JPH06198000A - Method of processing chromed organic product by oxidation - Google Patents

Method of processing chromed organic product by oxidation

Info

Publication number
JPH06198000A
JPH06198000A JP5243211A JP24321193A JPH06198000A JP H06198000 A JPH06198000 A JP H06198000A JP 5243211 A JP5243211 A JP 5243211A JP 24321193 A JP24321193 A JP 24321193A JP H06198000 A JPH06198000 A JP H06198000A
Authority
JP
Japan
Prior art keywords
ppm
chlorinated organic
phase transfer
transfer agent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5243211A
Other languages
Japanese (ja)
Inventor
Urasics Yvan
ウラシックス イバン
Bruzio Furubio
ブルチオ フルビオ
Alfieri Mario
アルフィーリ マリオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay Specialty Polymers Italy SpA
Original Assignee
Ausimont SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ITMI922260A external-priority patent/IT1255702B/en
Priority to IT001289 priority Critical patent/IT1264622B1/en
Priority claimed from IT001289 external-priority patent/IT1264622B1/en
Priority to EP93114665A priority patent/EP0593895B1/en
Priority to HU9302745A priority patent/HU9302745D0/en
Application filed by Ausimont SpA filed Critical Ausimont SpA
Priority to JP5243211A priority patent/JPH06198000A/en
Priority to CA002107455A priority patent/CA2107455A1/en
Publication of JPH06198000A publication Critical patent/JPH06198000A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/38Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/04Pesticides, e.g. insecticides, herbicides, fungicides or nematocides
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To dispose of chlorinated organic products by combining chlorinated organic products with other optional transitional metallic ion, and performing an oxidizing treatment through the use of hydrogen peroxide (H202) under the presence of Fe(II) ion and a phase transfer agent. CONSTITUTION: I is a method for disposing of chlorinated organic products by oxidizing the chlorinated products under the presence of the hydrogen peroxide, and appropriate catalyst and phase transfer agent, forming a non-toxic material, and treating the chlorinated organic products capable of recovering a polluted material. The chlorinated organic products are treated with an aqueous liquid (H20) under the presence of Fe(II) ion combined optionally with more than one of the phase transfer metallic ion selected from a group consisting of Cu(II), Ti(IV), Mn(II), Co(II), Ni(II), W(IV) and Mo (IV), and also under the presence of the phase transfer agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、クロル化有機製品の
処分方法に関する。より詳しくは、この発明は、任意に
他の遷移金属イオンと組合ていてもよいFe(II)イオ
ンと相間移動剤の存在下で過酸化水素(H22)を用い
た酸化処理によるクロル化有機製品の処分方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a method for disposing of chlorinated organic products. More particularly, the invention relates to chlorination by oxidation treatment with hydrogen peroxide (H 2 O 2 ) in the presence of a phase transfer agent and Fe (II) ions, which may optionally be combined with other transition metal ions. The present invention relates to a method of disposing chemical organic products.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】このクロ
ル化有機製品は、種々の技術分野で広く使用されている
1群の物質である。これらの中には、ポリクロロビフェ
ニル類(PCBs)、1,1,1,トリクロロ−2,2
−ビス(p−クロロフェニル)エタン(DDT)、テト
ラクロロエタン、ジクロロベンゼン類、クロロフェノー
ル類、ヘキサクロロシクロヘキサンのようなアルキル、
芳香族、又はアルキル芳香族構造を有し、又はトリクロ
ロエチレンのようなオレフィン構造を有する化合物がよ
り一般的である。
BACKGROUND OF THE INVENTION The chlorinated organic products are a group of substances which are widely used in various technical fields. Among these are polychlorobiphenyls (PCBs), 1,1,1, trichloro-2,2.
-Bis (p-chlorophenyl) ethane (DDT), tetrachloroethane, dichlorobenzenes, chlorophenols, alkyls such as hexachlorocyclohexane,
Compounds having an aromatic or alkylaromatic structure, or having an olefinic structure such as trichlorethylene, are more common.

【0003】一般に、これらは有毒で高汚染物であり、
使用後のこれらの処分は多くの問題を含む。実際、大規
模に適用でき、できるだけ大きい効果を生じ経済的で、
環境に対して危険のない処分方法を利用することが必要
である。クロル化有機製品は高い安定性を有し、かつ化
学的及び/又は物理的手段で処理したとき高い汚染副生
物を形成するため、上記最適目標を達成することは特に
難しい。
Generally, they are toxic and highly pollutant,
Their disposal after use involves many problems. In fact, it can be applied on a large scale, is as economical as possible,
It is necessary to use a disposal method that is not dangerous to the environment. It is particularly difficult to achieve the above optimal goals because chlorinated organic products have high stability and form high contaminating by-products when treated by chemical and / or physical means.

【0004】例えば、ポリクロロビフェニル類(PCB
s)は、高い毒性と発癌性の芳香族クロル化合物であ
り、絶縁性のため電機装置、特にキャパター用の油とし
て感謝し少し前まで広く利用されていた。高毒性のため
に、現に有効な規則により、PCS類の排除と炭化水素
鉱油への置換を義務付ている。通常有機溶媒(例えばヘ
キサクロロベンゼン)中に溶解しているか又は紙、紙
板、木材等のような分離及び/又は支持材料の中に含浸
している多量のPCB類を除去することが必要となる。
更に、置換前に電機装置の適当でない洗浄のために汚染
されている鉱油からPCB類を除去することがたびたび
必要になる。
For example, polychlorobiphenyls (PCB
s) is a highly toxic and carcinogenic aromatic chloro compound, which has been widely used until a while ago, thanks to its insulating property as an oil for electric devices, especially for captors. Due to its high toxicity, currently valid regulations mandate the elimination of PCSs and their replacement with hydrocarbon mineral oils. It is necessary to remove large amounts of PCBs which are usually dissolved in organic solvents (eg hexachlorobenzene) or impregnated into separating and / or supporting materials such as paper, paperboard, wood and the like.
Further, it is often necessary to remove PCBs from contaminated mineral oil prior to replacement due to improper cleaning of electrical equipment.

【0005】クロル化有機製品の処分のための最も一般
的に利用される処理は、燃焼であり、パラクロロジベン
ゾジオキシン類、パラクロロジベンゾフラン類の様な最
高に有毒なクロル化有機化合物の形成を防ぐために、適
切に装備したプラント中で行なわれる。何れにしても燃
焼さす方法は、環境へのリスクがあり、かつクロル化化
合物のみならずそれで汚染された物質の除去を含む事実
から離れた、高価な方法である。
The most commonly used treatment for the disposal of chlorinated organic products is combustion, which results in the formation of the most toxic chlorinated organic compounds such as parachlorodibenzodioxins, parachlorodibenzofurans. To prevent, it is done in a properly equipped plant. In any case, the burning method is an expensive method, apart from the fact that it is at risk to the environment and involves the removal of not only the chlorinated compounds but also the substances contaminated therewith.

【0006】[0006]

【課題を解決するための手段】本出願人は、クロル化製
品を過酸化水素と適当な触媒と相間移動剤の存在下で酸
化し、非毒性物質を生成させ、汚染物質が回収でき、今
日まで利用された方法と比較してかなり経済的にかつ環
境上からの利点を有する、クロル化有機製品の処分方法
を見出した。
Applicants have found that chlorinated products can be oxidized in the presence of hydrogen peroxide, a suitable catalyst and a phase transfer agent to produce non-toxic substances and pollutants can be recovered today. We have found a way to dispose of chlorinated organic products, which has considerable economic and environmental advantages compared to the methods used up to now.

【0007】従って、この発明の目的は、クロル化有機
製品を、Cu(II)、Ti(IV)、Mn(II)、Co
(II)、Ni(II)、W(IV)及びMo(IV)から選択
された1以上の遷移金属イオンを任意に組合せたFe
(II)イオンの存在下かつ相間移動剤の存在下でH22
水性液と処理することからなるクロル化有機製品の処分
方法を提供するものである。
Therefore, an object of the present invention is to provide chlorinated organic products with Cu (II), Ti (IV), Mn (II), Co
Fe optionally combined with one or more transition metal ions selected from (II), Ni (II), W (IV) and Mo (IV)
(II) H 2 O 2 in the presence of ions and a phase transfer agent
The present invention provides a method for disposing of chlorinated organic products, which comprises treating with an aqueous liquid.

【0008】この発明が適用できるクロル化製品は、例
えば次のものが挙げられる。 (a)ポリクロロビフェニル類(PBCs)、クロロベ
ンゼン類(例えばオルト又はメタ−ジクロロベンゼ
ン)、クロロフェノール類(例えば、パラ、トリ又はペ
ンタクロロフェノール)などの芳香族構造のもの、
(b)1,1,1−トリクロロ−2,2−ビス(p−ク
ロロフェニル)エタン(DDT)、その他のようなアル
キル芳香族構造のもの、(c)トリクロロエチレン、パ
−クロロブタジエンなどのようなオレフィン構造のも
の、(d)テトラクロロエタン、ヘキサクロロシクロヘ
キサン、抱水クロラール、ヘキサクロロエタン、パ−ク
ロロアセトンなどのような脂肪族又は脂環族構造のも
の。
Examples of chlorinated products to which the present invention can be applied include the following. (A) those having an aromatic structure such as polychlorobiphenyls (PBCs), chlorobenzenes (eg ortho or meta-dichlorobenzene), chlorophenols (eg para, tri or pentachlorophenol),
(B) 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT), such as those of alkyl aromatic structure, (c) trichloroethylene, perchlorobutadiene, etc. Those having an olefin structure, and (d) those having an aliphatic or alicyclic structure such as tetrachloroethane, hexachlorocyclohexane, chloral hydrate, hexachloroethane, and perchloroacetone.

【0009】この発明の方法に含まれる反応は、クロル
化有機製品が、H22/Fe2+酸化系を含有する水性相
に不溶であるので、不均質相における酸化反応である。
従って、相間移動剤、すなわち、クロル化有機製品と酸
化系の分子間の“ブリッジ”として作用する物質の存在
下で行う必要がある。このような物質の詳細は、アカデ
ミック プレス(1978)発行のC.ストークス、及び
C.リオタの“相間移動触媒(Phase transfer catalys
ts)”が参照される。
The reaction involved in the process of the present invention is an oxidation reaction in a heterogeneous phase because the chlorinated organic product is insoluble in the aqueous phase containing the H 2 O 2 / Fe 2+ oxidation system.
Therefore, it must be carried out in the presence of a phase transfer agent, a substance that acts as a "bridge" between the chlorinated organic product and the molecules of the oxidizing system. For details of such substances, see C. of Academic Press (1978). Stokes, and C.I. Riota's "Phase transfer catalys"
ts) ”is referred to.

【0010】相間移動触媒として当該分野で公知の製品
の中で、この発明に有利に利用できるものとしては、一
般式
Among the products known in the art as phase transfer catalysts, those which can be advantageously used in the present invention include those represented by the general formula:

【0011】[0011]

【化2】 (式中QはN、P及びAsから選択され、R1、R2、R
3とR4は同一又は異なって、水素原子、C1〜C35アル
キル基、C6〜C10アリール基、C1〜C10アラルキルも
しくはアルキルアリール基、但し、R1〜R4の少なくと
も1つは水素原子とは異なる、X-はOH-、Cl-、B
-、I-及びBH4 -から選択される)のアンモニウム、
ホスホニウム又はアルソニウム塩である。
[Chemical 2] (In the formula, Q is selected from N, P and As, and R 1 , R 2 and R are selected.
3 and R 4 are the same or different and each is a hydrogen atom, a C 1 to C 35 alkyl group, a C 6 to C 10 aryl group, a C 1 to C 10 aralkyl or alkylaryl group, provided that at least one of R 1 to R 4 is present. One is different from hydrogen atom, X - is OH -, Cl -, B
r , I and BH 4 ) ammonium,
A phosphonium or arsonium salt.

【0012】この発明の方法に利用しうる他の群の相間
移動剤としては、式
Another group of phase transfer agents which can be utilized in the method of the present invention is the formula:

【0013】[0013]

【化3】 (RはC1〜C20のアルキル基、X-は上記の定義と同一
意味)のピリジニウム塩がある。
[Chemical 3] (R is a C 1 -C 20 alkyl group and X has the same meaning as defined above).

【0014】この発明の方法に利用しうる、さらに他の
群の相間移動剤としては、
Still another group of phase transfer agents which can be used in the method of the present invention are:

【0015】[0015]

【化4】 (式中R5は同一又は異なって、C1-6のアルキル基、X
-は上記の定義と同一意味)のエフェドリン塩である。
このような製品は、ガニィ V.ら(Gani V., Tapinte
C., Viout P.)、“テトラヘドロン レタース(Tetrah
edron letters)”4435頁(1983年)、バントン C.ら
(Bunton C., Robinon L., Stam M.)、“テトラヘドロ
ン レタース”、121頁(1971年)に記載されている。
[Chemical 4] (Wherein R 5 is the same or different, and is a C 1-6 alkyl group, X
- it is defined above and ephedrine salt of the same meaning).
Such products are available from Gany V. (Gani V., Tapinte
C., Viout P.), “Tetrahedron Letters (Tetrah
edron letters) "p. 4435 (1983), Banton C. et al. (Bunton C., Robinon L., Stam M.)," Tetrahedron Letters ", p. 121 (1971).

【0016】クロル原子の十分な鉱物化とクロル化有機
製品の完全な除去をするため、各相間移動剤のタイプの
特性を最良に組合すように、異なる相間移動剤の混合物
を利用することも可能である。
It is also possible to utilize a mixture of different phase transfer agents to best combine the properties of each phase transfer agent type in order to achieve sufficient mineralization of the chloro atoms and complete removal of the chlorinated organic products. It is possible.

【0017】この発明の方法に利用できる相間移動剤の
例は、(C49)4+-、(C10213+37
-、(C18373+CH3-、(C18372
+(CH3)2-、(C49)3+1633-、(C7
153+CH3-、(C65)3As+CH3-
(C65CH2)N+(CH 3)3-
[0017] Examples of phase transfer agents that can be used in the methods of the present invention, (C 4 H 9) 4 N + X -, (C 10 H 21) 3 N + C 3 H 7
X -, (C 18 H 37 ) 3 N + CH 3 X -, (C 18 H 37) 2 N
+ (CH 3) 2 X - , (C 4 H 9) 3 P + C 16 H 33 X -, (C 7
H 15) 3 N + CH 3 X -, (C 6 H 5) 3 As + CH 3 X -,
(C 6 H 5 CH 2) N + (CH 3) 3 X -,

【0018】[0018]

【化5】 などがある。この発明で特に好ましい具体例は、テトラ
アルキルアンモニウム塩(アルキル基は同一又は異なっ
て1〜35の炭素原子、好ましくは1〜12の炭素原子
を有するもの)である。
[Chemical 5] and so on. A particularly preferred embodiment in the present invention is a tetraalkylammonium salt (wherein the alkyl groups are the same or different and have 1 to 35 carbon atoms, preferably 1 to 12 carbon atoms).

【0019】通常、除去されるべきクロル化有機製品
は、100から5000ppmの範囲の量存在し、同時に
相間移動剤は、水性相にあって、20から500ppm、
好ましくは100から300ppmである。相間移動剤の
他に、この発明の方法はCu(II)、Ti(IV)、Mn
(II)、Co(II)、Ni(II)、W(IV)及びMo
(IV)から選ばれた1以上の遷移金属と任意に組合され
てもよい触媒としてのFe(II)イオンの使用からな
る。それらの中でも、Cu(II)イオンは好ましい。金
属イオンは、通常Fe(II)イオンが50から1000
ppm、先に示した他の遷移金属イオンが0〜400ppmの
範囲の量加えられる。好ましい態様において、Fe(I
I)イオンとCu(II)、Ti(IV)、Mn(II)、C
o(II)、Ni(II)、W(IV)又はMo(IV)イオン
の混合物は等モル量で用いられ、それぞれ50から40
0ppm、好ましくは150から250ppmの範囲の濃度で
ある。
Usually, the chlorinated organic product to be removed is present in an amount in the range 100 to 5000 ppm, while the phase transfer agent is in the aqueous phase 20 to 500 ppm,
It is preferably 100 to 300 ppm. In addition to the phase transfer agent, the method of the present invention uses Cu (II), Ti (IV), Mn
(II), Co (II), Ni (II), W (IV) and Mo
It comprises the use of Fe (II) ions as a catalyst which may optionally be combined with one or more transition metals selected from (IV). Among them, Cu (II) ion is preferable. Fe (II) ions are usually 50 to 1000 as metal ions.
ppm, the other transition metal ions indicated above are added in amounts ranging from 0 to 400 ppm. In a preferred embodiment, Fe (I
I) ions and Cu (II), Ti (IV), Mn (II), C
Mixtures of o (II), Ni (II), W (IV) or Mo (IV) ions are used in equimolar amounts, each from 50 to 40
The concentration is 0 ppm, preferably 150 to 250 ppm.

【0020】上述の金属イオンは、可溶性の塩の形で加
えられる。特に、Fe(II)イオンに関して、例えば硫
酸鉄、塩化鉄、硝酸鉄、硫酸鉄アンモニウム等を用いる
ことができる。硫酸第一鉄7水化物FeSO4・7H2
は、効果的、経済的観点から好ましい。Cu(II)塩の
中では、例えば硫酸第二銅5水化物CuSO4・5H2
が用いられる。
The metal ions mentioned above are added in the form of soluble salts. In particular, regarding Fe (II) ions, for example, iron sulfate, iron chloride, iron nitrate, ammonium iron sulfate, etc. can be used. Ferrous heptahydrate sulfate FeSO 4 · 7H 2 O
Is preferable from the viewpoint of effectiveness and economy. Among the Cu (II) salts, for example, cupric sulfate pentahydrate CuSO 4 .5H 2 O
Is used.

【0021】過酸化水素に関しては、当初存在するクロ
ル化製品に対し加えられたH22のモル比が一般に0.
2から100、好ましくは0.2から30となるように
水性溶液の形で用いられる。過酸化水素水性溶液の濃度
は、区別できるパラメータではなく、操作様式を簡単に
するために30−50体積%の過酸化水素溶液が通常に
用いられる。過酸化水素溶液は、特定の温度とpH中
で、その反応条件をより簡単に制御するために反応混合
物に対してゆっくりと連続して加えるのが好ましい。添
加速度は、通常0.2から3ml/分の範囲であるが、特
定の反応条件によって広い範囲にわたって変えることが
できる。
For hydrogen peroxide, the molar ratio of H 2 O 2 added to the initially present chlorinated product is generally less than 0.1.
It is used in the form of an aqueous solution so as to be 2 to 100, preferably 0.2 to 30. The concentration of the hydrogen peroxide aqueous solution is not a distinguishable parameter and 30-50% by volume hydrogen peroxide solution is usually used to simplify the operating mode. The hydrogen peroxide solution is preferably added slowly and continuously to the reaction mixture at a particular temperature and pH to more easily control the reaction conditions. The rate of addition is usually in the range 0.2 to 3 ml / min, but can be varied over a wide range depending on the particular reaction conditions.

【0022】この反応温度は、広い範囲にわたって変え
ることができ、通常40℃から200℃、好ましくは7
0℃から120℃である。このpHは、通常およそ2か
ら7の範囲であり、好ましくはおよそ3から4であり、
反応の間の酸(例えばH2SO4)又は塩基(例えばNa
OH)の水溶液を少量加えることによって維持される。
The reaction temperature can be varied over a wide range and is usually from 40 ° C to 200 ° C, preferably 7 ° C.
It is 0 to 120 ° C. This pH is usually in the range of about 2 to 7, preferably about 3 to 4,
Acid (eg H 2 SO 4 ) or base (eg Na) during the reaction
It is maintained by adding a small amount of an aqueous solution of (OH).

【0023】この発明の方法は、クロル化有機製品の非
毒性物質への定量的な転換を導き、クロル原子の十分な
無機化(鉱物化)レベル、言い換えれば有機クロルのク
ロルイオンへの変換を伴う。処分されるべきクロル化製
品が有機溶媒又は炭化水素タイプの鉱油中に溶解されて
いる場合には、この反応混合物は、あらかじめ決められ
た反応温度に加熱し次に2つの相がよく接触するように
激しく撹拌し、それによって水/油微細エマルジョン
(支配的な相が有機相である)を得る。
The process of the invention leads to the quantitative conversion of chlorinated organic products into non-toxic substances, with a sufficient level of mineralization (mineralization) of the chlorine atom, in other words the conversion of organic chlorine to chlorine ions. Accompany. If the chlorinated product to be disposed of is dissolved in an organic solvent or a hydrocarbon type mineral oil, the reaction mixture is heated to a predetermined reaction temperature and then the two phases are in good contact. Vigorously stir to obtain a water / oil fine emulsion (the predominant phase is the organic phase).

【0024】[0024]

【実施例】この発明は、次の実施例でより詳細に例証す
るが、単なる例証であって、この発明の範囲が限定され
るものではない。それぞれの実施例において、この反応
トレンドは、過酸化水素が予定通り添加された後、少量
の反応混合物を回収しそして次のパラメータを決定する
ことによって決めた。
The present invention will be illustrated in more detail in the following examples, which are merely illustrative and do not limit the scope of the present invention. In each example, this reaction trend was determined by recovering a small amount of the reaction mixture after hydrogen peroxide was added as scheduled and determining the following parameters.

【0025】a)クロル化有機製品の濃度 ガスクロマトグラフ分析によって決定する(固定相 Tem
ax(R) を有する2メータのパックカラム、移送ガスは窒
素、温度プログラムは100℃で2分間等温、次に18
0℃まで10℃/分の勾配で昇温この後180℃で25
分間等温である)。それぞれの射出(0.6μl)は、
CH2Cl2で1:1の比に希釈したサンプルを用いて行
い、これに対しCH3OHを内部標準として加えた。
A) Concentration of chlorinated organic products determined by gas chromatographic analysis (stationary phase Tem
2 meter packed column with ax (R) , transfer gas is nitrogen, temperature program is isothermal for 2 minutes at 100 ° C, then 18
The temperature was raised to 0 ° C with a gradient of 10 ° C / minute, and then 25 ° C at 180 ° C.
Is isothermal for minutes). Each injection (0.6 μl)
Performed with a sample diluted 1: 1 with CH 2 Cl 2 to which CH 3 OH was added as an internal standard.

【0026】PCB類について言えば、計算はすべて3
つの主なるPCB類異性体に関するものであり次の組成
が決定されている。 C127Cl3:21.21% C125Cl5: 0.95% C126Cl4:77.83% このような組成の基礎の上に、平均分子量280.5と
クロル原子の平均数3.74が決定される。
For PCBs, all calculations are 3
It relates to one of the main PCB isomers and the following composition has been determined. C 12 H 7 Cl 3: 21.21 % C 12 H 5 Cl 5: 0.95% C 12 H 6 Cl 4: 77.83% on the foundation of such a composition, average molecular weight 280.5 and chloride The average number of atoms, 3.74, is determined.

【0027】b)クロルイオン濃度 クロルイオンは、HNO3の0.1%で酸性化されたH2
Oを用いた抽出によって回収され、AgNO3を含有す
る酸媒体中で電位差滴定(Voltimetric titration)に
より分析する。
B) Chloride Ion Concentration Chloride is H 2 acidified with 0.1% of HNO 3.
It is recovered by extraction with of O, analyzed by potentiometric titration (Voltimetric titration) in an acid medium containing AgNO 3.

【0028】c)COD(化学的酸素要求量) 酸媒体中二クロム酸カリウムを用いた酸化と硫酸第一鉄
を用いた滴定を用い、“公式の、標準化推薦分析法(Of
ficial, Standardized and Recommended Methods of An
alysis)”の中でN.W.ハンソンによって述べられた
方法(ザ ソサエティ オブ アナリティカル ケミス
トリ、383頁、1973年)によって決定する。
C) COD (Chemical Oxygen Demand) Using the oxidation with potassium dichromate in acid medium and titration with ferrous sulfate, the "official, standardized recommended analytical method (Of
ficial, Standardized and Recommended Methods of An
analysis) ”by NW Hanson (The Society of Analytical Chemistry, page 383, 1973).

【0029】実施例1−3 PCB類(3431ppm)で汚染された鉱油の455μl
を、冷却器、滴下じょうご、pH−メーター及び磁気撹
拌器の取付けられた反応フラスコ内へ導入した。次に4
5mlの水と、その中にFe2+イオンとCu2+イオンの
両方が200ppmの濃度となる量のFeSO4・7H2
及びCuSO4・5H2Oと150ppm(実施例1)、30
0ppm(実施例2)及び0ppm(実施例3、比較例)に等し
い量のテトラブチルアンモニウムハイドロオキサイド
(ITBA)が溶解されてなる水性溶液を加えた。
Examples 1-3 455 μl of mineral oil contaminated with PCBs (3431 ppm)
Was introduced into a reaction flask equipped with a condenser, dropping funnel, pH-meter and magnetic stirrer. Then 4
5 ml of water and an amount of FeSO 4 .7H 2 O in which both Fe 2+ ions and Cu 2+ ions have a concentration of 200 ppm
And CuSO 4 .5H 2 O and 150 ppm (Example 1), 30
An aqueous solution of tetrabutylammonium hydroxide (ITBA) in an amount equal to 0 ppm (Example 2) and 0 ppm (Example 3, Comparative Example) was added.

【0030】得られた混合物は、油浴中95℃に加熱
し、このpHが10%NaOH水溶液か又は15%H2
SO4水溶液の少量添加によって約3.0の値になるま
で調整した。この混合物を、油中水滴型エマルションを
形成するために強く撹拌した。次にH22水性溶液(4
5体積%)を、約0.6ml/minの割合で徐々に加え
た。過酸化水素(表1に示すように)を予定通り添加
後、反応混合物サンプル(それぞれ5ml)を分析のため
に抜取った。それぞれのサンプルについて、残存PCB
類濃度([PCBs])とクロルイオン濃度([C
-])を上述の方式によって決定した。この結果を表
1に示すが、ここで無機化パーセント(%[Cl-])
は、実際に得られたCl-イオン濃度と得られうる最大
のCl-イオン濃度との比率として表わされる。
The resulting mixture was heated to 95 ° C. in an oil bath and the pH was either 10% aqueous NaOH or 15% H 2
It was adjusted to a value of about 3.0 by adding a small amount of SO 4 aqueous solution. This mixture was stirred vigorously to form a water-in-oil emulsion. Then an aqueous solution of H 2 O 2 (4
5% by volume) was gradually added at a rate of about 0.6 ml / min. After the scheduled addition of hydrogen peroxide (as shown in Table 1), reaction mixture samples (5 ml each) were withdrawn for analysis. Remaining PCB for each sample
Concentrations ([PCBs]) and chloride ion concentrations ([C
l -]) were determined by the aforementioned method. While results are shown in Table 1, wherein mineralization percentage (% [Cl -])
Is expressed as the ratio of the actually obtained Cl - ion concentration to the maximum obtainable Cl - ion concentration.

【0031】反応の間、このpHをNaOH又はH2
4溶液の少量添加(0.1−0.3ml)によって3.
0近辺に維持し、一方この温度を94℃で一定に維持し
た。ITBAの150ppmを用いる反応(実施例1)と
ITBAを用いない反応(実施例3)を60分間続け、
一方ITBAの300ppmを用いる反応(実施例2)を
95分間続けた。
During the reaction, the pH was adjusted to NaOH or H 2 S.
O 4 adding a small amount of solution by (0.1-0.3ml) 3.
It was maintained near 0, while this temperature was kept constant at 94 ° C. The reaction using 150 ppm of ITBA (Example 1) and the reaction not using ITBA (Example 3) were continued for 60 minutes,
Meanwhile, the reaction using 300 ppm of ITBA (Example 2) was continued for 95 minutes.

【0032】得られたデータ間の比較から、まず第1に
相間移動剤の助けなしにPCB類の酸化が起らないこと
が推察できる。相間移動剤を添加すると、特に低濃度の
ITBAを用いた反応の場合(実施例1)において、ほ
とんど完全なPCB類の排除が十分な鉱物化の割合を伴
って得られる。
From a comparison between the data obtained, it can be inferred that, first of all, the oxidation of PCBs does not occur without the aid of a phase transfer agent. The addition of a phase transfer agent results in almost complete elimination of PCBs with a sufficient mineralization rate, especially in the case of reactions with low concentrations of ITBA (Example 1).

【0033】実施例4−6 実施例1−3で述べた同じ方式に従って、もう1つの相
間移動剤、テトラブチルアンモニウムブロマイド(TB
AB)の効果を、次の反応を比較することによって調べ
た。 −TBABの150ppmを用いた(実施例4)、 −TBABの472ppmを用いた(実施例5)及び −TBABを用いなかった(実施例6、比較例)
Examples 4-6 Another phase transfer agent, tetrabutylammonium bromide (TB), was used following the same procedure described in Examples 1-3.
The effect of AB) was investigated by comparing the following reactions. -150 ppm of TBAB was used (Example 4), -472 ppm of TBAB was used (Example 5) and -TBAB was not used (Example 6, Comparative Example).

【0034】得られたデータは、表2に示す。実施例1
−3に示すように、相間移動剤なしでこの反応は起ら
ず、PCB類の鉱物化すなわちPCB類の酸化における
最良の結果が低濃度の移動剤(実施例4)を用いて得ら
れるという観察をすることが可能である。
The data obtained are shown in Table 2. Example 1
-3, this reaction does not occur without a phase transfer agent, and the best results in mineralization of PCBs, ie oxidation of PCBs, are obtained with low concentrations of transfer agent (Example 4). It is possible to observe.

【0035】実施例7−9 実施例1−3で述べた同じ方式に従って、もう1つの相
間移動剤テトラブチルアンモニウムアイオダイド(TB
AI)の効果を、次の反応を比較することにとて調べ
た。 −TBAIの166ppmを用いた(実施例7)、 −TBAIの460ppmを用いた(実施例8)又は −TBAIを用いなかった(実施例9、比較例) 得られたデータは、表3に示す。
Examples 7-9 Another phase transfer agent, tetrabutylammonium iodide (TB), was used following the same procedure described in Examples 1-3.
The effect of AI) was investigated by comparing the following reactions. -166 ppm of TBAI was used (Example 7), -460 ppm of TBAI was used (Example 8) or -TBAI was not used (Example 9, Comparative Example) The data obtained are shown in Table 3. .

【0036】実施例10−11 実施例1−3で述べた同じ方式に従って、相間移動剤混
合物(ITBA+TBAB)の効果を、次の反応を比較
することによって調べた。 −ITBAの100ppm+TBABの100ppmを用いた
(実施例10)、 −相間移動剤を用いなかった(実施例11、比較例) 得られたデータは、表4に示す。
Examples 10-11 Following the same scheme described in Examples 1-3, the effect of the phase transfer agent mixture (ITBA + TBAB) was investigated by comparing the following reactions. -100 ppm of ITBA + 100 ppm of TBAB were used (Example 10) -No phase transfer agent was used (Example 11, Comparative example) The data obtained are shown in Table 4.

【0037】実施例10と実施例1、4及び7で得られ
た結果の比較から、実施例10の2つの相間移動剤の組
合せが、十分な割合のPCB類の鉱物化を伴って、実質
的に定量的にPCB類の酸化を行うことができる最良の
組合せとなることは明らかである。
From the comparison of the results obtained in Example 10 with Examples 1, 4 and 7, the combination of the two phase transfer agents of Example 10 was found to be substantial with mineralization of the PCBs in sufficient proportion. It is clear that this is the best combination that can quantitatively perform the quantitative oxidation of PCBs.

【0038】実施例12 上記実施例に用いた同じ反応器に、H2Oの500mlを
満し、この中に、Fe2 +とCu2+イオン両方について2
00ppmの濃度を得るに相当する量のFeSO4・7H2
O及びCuSO4・5H2Oと150ppmの量のテトラブ
チルアンモニウムヒドロキシド(ITBA)を溶解し
た。
In the same reactor used in the [0038] Example 12 above embodiment, satisfy the 500ml of H 2 O, in this, for both Fe 2 + and Cu 2+ ions 2
FeSO 4 · 7H 2 in an amount equivalent to obtain a concentration of 00 ppm
O and CuSO 4 .5H 2 O and tetrabutylammonium hydroxide (ITBA) in an amount of 150 ppm were dissolved.

【0039】次に、予め小片に切断したPCB類−含有
紙の20gを、その反応器中に導入した。この紙中のP
CB類の濃度は、1060ppmである。この濃度は、紙
サンプル(1g)を室温で20mlのCH2Cl2を用いて
14時間の連続抽出し、次にPCB類含有溶媒を内部標
準としてメタノールを用いるガスクロマトグラフィーで
分析することによって決定した。
Next, 20 g of the PCBs-containing paper, previously cut into small pieces, was introduced into the reactor. P in this paper
The concentration of CBs is 1060 ppm. This concentration was determined by continuously extracting a paper sample (1 g) with 20 ml of CH 2 Cl 2 at room temperature for 14 hours and then analyzing by gas chromatography using PCBs containing solvent as internal standard with methanol. did.

【0040】その溶液を強い撹拌下で維持しながら、4
5%過酸化水素水性溶液を、全H22濃度が127.5
g/lになるまでゆっくり加えた。この反応の結論とし
て、クロルイオン濃度は、AgNO3を有する酸媒体中
での電位差滴定により、水性相中で決定した。水性相中
及び紙パルプ中の両方の残留PCB類濃度は、上述のよ
うにCH2Cl2を用いた抽出後のガスクロマトグラフィ
ーによって決定した。得られたデータを、表5に示す。
While maintaining the solution under vigorous stirring, 4
A 5% aqueous hydrogen peroxide solution was added to give a total H 2 O 2 concentration of 127.5.
Slowly added until g / l. In conclusion of this reaction, the chloride ion concentration was determined in the aqueous phase by potentiometric titration in an acid medium with AgNO 3 . Residual PCBs concentrations in both the aqueous phase and paper pulp were determined by gas chromatography after extraction with CH 2 Cl 2 as described above. The data obtained are shown in Table 5.

【0041】実施例13(ヘキサクロロシクロヘキサン
の酸化) ヘキサクロロシクロヘキサン(ECE)の0.5gを、
滴下じょうご、pHメータ及び磁気撹拌機の付いた25
0mlの丸底反応フラスコの中に導入した。この後、10
0mlの水とその中にFe2+とCu2+イオン両方について
200ppmとなる濃度を得るのに相当する量のFeSO4
・7H2O及びCuSO4・5H2O及び500ppmの量の
テトラブチルアンモニウムヒドロキシド(ITBA)を
溶解してなる水溶液を加えた。
Example 13 (hexachlorocyclohexane
The 0.5g of the oxide) hexachlorocyclohexane (ECE),
25 with dropping funnel, pH meter and magnetic stirrer
It was introduced into a 0 ml round bottom reaction flask. After this, 10
0 ml of water and a corresponding amount of FeSO 4 to obtain a concentration of 200 ppm for both Fe 2+ and Cu 2+ ions
An aqueous solution of 7H 2 O and CuSO 4 .5H 2 O and tetrabutylammonium hydroxide (ITBA) in an amount of 500 ppm was added.

【0042】得られた混合物を油浴中95℃に加熱し、
pHを15%H2SO4水溶液又は10%NaOH水溶液
の少量添加によって約3.4−3.5の値に調整した。
この混合物は、全ECEを溶解するために強く撹拌し
た。次にH22水性溶液(56体積%)を約0.4ml/m
inの割合でゆっくりと加えた。H22を予定通り加えた
(表6に示すように)後、反応混合物サンプル(それぞ
れ5ml)を、分析のために抜取った。表6において、H
22の添加量は化学量論の当量数として示したが、化学
量論の当量とは、この有機物質をCO2とH2Oに完全に
分解するのに必要なH22(100%)の理論量を意味
する。
Heating the resulting mixture to 95 ° C. in an oil bath,
pH was adjusted to a value of about 3.4-3.5 by a small amount addition of 15% H 2 SO 4 aqueous solution or aqueous 10% NaOH.
This mixture was stirred vigorously to dissolve all ECE. Then, an aqueous solution of H 2 O 2 (56% by volume) was added to about 0.4 ml / m 2.
Slowly added in proportion. After H 2 O 2 was added as scheduled (as shown in Table 6), reaction mixture samples (5 ml each) were withdrawn for analysis. In Table 6, H
The addition amount of 2 O 2 is shown as the stoichiometric equivalent number, and the stoichiometric equivalent is the H 2 O 2 (required for completely decomposing this organic substance into CO 2 and H 2 O). 100%) of the theoretical amount.

【0043】それぞれのサンプルに関して、残存ECE
濃度([ECE])、COD及びクロルイオン濃度
([Cl-])を、上記の方式に従って決定した。この
結果を表6に報告するが、ここで鉱物化パーセント(%
[Cl-])は、実際に得られたCl-イオン濃度と得ら
れうる最大のCl-イオン濃度との比として示す。この
反応の間、このpHはNaOH又はH2SO4溶液の少量
添加(0.1−0.2ml)によって3.4近辺に維持
し、一方温度は97℃の一定に維持した。
Residual ECE for each sample
Concentration ([ECE]), COD and chloride ion concentration - the ([Cl]), was determined according to the above method. The results are reported in Table 6, where the mineralization percentage (%
[Cl ]) is shown as the ratio of the actually obtained Cl ion concentration to the maximum obtainable Cl ion concentration. During the reaction, the pH was maintained around 3.4 by the addition of a small amount of NaOH or H 2 SO 4 solution (0.1-0.2 ml), while the temperature was kept constant at 97 ° C.

【0044】実施例14(メタ−クロロベンゼンの酸
化) メタ−ジクロロベンゼン(MDB)の1g(0.766
ml)を、滴下じょうご、pH−メータ及び磁気撹拌機の
付いた500mlの丸底反応フラスコの中に導入した。こ
の後、その中に、Fe2+とCu2+イオンの両方について
200ppmとなる濃度を得るのに相当する量のFeSO4
・7H2O及びCuSO4・5H2O及びテトラブチルア
ンモニウムヒドロキシド(ITBA)の500ppmを溶
解したH2Oの200mlからなる水溶液を加えた。
Example 14 (Acid of meta-chlorobenzene
1 g (0.766 ) of meta-dichlorobenzene (MDB)
ml) was introduced into a 500 ml round bottom reaction flask equipped with a dropping funnel, pH-meter and magnetic stirrer. This is followed by a corresponding amount of FeSO 4 to obtain a concentration of 200 ppm for both Fe 2+ and Cu 2+ ions.
An aqueous solution of 200 ml of H 2 O in which 500 ppm of 7H 2 O and CuSO 4 .5H 2 O and tetrabutylammonium hydroxide (ITBA) were dissolved was added.

【0045】得られた混合物を油浴中95℃に加熱し、
pHを、15%H2SO4水溶液又は10%NaOH水溶
液の少量添加によって約3.5の値に調整した。この混
合物を全MDBを溶解するために強く撹拌した。次にH
22水性溶液(60体積%)を約0.44ml/minの割合
でゆっくりと加えた。H22の予定通りの添加(表6に
示すように)後、反応混合物サンプル(それぞれ20m
l)を分析のために抜取った。それぞれのサンプルに関
し、残存MDB濃度([MDB])とクロルイオン濃度
([Cl-])を上述の方式に従って決定した。この結
果を表6に報告するが、ここで鉱物化パーセント(%
[Cl-])は、実際に得られたCl-イオン濃度と得ら
れうる最大Cl-イオン濃度の比として示した。この反
応の間、pHをNaOHとH2SO4溶液の少量添加
(0.1−0.2ml)によって3.5近辺に維持し、一
方温度は97℃の一定に維持した。
The mixture obtained is heated to 95 ° C. in an oil bath,
The pH was adjusted to a value of about 3.5 by the small addition of 15% aqueous H 2 SO 4 or 10% aqueous NaOH. The mixture was vigorously stirred to dissolve all MDB. Then H
2 O 2 aqueous solution (60% by volume) was added slowly at a rate of about 0.44 ml / min. After the scheduled addition of H 2 O 2 (as shown in Table 6), reaction mixture samples (each 20 m
l) was withdrawn for analysis. For each sample, the residual MDB concentration ([MDB]) and chlorine ion concentration ([Cl -]) were determined according to the manner described above. The results are reported in Table 6, where the mineralization percentage (%
[Cl ]) is shown as the ratio of the actually obtained Cl ion concentration to the maximum obtainable Cl ion concentration. During this reaction, the pH was maintained around 3.5 by the small addition of NaOH and H 2 SO 4 solution (0.1-0.2 ml), while the temperature was kept constant at 97 ° C.

【0046】実施例15−17(クロロフェノール類の
酸化) パラ−クロロフェノール(PCF)(実施例15)の6.
25g又はトリクロロフェノール(TCF)(実施例1
6)の0.25g又はペンタクロロフェノール(PEC
F)(実施例17)の0.25gを、滴下じょうご、pH
−メータ及び磁気撹拌機の付いた500ml丸底反応フラ
スコ中に導入した。この後、Fe2+とCu 2+イオンの両
方について200ppmとなる濃度を得るのに相当する量
のFeSO4・7H2OとCuSO4・5H2O及び500
ppmのテトラブチルアンモニウムヒドロキシド(ITB
A)を溶解した250mlの水からなる水溶液を加えた。
[0046]Examples 15-17 (of chlorophenols
Oxidation) 6. Para-chlorophenol (PCF) (Example 15)
25 g or trichlorophenol (TCF) (Example 1
6) 0.25g or pentachlorophenol (PEC
F) (Example 17), 0.25 g, dropping funnel, pH
-500 ml round bottom reaction flask with meter and magnetic stirrer
Introduced in Sco. After this, Fe2+And Cu 2+Both of Aeon
Amount equivalent to obtain a concentration of 200 ppm
FeSOFour・ 7H2O and CuSOFour・ 5H2O and 500
ppm tetrabutylammonium hydroxide (ITB
An aqueous solution consisting of 250 ml of water in which A) was dissolved was added.

【0047】得られた混合物を油浴中95℃に加熱し、
pHを15%H2SO4水溶液又は10%NaOH水溶液
の少量添加によって約3.0の値に調整した。この混合
物を全PCF、TCF又はPECFを溶解するために強
く撹拌した。次にH22水溶液(50体積%)を約0.
2ml/minの割合でゆっくりと加えた。H22の予定通り
の添加(表7に示すように)後、反応混合物サンプル
(それぞれ5ml)を分析のために抜取った。それぞれの
サンプルに関し、残留PCF、TCF又はPECF濃度
([PCF]、[TCF]、[PECF])、COD及
びクロルイオン濃度([Cl-])を上述の方式に従っ
て決定した。この結果を表7に報告するが、ここで鉱物
化パーセント(%[Cl-])は、実際に得られたCl-
イオン濃度と得られうる最大Cl-イオン濃度との比と
して示される。この反応の間、pHはNaOH又はH2
SO4溶液の少量添加(0.1−0.2ml)によって
3.0近辺に維持し、一方温度は97℃の一定に維持し
た。
The mixture obtained is heated to 95 ° C. in an oil bath,
The pH was adjusted to a value of about 3.0 by adding a small amount of 15% H 2 SO 4 aqueous solution or 10% NaOH aqueous solution. The mixture was stirred vigorously to dissolve all PCF, TCF or PECF. Then, an H 2 O 2 aqueous solution (50% by volume) was added to about 0.
It was added slowly at a rate of 2 ml / min. After the scheduled addition of H 2 O 2 (as shown in Table 7), reaction mixture samples (5 ml each) were drawn for analysis. For each sample, the residual PCF, TCF, or PECF concentration ([PCF], [TCF] , [PECF]), COD and chloride ion concentration - was determined ([Cl]) according to the above described method. The results are reported in Table 7, where the mineralization percentage (% [Cl ]) is the actual Cl obtained.
It is shown as the ratio of the ion concentration to the maximum obtainable Cl - ion concentration. During this reaction, the pH is NaOH or H 2
The temperature was kept constant at 97 ° C. while being kept around 3.0 by a small addition of SO 4 solution (0.1-0.2 ml).

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【表3】 [Table 3]

【0051】[0051]

【表4】 [Table 4]

【0052】[0052]

【表5】 [Table 5]

【0053】[0053]

【表6】 [Table 6]

【0054】[0054]

【表7】 [Table 7]

【0055】[0055]

【発明の効果】この発明によれば、クロル化製品を過酸
化水素と適当な触媒と相間移動剤の存在下で酸化し、非
毒性物質を生成させ、汚染物質が回収でき、今日まで利
用された方法と比較してかなり経済的にかつ環境上から
の利点を有する、クロル化有機製品の処分方法を提供す
ることができる。
INDUSTRIAL APPLICABILITY According to the present invention, a chlorinated product can be oxidized in the presence of hydrogen peroxide, a suitable catalyst and a phase transfer agent to produce a non-toxic substance, and a pollutant can be recovered. It is possible to provide a method of disposing of chlorinated organic products, which has considerable economic and environmental advantages as compared with the above method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 フルビオ ブルチオ イタリア国、ミラノ 20145 ビア エフ. フェルッチィオ 6 (72)発明者 マリオ アルフィーリ イタリア国、ミラノ 20131 ビア カソ レット 8 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fulbio Burcio Milan, Italy 20145 Via F. Ferucchio 6 (72) Inventor Mario Alfili Milan, Italy 20131 Via Casoretto 8

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 クロル化有機製品を、Cu(II)、Ti
(IV)、Mn(II)、Co(II)、Ni(II)、W(I
V)及びMo(IV)から選択された1以上の遷移金属イ
オンを任意に組合せたFe(II)イオンの存在下かつ相
間移動剤の存在下でH22水性液と処理することからな
るクロル化有機製品の処分方法。
1. A chlorinated organic product containing Cu (II), Ti
(IV), Mn (II), Co (II), Ni (II), W (I
V) and Mo (IV) comprising treating with H 2 O 2 aqueous liquid in the presence of Fe (II) ions in any combination and in the presence of a phase transfer agent. Disposal methods for chlorinated organic products.
【請求項2】 クロル化有機製品が、芳香族、アルキル
−芳香族、オレフィン系、脂肪族又は脂環族構成のもの
である請求項1の方法。
2. The process of claim 1 wherein the chlorinated organic product is of aromatic, alkyl-aromatic, olefinic, aliphatic or alicyclic construction.
【請求項3】 クロル化有機製品が、ポリクロロビフェ
ニル類(PCBs)、クロロベンセン類、クロロフェノ
ール類、1,1,1−トリクロロ−2,2−ビス(p−
クロロフェニル)エタン(DDT)、トリクロロエチレ
ン、パ−クロロブタジエン、テトラクロロエタン、ヘキ
サクロロシクロヘキサン、抱水クロラール、ヘキサクロ
ロエタン及びパ−クロロアセトンから選択される請求項
2の方法。
3. The chlorinated organic product is polychlorobiphenyls (PCBs), chlorobenzenes, chlorophenols, 1,1,1-trichloro-2,2-bis (p-).
The process of claim 2 selected from chlorophenyl) ethane (DDT), trichloroethylene, perchlorobutadiene, tetrachloroethane, hexachlorocyclohexane, chloral hydrate, hexachloroethane and perchloroacetone.
【請求項4】 相間移動剤が、一般式 【化1】 (式中QはN、P及びAsから選択され、R1、R2、R
3とR4は同一又は異なって、水素原子、C1〜C35アル
キル基、C6〜C10アリール基、C1〜C10アラルキルも
しくはアルキルアリール基、但し、R1〜R4の少なくと
も1つは水素原子とは異なる、X-はOH-、Cl-、B
-、I-及びBH4 -から選択される)のアンモニウム、
ホスホニウム又はアルソニウム塩である請求項1〜3の
何れか1つによる方法。
4. The phase transfer agent is represented by the general formula: (In the formula, Q is selected from N, P and As, and R 1 , R 2 and R are selected.
3 and R 4 are the same or different and each is a hydrogen atom, a C 1 to C 35 alkyl group, a C 6 to C 10 aryl group, a C 1 to C 10 aralkyl or alkylaryl group, provided that at least one of R 1 to R 4 is present. One is different from hydrogen atom, X - is OH -, Cl -, B
r , I and BH 4 ) ammonium,
4. A method according to any one of claims 1 to 3 which is a phosphonium or arsonium salt.
【請求項5】 相間移動剤がテトラアルキルアンモニウ
ム塩類(アルキル基は同一又は異なって1〜35の炭素
原子を有す)から選択される請求項4の方法。
5. The method of claim 4 wherein the phase transfer agent is selected from tetraalkylammonium salts, where the alkyl groups are the same or different and have 1 to 35 carbon atoms.
【請求項6】 相間移動剤が、水性相に対し、20〜5
00ppmの範囲の濃度で用いられる請求項1〜5の何れ
か1つの方法。
6. The phase transfer agent is 20 to 5 relative to the aqueous phase.
6. The method according to claim 1, wherein the method is used at a concentration in the range of 00 ppm.
【請求項7】 相間移動剤が、水性相に対し、100〜
300ppmの範囲の濃度で用いられる請求項6の方法。
7. The phase transfer agent is used in an amount of 100 to 100 relative to the aqueous phase.
The method of claim 6 used at a concentration in the range of 300 ppm.
【請求項8】 Fe(II)イオンが水性相に対し、50
〜1000ppmの範囲の濃度で用いられる請求項1〜7
の何れか1つの方法。
8. Fe (II) ions are added to the aqueous phase in an amount of 50.
Use at a concentration in the range of up to 1000 ppm.
Any one of the methods.
【請求項9】 Cu(II)、Ti(IV)、Mn(II)、
Co(II)、Ni(II)、W(IV)又はMo(IV)イオ
ンが、水性相に対し、0〜400ppmの範囲の濃度で用
いられる請求項1〜8の何れか1つによる方法。
9. Cu (II), Ti (IV), Mn (II),
The method according to any one of claims 1 to 8, wherein Co (II), Ni (II), W (IV) or Mo (IV) ions are used in the aqueous phase at a concentration in the range of 0 to 400 ppm.
【請求項10】 Fe(II)イオンとCu(II)、Ti
(IV)、Mn(II)、Co(II)、Ni(II)、W(I
V)とMo(IV)から選択される1以上の遷移金属イオ
ンとが、それぞれ50〜400ppmの範囲の濃度で、等
モル量で用いられる請求項1〜9の何れか1つの方法。
10. Fe (II) ions and Cu (II), Ti
(IV), Mn (II), Co (II), Ni (II), W (I
10. The method according to claim 1, wherein V) and one or more transition metal ions selected from Mo (IV) are used in equimolar amounts at a concentration in the range of 50 to 400 ppm, respectively.
【請求項11】 H22水性液が、添加H22の当初存
在するクロル化有機製品に対するモル比を0.2〜10
0の範囲となるような量で用いられる請求項1〜10の
何れか1つの方法。
11. A H 2 O 2 aqueous liquid having a molar ratio of added H 2 O 2 to the initially present chlorinated organic product of 0.2 to 10.
11. A method according to any one of claims 1 to 10 used in an amount such that it is in the range 0.
【請求項12】 添加H22の当初存在するクロル化有
機製品に対するモル比が0.2〜30の範囲である請求
項11の方法。
12. The method of claim 11 wherein the molar ratio of added H 2 O 2 to the initially present chlorinated organic product ranges from 0.2 to 30.
JP5243211A 1992-09-30 1993-09-29 Method of processing chromed organic product by oxidation Pending JPH06198000A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IT001289 IT1264622B1 (en) 1993-06-16 1993-06-16 Chlorinated organic prod. disposal giving non-toxic prods. - by treatment with aq. hydrogen peroxide soln. in presence of ferrous ions, opt. transition metal ions and phase transfer agent
EP93114665A EP0593895B1 (en) 1992-09-30 1993-09-13 Process for the disposal of chlorinated organic products by oxidation treatment
HU9302745A HU9302745D0 (en) 1992-09-30 1993-09-28 Process for oxidation of waste chlorinated organic compounds
JP5243211A JPH06198000A (en) 1992-09-30 1993-09-29 Method of processing chromed organic product by oxidation
CA002107455A CA2107455A1 (en) 1992-09-30 1993-09-30 Process for the disposal of chlorinated organic products by oxidation treatment

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
ITMI922260A IT1255702B (en) 1992-09-30 1992-09-30 Process for the disposal of polychlorobiphenyls through oxidative processing
IT001289 IT1264622B1 (en) 1993-06-16 1993-06-16 Chlorinated organic prod. disposal giving non-toxic prods. - by treatment with aq. hydrogen peroxide soln. in presence of ferrous ions, opt. transition metal ions and phase transfer agent
IT92A002260 1993-06-16
IT93A001289 1993-06-16
JP5243211A JPH06198000A (en) 1992-09-30 1993-09-29 Method of processing chromed organic product by oxidation

Publications (1)

Publication Number Publication Date
JPH06198000A true JPH06198000A (en) 1994-07-19

Family

ID=27273988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5243211A Pending JPH06198000A (en) 1992-09-30 1993-09-29 Method of processing chromed organic product by oxidation

Country Status (4)

Country Link
EP (1) EP0593895B1 (en)
JP (1) JPH06198000A (en)
CA (1) CA2107455A1 (en)
HU (1) HU9302745D0 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2871906C (en) * 2012-05-01 2021-04-27 Monsanto Technology, Llc Method of cleaning residual pesticide from an agricultural vessel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399657A (en) * 1977-02-14 1978-08-31 Mitsubishi Heavy Ind Ltd Method of oxidizing waste water
IT1205277B (en) * 1982-11-10 1989-03-15 Montedison Spa NEW PEROXIDE COMPOSITIONS BASED ON TUNGSTEN AND PHOSPHORUS OR ARSENIC
JPS61104299A (en) * 1984-10-26 1986-05-22 日揮株式会社 Method of disposing radioactive decontaminated waste liquor
USH366H (en) * 1987-03-18 1987-11-03 The United States Of America As Represented By The Secretary Of The Army Microemulsions containing sulfolanes
US5004551A (en) * 1990-06-22 1991-04-02 Abb Environmental Services Inc. Catalytic oxidation of hazardous wastes

Also Published As

Publication number Publication date
HU9302745D0 (en) 1994-03-28
CA2107455A1 (en) 1994-03-31
EP0593895A1 (en) 1994-04-27
EP0593895B1 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
Petri et al. Fundamentals of ISCO using hydrogen peroxide
US4340490A (en) Process for the detoxification of waste water containing phenol, phenol derivative or phenol and formaldehyde
Chambers et al. Excited states of polyoxometalates as oxidatively resistant initiators of hydrocarbon autoxidation. Selective production of hydroperoxides
US4230567A (en) Process for working up effluents containing nitro-hydroxy-aromatic compounds
Valange et al. Synthesis of copper bearing MFI zeolites and their activity in wet peroxide oxidation of phenol
US5556779A (en) Compounds and methods useful for reductive dehalogenation of aliphatic halocarbons
Fernández-Castro et al. Theoretical and experimental formation of low chlorinated dibenzo-p-dioxins and dibenzofurans in the Fenton oxidation of chlorophenol solutions
EP0540972A1 (en) Process for oxidizing organic materials with hydrogen peroxide under conditions of irradiation in aqueous phase
US5855797A (en) Remediation of soil contaminated with organic compounds
JPH06198000A (en) Method of processing chromed organic product by oxidation
US5608135A (en) Process for decreasing chlorine content of chlorinated hydrocarbons
JP3011089B2 (en) Decomposition method of halogen compounds
Konuma et al. Effect of substituents on the hydrodechlorination reactivity of para-substituted chlorobenzenes
KR860003196A (en) Process for preparing cinnamate ester
Cuccovia et al. Control of reaction rates in vesicular systems
JP3429767B2 (en) Method for reducing the content of halogen-containing organic compounds in aqueous systems
Snider et al. Kinetics of the chlorination of biphenyl under conditions of waste treatment processes
JP2918542B1 (en) Method for treating organic halogen compounds
Nondek et al. Activation of the carbon-halogen bond in polyhalomethanes by copper (I) complexes
US5430231A (en) Process for the disposal of chlorinated organic products by sulphonation or nitration and subsequent oxidation
JP3408390B2 (en) Decomposition method of aromatic halogen compound
Narasaki et al. Determination of total tin in river water by hydride generation-atomic absorption spectrometry
Včelák et al. Dehalogenation of chloroarenes with sodium dihydridobis (2-methoxyethoxo) aluminate in the presence of transition metal compounds
JP3850323B2 (en) Detoxification method for organic halogen compounds
EP0723525A1 (en) Process for decreasing chlorine content in chlorinated hydrocarbons