air temperature controlling device for cylinder injection type engine incorporating supercharger
JPH0544483A (en) Exhaust emission control system for internal combustion engine
JP2003056353A (en) Supercharge pressure control device for internal combustion engine
JP3205366B2 (en) Secondary air supply device
JPH03225029A (en) Control method for engine with supercharger
JPH09242529A (en) Exhaust emission control device for two-cycle engine
JPH0617655A (en) Exhaust gas purifying device of diesel engine
JPH04301138A (en) Controller for engine equipped with turbosupercharger
JPH0579343A (en) Controller of engine with supercharger
JPH05312049A (en) Control method of supercharging by turbosupercharger
JPH04370369A (en) Ignition timing control device for engine with supercharger
JPS63120822A (en) Supercharge control method for engine with car-mounted exhaust turbosupercharger
JPH0745829B2 (en) Engine supercharger
JPH0544487A (en) Exhaust purification device of diesel engine
JPS62199926A (en) Knocking controller for internal combustion engine associated with supercharger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404