JPH06200584A - Electric wave reflector - Google Patents

Electric wave reflector

Info

Publication number
JPH06200584A
JPH06200584A JP5015876A JP1587693A JPH06200584A JP H06200584 A JPH06200584 A JP H06200584A JP 5015876 A JP5015876 A JP 5015876A JP 1587693 A JP1587693 A JP 1587693A JP H06200584 A JPH06200584 A JP H06200584A
Authority
JP
Japan
Prior art keywords
radio wave
reflector
master
ceiling
slave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5015876A
Other languages
Japanese (ja)
Other versions
JPH0799038B2 (en
Inventor
Tadao Yokoyama
忠夫 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIRI UEIBU KK
Original Assignee
MIRI UEIBU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIRI UEIBU KK filed Critical MIRI UEIBU KK
Priority to JP5015876A priority Critical patent/JPH0799038B2/en
Publication of JPH06200584A publication Critical patent/JPH06200584A/en
Publication of JPH0799038B2 publication Critical patent/JPH0799038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To provide an electric wave reflector of good appearance having master and slave transceivers, while eliminating the need of a wiring work for a ceiling, by forming the reflector to have the surface of convex or concave curvature, and mounting the reflector on a ceiling for reflecting electric waves from the master or slave transceiver to the slave or master transceiver. CONSTITUTION:An electric wave reflector 1A is formed to have a shape with a spherical form drawing process applied to a flat wave reflective material such as copper and aluminum, and mounted on the side of a ceiling C. Then, electric waves from master or slave equipment are reflected over the predetermined divergent range, thereby enabling local radio wave information transmission to be practically undertaken. In this case, the antennas of the master and slave equipment are so installed as to be directed toward the reflector 1A. Consequently, communication between both equipment is made via the reflector 1A. According to this construction, a wiring work for the ceiling C related to the master equipment can be eliminated, and the installation of non- directional radio equipment is not required. Thus, a change in layout can also be easily coped with at low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電波反射板に係り、特
に構内LANや室内LAN等に好適な電波反射板に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave reflection plate, and more particularly to a radio wave reflection plate suitable for a local area LAN or an indoor LAN.

【0002】[0002]

【従来の技術】従来、LANに代表される構内情報通信
システムは、大型コンピュータ、パーソナルコンピュー
タ、ワークステーション等を用いてネットワークを構築
し、情報処理やデータの共有化等を行うものであり、コ
ンピュータの小型化(ダウンサイジング)、高性能化、
通信機能の高度化等に伴って急速に発展し、市場の拡大
がなされている。このネットワーク部分としては、従来
から、同軸ケーブルやツイストペアケーブル等の有線回
線で構成されたものが用いられている。このため、LA
Nの普及とともにオフィスが配線の洪水となる危惧や、
レイアウト変更の都度、配線の引きなおし等の工事が必
要となることから、ワイヤレス化(無線化)が求められ
るようになった。上記のような背景から、無線LAN
(構内無線通信)に対応する装置が開発されつつある
が、これらは概ね下記のような方式となっている。第1
の方式(以下「タイプA」という)は、周波数100〜
900MHz(メガヘルツ)帯域を使用し伝送速度5〜
250Kbpsでアンテナは全方向通信型を用いるもの
である。第2の方式(以下「タイプB」という)は、周
波数2.4GHz(ギガヘルツ)帯域を使用し伝送速度
2〜4MbpsでSS(拡散スペクトラム)方式を用い
アンテナは全方向通信型を用いるものである。また、第
3の方式(以下「タイプC」という)は、図11に示す
ような方式であり、準ミリ波帯の周波数19GHz帯域
を使用し伝送速度10Mbpsでアンテナは指向性60
度×6セクターで全方向通信を行い、この中から最も強
い電波を受信するものである。そして、第4の方式(以
下「タイプD」という)は、ミリ波帯の周波数(30〜
300GHz)を使用し伝送速度10〜100Mbps
であり、この方式はまだ市販はされていないが、構想と
しては、室内等の既存のネットワークに接続する無線機
(以下「親機」という)22に無指向性アンテナを使用
し情報処理端末側の無線機(以下「子機」という)23
に指向性の平面アンテナまたはホーンアンテナを用いる
ものである(図12参照)。
2. Description of the Related Art Conventionally, a local information communication system typified by a LAN is used to construct a network by using a large computer, a personal computer, a workstation, etc., and perform information processing and data sharing. Downsizing, high performance,
The market has been expanding rapidly with the advancement of communication functions. As the network portion, conventionally, a cable line such as a coaxial cable or a twisted pair cable has been used. Therefore, LA
With the spread of N, there is a danger that the office will be flooded with wiring,
Every time the layout is changed, it is necessary to carry out work such as rewiring, so that it is required to be wireless. From the above background, wireless LAN
Devices for (in-house wireless communication) are being developed, but these are generally as follows. First
Method (hereinafter referred to as "type A"), frequency 100 ~
Transmission speed of 5 using 900MHz (megahertz) band
At 250 Kbps, an omnidirectional communication type antenna is used. The second method (hereinafter referred to as "type B") uses the frequency of 2.4 GHz (gigahertz) band, uses the SS (spread spectrum) method at the transmission rate of 2 to 4 Mbps, and uses the omnidirectional communication type antenna. . The third method (hereinafter referred to as “type C”) is a method as shown in FIG. 11, which uses a quasi-millimeter wave frequency of 19 GHz and a transmission rate of 10 Mbps and an antenna directivity of 60.
The omnidirectional communication is performed in a degree x 6 sector, and the strongest radio wave is received from this. The fourth method (hereinafter referred to as "type D") is a millimeter wave band frequency (30 to
300 GHz) and transmission speed is 10 to 100 Mbps
Although this method has not been put on the market yet, the idea is to use an omnidirectional antenna for a wireless device (hereinafter referred to as “main device”) 22 that connects to an existing network such as an indoor side, and an information processing terminal side. Wireless device (hereinafter referred to as "child device") 23
A directional flat antenna or a horn antenna is used for (see FIG. 12).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の方式のうち、伝送速度10Mbps以上であるタイ
プCおよびDについて考えると、タイプCは、システム
が複雑で、コスト高となり、有線方式に対抗することが
できず、タイプDは、天井部の配線工事が必要となるこ
とや、見栄えも悪くなる、といった欠点があった。本発
明は、上記の問題点を解決するためになされたものであ
り、天井配線工事が不要で見栄えもよい電波反射板を提
供することを目的とする。
However, considering the types C and D, which have a transmission speed of 10 Mbps or more, among the above-mentioned conventional systems, the type C has a complicated system and becomes costly, and thus, it opposes the wired system. However, the type D has drawbacks such as the need for wiring work on the ceiling and the poor appearance. The present invention has been made to solve the above problems, and an object of the present invention is to provide a radio wave reflector that does not require ceiling wiring work and has a good appearance.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め、本発明に係る電波反射板は、親送受信機と子送受信
機とを備えた構内情報通信システムに用いる電波反射板
であって、凸曲面または凹曲面をなすとともに、構内の
天井部に取り付けられ、前記親送受信機または子送受信
機からの電波を、前記子送受信機または親送受信機へ向
け反射するように構成される。
In order to solve the above problems, a radio wave reflector according to the present invention is a radio wave reflector used in a local information communication system including a master transceiver and a slave transceiver, It has a convex curved surface or a concave curved surface, and is attached to the ceiling part of the premises, and is configured to reflect radio waves from the parent transceiver or the child transceiver toward the child transceiver or the parent transceiver.

【0005】[0005]

【作用】上記構成を有する本発明によれば、電波反射板
を天井部に取り付けるだけでよく、親機関連の天井配線
工事が不要となり、電波の反射・拡散効果に優れるの
で、親機側の無線機には高価格な無指向性の無線機を備
える必要がなくなり、かつ、この電波反射板は簡単に取
り付け、取り外しが行えるので、レイアウト変更にも容
易に低コストで対応できる。
According to the present invention having the above-mentioned structure, since it is only necessary to attach the radio wave reflector to the ceiling portion, the ceiling wiring work relating to the master unit is unnecessary, and the radio wave reflection / diffusion effect is excellent. The radio does not need to be provided with a high-priced omnidirectional radio, and the radio wave reflector can be easily attached and detached, so that the layout can be easily changed at low cost.

【0006】[0006]

【実施例】以下に、本発明の実施例を図面に基づいて説
明する。図1に、本発明の第1実施例の構成を示す。ま
た、図2に、本発明の第2実施例の構成を示す。図1ま
たは図2に示すように、この電波反射板1Aまたは1B
は、電波反射性を有する銅やアルミニウム等の平板に球
面体(凸面または凹面)の絞りを加えた形状を有するも
ので、親機または子機からの電波を特定の広がりをもっ
て反射させることにより、構内無線情報通信を可能とし
たものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of the first embodiment of the present invention. Further, FIG. 2 shows the configuration of the second embodiment of the present invention. As shown in FIG. 1 or 2, this radio wave reflection plate 1A or 1B
Has a shape obtained by adding a diaphragm of a spherical body (convex surface or concave surface) to a flat plate such as copper or aluminum having radio wave reflectivity, and by reflecting the radio wave from the master unit or the slave unit with a specific spread, It enables on-premises wireless information communication.

【0007】球面体の突出高さaまたは凹部深さbは、
ともに球の直径をDとした場合、D/8からD/6程度
となっている。
The protrusion height a or the recess depth b of the spherical body is
In both cases, when the diameter of the sphere is D, it is about D / 8 to D / 6.

【0008】この電波反射板1Aまたは1Bを用いた構
内無線LANの構成例を図3および図4に示す。この例
では、周波数帯域として30GHz以上のミリ波帯を使
用し、指向性の強い場合を想定している。図に示すよう
に、この構内無線LANシステムにおいては、情報端末
装置10およびその子機3は、室内の机上に置かれ、ネ
ットワーク接続側の親機2は室内の壁面や机上等適宜の
位置に置かれ、かつ部屋の天井C側に上記の電波反射板
1(1Aまたは1B)が取り付けられることにより構成
される。この場合、親機2および子機3のアンテナは、
電波反射板1の方向に向けて設置される。したがって、
親機2と子機3との間の通信は、電波反射板1を経由し
て行われる。
3 and 4 show examples of the construction of a local wireless LAN using the radio wave reflection plate 1A or 1B. In this example, a millimeter wave band of 30 GHz or more is used as the frequency band, and it is assumed that the directivity is strong. As shown in the figure, in this indoor wireless LAN system, the information terminal device 10 and its child device 3 are placed on a desk in the room, and the parent device 2 on the network connection side is placed at an appropriate position such as a wall surface or a desk in the room. The radio wave reflection plate 1 (1A or 1B) is attached to the ceiling C side of the room. In this case, the antennas of the master unit 2 and the slave unit 3 are
It is installed in the direction of the radio wave reflection plate 1. Therefore,
Communication between the master unit 2 and the slave unit 3 is performed via the radio wave reflection plate 1.

【0009】図4は、上記の構内無線LANにおける各
機器の接続例を示した図である。図に示すように、親機
側は有線回線Lでイーサネット(FDDI、トークンリ
ング等の他のネットワークも含む)に接続され、親機側
の無線送受信機2は電波反射板1の方向に向けられる。
一方、子機側の無線送受信機3も電波反射板1の方向に
向けられ、各情報端末(パーソナルコンピュータ7等)
は電波Wによる無線で接続され、これにより構内無線L
ANが実現されている。この構成において、親機側は必
ずしも有線LANに接続する必要はなく、コンピュータ
のプリンタ8のためのプリンタバッファとして用いるな
ど、他に応用することが可能である。
FIG. 4 is a diagram showing a connection example of each device in the above-mentioned indoor wireless LAN. As shown in the figure, the base unit side is connected to the Ethernet (including other networks such as FDDI, token ring, etc.) by a wired line L, and the base unit side wireless transceiver 2 is directed toward the radio wave reflection plate 1. .
On the other hand, the wireless transmitter / receiver 3 on the slave side is also directed toward the radio wave reflection plate 1, and each information terminal (personal computer 7, etc.)
Are wirelessly connected by radio wave W.
AN is realized. In this configuration, the base unit side does not necessarily have to be connected to the wired LAN, and can be used in other applications such as being used as a printer buffer for the printer 8 of the computer.

【0010】次に、本実施例の電波反射板1Aおよび1
Bにおける電波Wの反射を図5ないし図8に示す。図か
らわかるように、電波Wは、電波反射板により特定の拡
がりをもって反射する。この電波の拡がりにより、親機
と子機間の送受信が可能となるのである。
Next, the radio wave reflection plates 1A and 1 of the present embodiment.
The reflection of the radio wave W at B is shown in FIGS. As can be seen from the figure, the radio wave W is reflected with a specific spread by the radio wave reflection plate. Due to the spread of this radio wave, transmission / reception between the master unit and the slave unit becomes possible.

【0011】ミリ波帯の電波は指向性が強く、構内LA
Nに用いられた場合の電波の拡がりは、角度にして約1
0度前後である。図9および表1に示すように、この角
度で机上の送信機2から真上に発射された電波Wは、天
井Cまでの高さhに応じて、天井Cまでの高さが2mの
場合には電波反射板1に入射する点において直径約35
cmの円範囲となり、天井Cまでの高さが3mの場合に
は電波反射板1に入射する点において直径約52cmの
円範囲となる。そして、直上の電波反射板1(1Aまた
は1B)により反射され、天井Cまでの高さhに応じた
所定の拡がりをもって、受信機へ到達する。この場合、
到達した電波Wは、電波反射板1の球面直径D1 により
異なる拡がりD2 を持つ(表1参照)。
Radio waves in the millimeter wave band have strong directivity, and
The spread of the radio wave when used for N is about 1 in terms of angle.
It is around 0 degrees. As shown in FIG. 9 and Table 1, when the radio wave W emitted from the transmitter 2 on the desk right above the ceiling C has a height h to the ceiling C of 2 m according to the height h to the ceiling C. Has a diameter of about 35 at the point of incidence on the radio wave reflector 1.
When the height to the ceiling C is 3 m, the diameter is about 52 cm at the point of incidence on the radio wave reflection plate 1. Then, it is reflected by the radio wave reflection plate 1 (1A or 1B) immediately above, and reaches the receiver with a predetermined spread according to the height h to the ceiling C. in this case,
The arriving radio wave W has a different spread D2 depending on the spherical diameter D1 of the radio wave reflector 1 (see Table 1).

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示す反射電波の拡がり寸法D2 は、
電波反射板1の球面体が電波Wの飛来方向に対して凸型
(1Aの場合)または凹型(1Bの場合)でもほぼ同等
となるが、机上から天井Cまでの高さh、必要な拡がり
寸法D2 、電波の受信電界強度の点から最適なものを選
択する必要がある。
The spread dimension D2 of the reflected radio wave shown in Table 1 is
If the spherical body of the radio wave reflection plate 1 is convex (in the case of 1A) or concave (in the case of 1B) with respect to the incoming direction of the radio wave W, the height h from the desk to the ceiling C and the required spread It is necessary to select the optimum one in terms of the dimension D2 and the electric field strength of reception of radio waves.

【0014】すなわち、表1に示すように、天井高さh
が2mの場合には電波反射板1の球面直径が60〜80
cm程度が適当であり、天井高さhが3mの場合には電
波反射板1の球面直径が100〜130cm程度が適当
であることがわかる。これは、電波反射板1の球面直径
が天井高さhに比べ大きいと、反射電波の拡がり寸法D
2 が小さすぎ、反射電波の到達範囲が小さすぎるので親
機、子機間の通信には不適当であり、一方、電波反射板
1の球面直径が天井高さhに比べ小さいと、反射電波の
拡がり寸法D2 が大きすぎ、反射電波の到達範囲は拡大
するものの受信電界強度が小さくなりすぎるため、この
場合も親機、子機間の通信には不適当だからである。
That is, as shown in Table 1, the ceiling height h
When the distance is 2 m, the spherical diameter of the radio wave reflection plate 1 is 60 to 80
It is understood that the appropriate range is about cm, and the spherical diameter of the radio wave reflection plate 1 is about 100 to 130 cm when the ceiling height h is 3 m. This is because when the spherical diameter of the radio wave reflection plate 1 is larger than the ceiling height h, the spread dimension D of the reflected radio wave is D.
2 is too small and the reach of reflected radio waves is too small, so it is not suitable for communication between the master and slave units. On the other hand, if the spherical diameter of the radio wave reflector 1 is smaller than the ceiling height h, This is because the spread dimension D2 is too large and the reach of the reflected radio waves is expanded, but the received electric field strength is too small, and in this case too, it is not suitable for communication between the master unit and the slave unit.

【0015】図10は、電波反射板1として平面反射板
を用いた場合の電波反射特性を示した図であり、表1の
最下段は、電波反射板1として平面反射板を用いた場合
の電波の拡がり寸法D2 を示している。これらからわか
るように、電波反射板が平面の場合は、反射電波Wの拡
がりが小さすぎるため、複数個の親機、子機間の通信に
は不適当である。
FIG. 10 is a diagram showing the radio wave reflection characteristics when a flat reflector plate is used as the radio wave reflector plate 1. The bottom row of Table 1 shows the case where a flat reflector plate is used as the radio wave reflector plate 1. The spread dimension D2 of the radio wave is shown. As can be seen from the above, when the radio wave reflection plate is flat, the spread of the reflected radio wave W is too small, which is not suitable for communication between a plurality of parent devices and child devices.

【0016】また、上記の電波反射板で反射された電波
は、広い範囲に拡散されるので、平面板により反射させ
た場合に比べて空中線伝搬損失が大きくなる。この値
は、 Γ=40.23+20logd で計算される。上式において、Γは空中線伝搬損失を、
dは伝搬距離を、それぞれ表している。
Further, since the radio wave reflected by the radio wave reflection plate is diffused in a wide range, the antenna propagation loss becomes larger than that in the case of being reflected by the plane plate. This value is calculated as Γ = 40.23 + 20 logd. In the above equation, Γ is the antenna propagation loss,
d represents the propagation distance, respectively.

【0017】例えば、子機から天井までの高さが3m
で、直径1mの電波反射板に反射させた場合には、dは
直線換算で49mに相当し、Γ=74dBとなる。一
方、ミリ波帯で出力20mW、20dbi程度の指向性
平面アンテナをもった無線機を使用した場合には、d=
100m程度の距離となる通信は可能であり、このとき
のΓは80dBとなる。このように、上記の電波反射板
の適用にあたっては、無線機の能力を考慮する必要があ
る。
For example, the height from the handset to the ceiling is 3 m.
When reflected on a radio wave reflection plate having a diameter of 1 m, d corresponds to 49 m in terms of straight line, and Γ = 74 dB. On the other hand, when a wireless device having a directional flat antenna with an output of 20 mW and 20 dBi in the millimeter wave band is used, d =
Communication over a distance of about 100 m is possible, and Γ at this time is 80 dB. Thus, when applying the above-mentioned radio wave reflector, it is necessary to consider the capability of the radio device.

【0018】なお、本発明は、上記実施例に限定される
ものではない。上記実施例は、例示であり、本発明の特
許請求の範囲に記載された技術的思想と実質的に同一な
構成を有し、同様な作用効果を奏するものは、いかなる
ものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-mentioned embodiment is an exemplification, has substantially the same configuration as the technical idea described in the scope of the claims of the present invention, and has any similar effect to the present invention. It is included in the technical scope of the invention.

【0019】例えば、上記実施例においては、凸曲面ま
たは凹曲面として、曲率が一定な曲面である球面の凸側
または凹側を用いる電波反射板を例に挙げて説明した
が、これは、他の凸曲面または凹曲面を用いてもかまわ
ない。例えば、回転放物面の凸側または凹側、回転楕円
体面の凸側と凹側等である。要は、凸型の曲面または凹
型の曲面であれば、いかなるものであってもよいのであ
る。
For example, in the above-described embodiment, the radio wave reflector using the convex side or concave side of the spherical surface having a constant curvature as the convex curved surface or the concave curved surface has been described as an example. A convex curved surface or a concave curved surface may be used. For example, the convex side or concave side of the paraboloid of revolution, the convex side or concave side of the spheroidal surface, and the like. In short, any convex curved surface or concave curved surface may be used.

【0020】[0020]

【発明の効果】以上説明したように、上記構成を有する
本発明によれば、電波反射板を天井部に取り付けるだけ
でよく、親機関連の天井配線工事が不要となり、電波の
反射・拡散効果に優れるので、親機側の無線機には高価
格な無指向性の無線機を備える必要がなくなり、かつ、
この電波反射板は簡単に取り付け、取り外しが行えるの
で、レイアウト変更にも容易に低コストで対応できる。
As described above, according to the present invention having the above-mentioned structure, it is only necessary to attach the radio wave reflection plate to the ceiling portion, the ceiling wiring work relating to the master unit is unnecessary, and the radio wave reflection / diffusion effect is obtained. Since it is excellent in, it is not necessary to provide a high-priced omnidirectional radio in the radio on the master side, and
Since this radio wave reflector can be easily attached and removed, layout changes can be easily accommodated at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の全体構成を示す図であ
る。
FIG. 1 is a diagram showing an overall configuration of a first embodiment of the present invention.

【図2】本発明の第2実施例の全体構成を示す図であ
る。
FIG. 2 is a diagram showing an overall configuration of a second embodiment of the present invention.

【図3】図1または図2に示す電波反射板を用いた構内
無線LANの構成例を示す概念図である。
FIG. 3 is a conceptual diagram showing a configuration example of a local area wireless LAN using the radio wave reflection plate shown in FIG. 1 or 2.

【図4】図1または図2に示す電波反射板を用いた構内
無線LAN等の構成例を示す接続図である。
FIG. 4 is a connection diagram showing a configuration example of a local area wireless LAN or the like using the radio wave reflection plate shown in FIG. 1 or 2.

【図5】図1に示す電波反射板による電波の反射特性を
示す図(1)である。
5 is a diagram (1) showing a reflection characteristic of a radio wave by the radio wave reflection plate shown in FIG.

【図6】図2に示す電波反射板による電波の反射特性を
示す図(2)である。
6 is a diagram (2) showing a reflection characteristic of a radio wave by the radio wave reflection plate shown in FIG.

【図7】図2に示す電波反射板による電波の反射特性を
示す図(1)である。
7 is a diagram (1) showing a reflection characteristic of a radio wave by the radio wave reflection plate shown in FIG.

【図8】図2に示す電波反射板による電波の反射特性を
示す図(2)である。
8 is a diagram (2) showing a reflection characteristic of a radio wave by the radio wave reflection plate shown in FIG.

【図9】図1または図2に示す電波反射板の真下に送信
機を置いて送信した場合の反射電波の拡がりを説明する
図である。
FIG. 9 is a diagram for explaining the spread of reflected radio waves when a transmitter is placed directly below the radio wave reflection plate shown in FIG. 1 or FIG. 2 for transmission.

【図10】平面電波反射板による電波の反射特性を示す
図である。
FIG. 10 is a diagram showing radio wave reflection characteristics of a flat radio wave reflection plate.

【図11】従来の無線LANの構成例を示す図(1)で
ある。
FIG. 11 is a diagram (1) showing a configuration example of a conventional wireless LAN.

【図12】従来の無線LANの構成例を示す図(2)で
ある。
FIG. 12 is a diagram (2) showing a configuration example of a conventional wireless LAN.

【符号の説明】[Explanation of symbols]

1,1A,1B 電波反射板 2 親機 3 子機 4 無線LAN 5 有線LAN 7 パーソナルコンピュータ 8 プリンタ 9 ファイルサーバ 10 情報端末装置 11 マイクロセル 12 パーソナルコンピュータ 13 ユーザーモジュール 15 コントロールモジュール 16 幹線ケーブル 22 親機 23 子機 24 ネットワーク 25 電波反射板 C 天井面 L ネットワーク回線 W 無線電波 1, 1A, 1B Radio wave reflection plate 2 Master device 3 Slave device 4 Wireless LAN 5 Wired LAN 7 Personal computer 8 Printer 9 File server 10 Information terminal device 11 Microcell 12 Personal computer 13 User module 15 Control module 16 Main cable 22 Master device 23 cordless handset 24 network 25 radio wave reflection plate C ceiling surface L network line W radio wave

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 親送受信機と子送受信機とを備えた構内
情報通信システムに用いる電波反射板であって、 凸曲面または凹曲面をなすとともに、構内の天井部に取
り付けられ、前記親送受信機または子送受信機からの電
波を、前記子送受信機または親送受信機へ向け反射する
ことを特徴とする電波反射板。
1. A radio wave reflector for use in a premises information communication system comprising a master transceiver and a slave transceiver, which has a convex curved surface or a concave curved surface and is attached to a ceiling part of the premises, and the parent transceiver Alternatively, a radio wave reflector which reflects the radio wave from the slave transceiver toward the slave transceiver or the master transceiver.
JP5015876A 1993-01-06 1993-01-06 On-premise information communication system Expired - Lifetime JPH0799038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015876A JPH0799038B2 (en) 1993-01-06 1993-01-06 On-premise information communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015876A JPH0799038B2 (en) 1993-01-06 1993-01-06 On-premise information communication system

Publications (2)

Publication Number Publication Date
JPH06200584A true JPH06200584A (en) 1994-07-19
JPH0799038B2 JPH0799038B2 (en) 1995-10-25

Family

ID=11900998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015876A Expired - Lifetime JPH0799038B2 (en) 1993-01-06 1993-01-06 On-premise information communication system

Country Status (1)

Country Link
JP (1) JPH0799038B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538034A (en) * 2006-05-23 2009-10-29 インテル コーポレイション Indoor millimeter-wave wireless personal area network with ceiling reflector and communication method using millimeter-wave
JP2010118845A (en) * 2008-11-12 2010-05-27 Sharp Corp Millimeter wave transceiving system, and reflecting plate
US8149178B2 (en) 2006-05-23 2012-04-03 Intel Corporation Millimeter-wave communication system with directional antenna and one or more millimeter-wave reflectors
US20120206299A1 (en) * 2011-02-10 2012-08-16 International Business Machines Corporation Millimeter-wave communications using a reflector
US8320942B2 (en) 2006-06-13 2012-11-27 Intel Corporation Wireless device with directional antennas for use in millimeter-wave peer-to-peer networks and methods for adaptive beam steering
JP2013141098A (en) * 2011-12-28 2013-07-18 Mitsubishi Heavy Ind Ltd Underwater sailing body
WO2022091660A1 (en) 2020-10-28 2022-05-05 住友電気工業株式会社 Reflection unit and wireless transmission system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781546A (en) * 1980-11-06 1982-05-21 Nisaburou Yamazaki Ceiling boad produced by forming metal plate into cup shape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781546A (en) * 1980-11-06 1982-05-21 Nisaburou Yamazaki Ceiling boad produced by forming metal plate into cup shape

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538034A (en) * 2006-05-23 2009-10-29 インテル コーポレイション Indoor millimeter-wave wireless personal area network with ceiling reflector and communication method using millimeter-wave
US8149178B2 (en) 2006-05-23 2012-04-03 Intel Corporation Millimeter-wave communication system with directional antenna and one or more millimeter-wave reflectors
US8193994B2 (en) 2006-05-23 2012-06-05 Intel Corporation Millimeter-wave chip-lens array antenna systems for wireless networks
US8395558B2 (en) 2006-05-23 2013-03-12 Intel Corporation Millimeter-wave reflector antenna system and methods for communicating using millimeter-wave signals
US8320942B2 (en) 2006-06-13 2012-11-27 Intel Corporation Wireless device with directional antennas for use in millimeter-wave peer-to-peer networks and methods for adaptive beam steering
JP2010118845A (en) * 2008-11-12 2010-05-27 Sharp Corp Millimeter wave transceiving system, and reflecting plate
JP4708470B2 (en) * 2008-11-12 2011-06-22 シャープ株式会社 Millimeter wave transmission / reception system
US8412130B2 (en) 2008-11-12 2013-04-02 Sharp Kabushiki Kaisha Millimeter wave transceiving system and reflecting plate
US20120206299A1 (en) * 2011-02-10 2012-08-16 International Business Machines Corporation Millimeter-wave communications using a reflector
US8797211B2 (en) * 2011-02-10 2014-08-05 International Business Machines Corporation Millimeter-wave communications using a reflector
JP2013141098A (en) * 2011-12-28 2013-07-18 Mitsubishi Heavy Ind Ltd Underwater sailing body
WO2022091660A1 (en) 2020-10-28 2022-05-05 住友電気工業株式会社 Reflection unit and wireless transmission system

Also Published As

Publication number Publication date
JPH0799038B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
US8149178B2 (en) Millimeter-wave communication system with directional antenna and one or more millimeter-wave reflectors
CN1574713B (en) Method and device for using directional antennas to mitigate the effects of interference in wireless networks
CN101427420B (en) Millimeter-wave chip-lens array antenna systems for wireless networks
JP2005520383A (en) Adaptive receive and omnidirectional antenna arrays
JP2003500966A (en) Transformer reflector antenna for wireless communication systems
JP2004364286A (en) Use of directional antenna to enhance throughput in wireless network
JP2002325010A (en) Lan antenna and its reflector
Zhang et al. Augmenting transmission environments for better communications: Tunable reflector assisted mmWave WLANs
JPH06200584A (en) Electric wave reflector
CN116075984A (en) Reflection unit and wireless transmission system
JP3210931B2 (en) Wireless communication method
JP2650234B2 (en) Indoor communication system
JP2003188628A (en) Antenna apparatus
JPH09252216A (en) Antenna and radio communication system
US6484015B1 (en) Portable telephone antenna
JP3284433B2 (en) Antenna device
JP3796877B2 (en) Wireless communication device, wireless communication system, wireless transmission device, wireless reception device
CN219553884U (en) Multiple-input multiple-output antenna and electronic equipment
WO2022141530A1 (en) Antenna module and base station system
JP3286879B2 (en) Wireless communication method
JP3341203B2 (en) Digital radio communication system
JPH08102608A (en) Antenna system
JPH11127096A (en) Transmission line forming method for radio lan
Fernandes et al. Impact of the antenna Set-up and arrays on mobile radio systems
KR20040001354A (en) Method for Wireless LAN Service in Wide Area