JPH06197540A - Power converter - Google Patents

Power converter

Info

Publication number
JPH06197540A
JPH06197540A JP4341826A JP34182692A JPH06197540A JP H06197540 A JPH06197540 A JP H06197540A JP 4341826 A JP4341826 A JP 4341826A JP 34182692 A JP34182692 A JP 34182692A JP H06197540 A JPH06197540 A JP H06197540A
Authority
JP
Japan
Prior art keywords
power
circuit
level inverter
inverter circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4341826A
Other languages
Japanese (ja)
Other versions
JP3529399B2 (en
Inventor
Akio Hirata
昭生 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP34182692A priority Critical patent/JP3529399B2/en
Publication of JPH06197540A publication Critical patent/JPH06197540A/en
Application granted granted Critical
Publication of JP3529399B2 publication Critical patent/JP3529399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To reduce the size, weight, and cost of a power converter and improve the responsiveness, protectivenss, and reliability of the converter by reducing the capacitance of a capacitor installed on the DC input side of a multilevel inverter circuit and, at the same time, the pulsation of the charging voltage of the capacitor. CONSTITUTION:In this converter provided with a multilevel inverter circuit 14, the pulsation of a positive and negative DC voltages against the centerpoint potential of a DC circuit on the DC input terminal side of the circuit 14 is reduced by providing at least one each of DC power source 15 and 16 connected for constituting the DC circuit between the center point and positive and negative input terminals of the DC circuit. In addition, the midpoint potential is earthed through an impedance element 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は入力交流電源の電力を直
流電力に変換し、多レベルインバータで再び交流電力に
変換する電力変換装置に係り、特に装置の小形化と運転
性能の向上及び保護性の向上を計った電力変換装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter for converting the power of an input AC power source into a DC power and converting it into AC power again by a multilevel inverter, and more particularly to downsizing the device and improving and protecting its operating performance. The present invention relates to a power conversion device with improved performance.

【0002】[0002]

【従来の技術】本発明に関する電力変換装置の従来技術
として、多レベルインバータ(例えば特開昭55-43996ブ
リッジ変換回路とその変換方法)がある。この多レベル
インバータ回路は種々の方式があるが、ここでは平成4
年電気学会産業応用部門全国大会 論文No.91 、論文N
o.92 、論文No.94 などで3レベルインバータと呼称さ
れるインバータを使用した電力変換装置を引用して従来
技術の問題点について説明する。
2. Description of the Related Art As a conventional technique of a power conversion device according to the present invention, there is a multilevel inverter (for example, Japanese Patent Laid-Open No. 55-43996 bridge conversion circuit and its conversion method). There are various methods for this multi-level inverter circuit, but here
Annual Meeting of the Institute of Electrical Engineers of Japan, Paper No.91, Paper N
The problems of the prior art will be described with reference to a power converter using an inverter called a three-level inverter in O.92, Paper No. 94 and the like.

【0003】図6は公知の3レベルインバータを使用し
た電力変換装置の主回路構成を示す。この図において、
11は直流電源、12と13はコンデンサ、14は3レベルイン
バータ回路であり、3レベルインバータ回路14は直流入
力端子P,O,N及び交流出力端子U,V,Wを有し、
各相はGTOやIGBTなどの半導体スイッチS1 ,S
2 ,S3 ,S4 で構成されている。
FIG. 6 shows a main circuit configuration of a power conversion device using a known three-level inverter. In this figure,
11 is a DC power supply, 12 and 13 are capacitors, 14 is a 3-level inverter circuit, and the 3-level inverter circuit 14 has DC input terminals P, O, N and AC output terminals U, V, W,
Each phase is a semiconductor switch S 1 , S such as GTO or IGBT
It is composed of 2 , S 3 , and S 4 .

【0004】この3レベルインバータ回路14の詳細な動
作については既に前記引用文献などにより公知であるた
め、説明を省略するが、直流電源11の直流電圧を直列接
続されたコンデンサ12と13で分圧して3レベルインバー
タ回路14の直流入力端子P,O,Nに接続し、直流電源
11の直流電力を3レベルインバータ回路14で交流電力に
変換して出力端子U,V,Wより任意の周波数の交流電
力を出力する。この時出力端子U,V,Wには3レベル
の電圧を半導体スイッチS1 ,S2 ,S3 ,S4 の選択
によって得るため、出力する交流電力に含まれる高調波
成分が少なく、また直流電圧がコンデンサ12と13で1/
2に分割されており、半導体スイッチS1 ,S2
3 ,S4 にはコンデンサ12又は13の充電電圧が印加さ
れるため、半導体スイッチS1 ,S2 ,S3 ,S4 は直
接2個の半導体スイッチを直列接続して使用する方式よ
りも電圧利用率が向上するなどの特徴がある。
Since the detailed operation of the three-level inverter circuit 14 is already known from the above-mentioned references and the like, description thereof will be omitted, but the DC voltage of the DC power supply 11 is divided by the capacitors 12 and 13 connected in series. Connected to the DC input terminals P, O, N of the 3-level inverter circuit 14
The DC power of 11 is converted into AC power by the three-level inverter circuit 14, and AC power of any frequency is output from the output terminals U, V, W. In this case the output terminals U, V, to obtain a 3-level voltage by the selection of the semiconductor switches S 1, S 2, S 3 , S 4 are the W, less harmonic components included in the AC power outputted, also DC The voltage is 1 / with capacitors 12 and 13
It is divided into two, and the semiconductor switches S 1 , S 2 ,
Since the charging voltage of the S 3, the S 4 capacitor 12 or 13 is applied, the semiconductor switch S 1, S 2, S 3 , S 4 are than scheme using two semiconductor switches directly connected in series It has features such as improved voltage utilization.

【0005】図6の電力変換装置では、前記するような
特徴が公知であるが、コンデンサ12と13の充電電圧が、
3レベルインバータ回路14の出力電流の瞬時的な変化に
よって脈動する問題が存在する。この要因の詳細につい
ては前記平成4年電気学会産業応用部門全国大会論文N
o.91 「3レベルインバータの中性点電圧の交流的変動
の抑制法」などにも説明されており、3レベルインバー
タ回路14のPWM制御によってコンデンサ12,13の充電
電圧Ed12 が図7に示す如く脈動することが述べられて
いる。
In the power converter of FIG. 6, the characteristics as described above are known, but the charging voltage of the capacitors 12 and 13 is
There is a problem of pulsation due to an instantaneous change in the output current of the three-level inverter circuit 14. For details of this factor, refer to the 1992 National Conference of the Institute of Electrical Engineers of Japan, Industrial Application Division N
o.91 It is also explained in “Suppressing AC fluctuation of neutral point voltage of 3-level inverter”, etc., and charging voltage E d12 of capacitors 12 and 13 is shown in FIG. 7 by PWM control of 3-level inverter circuit 14. It is stated that it pulsates as shown.

【0006】図7において、im は出力端子U,V,W
の1相分の出力電流の電流波形、Ed12 はコンデンサ12
またはコンデンサ13の充電電圧、Ed は直流電源11の直
流電圧の1/2に相当する電圧であり、3レベルインバ
ータ回路14の半導体スイッチS1 とS4 、S2 とS3
対称動作を行なうとコンデンサ12や13の充電電圧はEd
となるが、PWM制御を一般的に行なうと充電電圧はE
d12 となる。前記引用文献によれば充電電圧Ed12 は充
電電圧Ed に対して25%程度脈動するために、3レベル
インバータ回路14の半導体スイッチS1 ,S2 ,S3
4 は前記の充電電圧Ed12 に対応した電圧定格とする
必要があり電圧利用率が大幅に低下する。
[0006] In FIG. 7, i m is the output terminals U, V, W
The current waveform of the output current for one phase, E d12 is the capacitor 12
Alternatively, the charging voltage of the capacitor 13, E d, is a voltage corresponding to 1/2 of the DC voltage of the DC power supply 11, and the semiconductor switches S 1 and S 4 , S 2 and S 3 of the three-level inverter circuit 14 operate symmetrically. If done, the charging voltage of the capacitors 12 and 13 is E d
However, when PWM control is generally performed, the charging voltage is E
It becomes d12 . According to the cited document, since the charging voltage E d12 pulsates about 25% with respect to the charging voltage E d , the semiconductor switches S 1 , S 2 , S 3 , of the three-level inverter circuit 14 are
It is necessary to set S 4 to a voltage rating corresponding to the above-mentioned charging voltage E d12 , and the voltage utilization rate is greatly reduced.

【0007】前記引用文献では、充電電圧Ed12 の脈動
を低減するための3レベルインバータ回路14のPWM制
御方法が提案されているが、出力端子U,V,Wで出力
電流im が過渡的な変動を行なった場合には同様に充電
電圧Ed12 が大きく脈動することになる。即ち3レベル
インバータ回路14を採用する電力変換装置では、その負
荷の電流制御応答を速める目的のものが多く、前記出力
電流im の過渡的な変動は電力変換装置の適用面から発
生する。このため充電電圧Ed12 の脈動も必然的に発生
する。このように必然的に発生する充電電圧Ed12 の脈
動を軽減するためには、コンデンサ12と13の静電容量を
増加する方法がとられている。前記脈動電圧Ed12 と静
電容量とは反比例する関係にあるため、静電容量を増加
すると脈動電圧Ed12 は小さくなるが、コンデンサ12や
13の外形や価格が大幅に増加する。
[0007] In the above references, but PWM control method of a three-level inverter circuit 14 for reducing the pulsation of the charging voltage E d12 is proposed, transient output terminals U, V, W in the output current i m is If such a fluctuation is made, the charging voltage E d12 similarly pulsates greatly. That is, in the power conversion apparatus employing the three-level inverter circuit 14, for the purpose of accelerating the current control response of the load is large and transient variation of the output current i m is generated from the application surface of the power converter. Therefore, the pulsation of the charging voltage E d12 is inevitably generated. In order to reduce the pulsation of the charging voltage E d12 thus inevitably generated, a method of increasing the electrostatic capacitances of the capacitors 12 and 13 is used. Since the pulsating voltage E d12 and the electrostatic capacitance are in inverse proportion to each other, increasing the electrostatic capacitance reduces the pulsating voltage E d12.
13 shape and price will increase significantly.

【0008】[0008]

【発明が解決しようとする課題】ところで、これらの電
力変換装置では、装置の小形軽量化や低価格化、出力電
流im の制御応答特性の高速化、装置の信頼性や保護性
の向上が重要な技術課題となっている。しかし従来技術
を使用した多レベル(3レベル)インバータを使用する
電力変換装置では、次のような点で、これらの課題を充
分に解決することが出来なかった。 (1)コンデンサ12や13の充電電圧Ed12 の脈動を軽減
するためには、コンデンサ12や13の静電容量を増加させ
なければならず、この結果として (a)電力変換装置が大形化、高価格化する。
[SUMMARY OF THE INVENTION Incidentally, in these power converter, size and weight reduction and cost reduction of the apparatus, speed control response characteristic of the output current i m, improvement of reliability and protection of the device It is an important technical issue. However, the power conversion device using the multi-level (3 level) inverter using the conventional technique has not been able to sufficiently solve these problems in the following points. (1) In order to reduce the pulsation of the charging voltage E d12 of the capacitors 12 and 13, it is necessary to increase the capacitance of the capacitors 12 and 13, and as a result, (a) the power conversion device becomes large-sized. To raise the price.

【0009】(b)コンデンサ12や13の静電容量が増加
すると、3レベルインバータ回路14の直流短絡事故など
が発生したとき過大な事故電流が流れ、半導体スイッチ
1,S2 ,S3 ,S4 などを充分に保護することがで
きなかった。
(B) When the electrostatic capacitance of the capacitors 12 and 13 increases, an excessive fault current flows when a DC short circuit fault of the three-level inverter circuit 14 occurs, and the semiconductor switches S 1 , S 2 , S 3 , S 4 etc. could not be sufficiently protected.

【0010】(2)コンデンサ12や13の充電電圧Ed12
の脈動のため、半導体スイッチS1,S2 ,S3 ,S4
など主回路用品の電圧定格を高くする必要があり、電圧
利用率が低下して電力変換装置の高価格化を生じてい
た。
(2) Charging voltage E d12 of the capacitors 12 and 13
Due to the pulsation of the semiconductor switches S 1 , S 2 , S 3 , S 4
Therefore, it is necessary to increase the voltage rating of the main circuit supplies, which lowers the voltage utilization rate and raises the price of the power conversion device.

【0011】(3)直流電源11の直流電圧が高く、更に
前記するような充電電圧Ed12 の脈動のため、電力変換
装置内部の絶縁も高い電圧レベルとする必要があり、絶
縁距離などが増大して、電力変換装置が大形化する。
(3) Due to the high DC voltage of the DC power supply 11 and the pulsation of the charging voltage E d12 as described above, it is necessary to insulate the inside of the power conversion device at a high voltage level, which increases the insulation distance. As a result, the power conversion device becomes larger.

【0012】本発明は、前述の従来技術の欠点を除去す
るためになされたもので、充電電圧Ed12 の脈動電圧の
一部を直流電源側に吸収することによって、コンデンサ
の静電容量を低減しても脈動電圧を軽減でき、装置の小
形軽量化や低価格化、高速応答性の改善や信頼性、保護
性の向上を実現することができる電力変換装置を提供す
ることを目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the prior art. The capacitance of the capacitor is reduced by absorbing a part of the pulsating voltage of the charging voltage E d12 to the DC power source side. Even if the pulsating voltage is reduced, it is an object of the present invention to provide a power conversion device that can realize a smaller and lighter device, a lower price, improved high-speed response, improved reliability, and improved protection.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次のように構成する。
In order to achieve the above object, the present invention is constructed as follows.

【0014】請求項1に対応する発明として、多レベル
インバータ回路を有する電力変換装置において、多レベ
ルインバータ回路の直流入力端子側の直流回路の構成の
ために接続される直流電源を、前記直流回路の中点と、
その正負入力端子間に双方向性電源機能を有する直流電
源をそれぞれ少なくとも1個づつ設けて、中点電位に対
する正負直流電圧の脈動を軽減させる。
According to a first aspect of the present invention, in a power converter having a multi-level inverter circuit, a DC power source connected for configuring a DC circuit on a DC input terminal side of the multi-level inverter circuit is the DC circuit. Midpoint,
At least one DC power supply having a bidirectional power supply function is provided between the positive and negative input terminals to reduce the pulsation of the positive and negative DC voltage with respect to the midpoint potential.

【0015】請求項2に対応する発明として、多レベル
インバータ回路を有する電力変換装置において、多レベ
ルインバータ回路の直流入力端子側に接続される直流電
源を少なくとも2個に分割して、前記直流電源の中点と
前記直流入力端子中点を接続して、この接続した中点を
インピーダンス素子を介して接地する。
According to a second aspect of the present invention, in a power converter having a multi-level inverter circuit, a DC power source connected to the DC input terminal side of the multi-level inverter circuit is divided into at least two DC power sources. Is connected to the center point of the DC input terminal, and the connected middle point is grounded via an impedance element.

【0016】請求項3に対応する発明として、多レベル
インバータ回路を有する電力変換装置において、多レベ
ルインバータ回路の直流入力端子側に接続されるコンデ
ンサの充電電圧を、前記直流入力端子の中点電位に対し
て、正側と負側に分けて差電圧を検出し、差電圧が所定
値以上となると保護動作を行なう差電圧検出保護回路を
設ける。
According to a third aspect of the present invention, in a power converter having a multilevel inverter circuit, the charging voltage of a capacitor connected to the DC input terminal side of the multilevel inverter circuit is set to the midpoint potential of the DC input terminal. On the other hand, a differential voltage detection and protection circuit is provided which detects the differential voltage separately on the positive side and the negative side and performs a protective operation when the differential voltage becomes a predetermined value or more.

【0017】[0017]

【作用】請求項1に対応する発明は、前記直流回路に設
けられたコンデンサの充電電圧の脈動を発生させる電力
の一部を前記双方向性電源機能を有する直流電源に吸収
させて脈動を軽減するように作用する。
The invention corresponding to claim 1 reduces the pulsation by absorbing a part of the electric power for generating the pulsation of the charging voltage of the capacitor provided in the DC circuit into the DC power source having the bidirectional power source function. Act as you do.

【0018】請求項2に対応する発明は、3レベルイン
バータ回路に入力する直流電圧は、中性点がインピーダ
ンス接地されるため、電力変換装置の大地電位は、2個
に分割された直流電源の直流電圧で決るようになる。こ
のため電力変換装置の大地電位が低くなり、絶縁距離も
小さくなって電力変換装置も小形化する。
In the invention corresponding to claim 2, since the neutral point of the DC voltage input to the three-level inverter circuit is impedance grounded, the ground potential of the power converter is divided into two DC power sources. It will be decided by the DC voltage. For this reason, the ground potential of the power converter is lowered, the insulation distance is reduced, and the power converter is downsized.

【0019】請求項3に対応する発明は、前記差電圧が
所定値以上になったとき、該差電圧に応じて制御指令が
生成され、多レベルインバータ回路の出力電流を制限す
る機能、あるいは電力変換装置の運転を停止させる機能
等に作用させ、電力変換装置の保護動作を行う。
According to a third aspect of the present invention, when the difference voltage exceeds a predetermined value, a control command is generated according to the difference voltage to limit the output current of the multi-level inverter circuit or the power. The function of stopping the operation of the converter is applied to protect the power converter.

【0020】[0020]

【実施例】本発明の請求項1及び請求項2に対応する実
施例を図1に示す。なお、図6と同一機能を有する回路
要素に同一符号を付して示す。
FIG. 1 shows an embodiment corresponding to claim 1 and claim 2 of the present invention. The circuit elements having the same functions as those in FIG. 6 are designated by the same reference numerals.

【0021】この図1で、15と16は分割された直流電
源、17はインピーダインス素子、18は接地極である。こ
の図において、直流電源15と16はコンデンサ12と13にそ
れぞれ接続され、直列接続された直流電源15と16の3端
子P,O,Nは3レベルインバータ回路14の直流入力端
子に接続し、直流電源15と16の直流電力を3レベルイン
バータ回路14によって交流電力に変換し出力端子U,
V,Wより負荷に電力供給する。
In FIG. 1, 15 and 16 are divided DC power supplies, 17 is an impedance unit, and 18 is a ground electrode. In this figure, DC power supplies 15 and 16 are connected to capacitors 12 and 13, respectively, and three terminals P, O and N of the DC power supplies 15 and 16 connected in series are connected to a DC input terminal of a three-level inverter circuit 14, The DC power of the DC power supplies 15 and 16 is converted into AC power by the three-level inverter circuit 14, and the output terminals U,
Power is supplied to the load from V and W.

【0022】出力端子U,V,Wにより負荷に供給する
出力電流im が過渡的に変動したり、3レベルインバー
タ回路14のPWM制御方法が要因となってコンデンサ12
や13の充電電圧Ed12 の脈動が発生しようとしても、直
流電源15と16を電力の供給と吸収が可能な双方向性電源
とすることによって、コンデンサ12又はコンデンサ13の
充電電圧Ed12 を脈動させる電流分の一部を直流電源15
又は直流電源16で補償することにより、前記充電電圧の
脈動を軽減することができる。
The output terminal U, V, the output current i m to be supplied to the load or to vary transiently by W, the capacitor 12 is PWM control method of a three-level inverter circuit 14 is a factor
Even if the pulsation of the charging voltage E d12 of 13 or 13 is about to occur, the charging voltage E d12 of the capacitor 12 or the capacitor 13 is pulsated by setting the DC power supplies 15 and 16 as bidirectional power sources capable of supplying and absorbing electric power. DC power supply 15
Alternatively, the pulsation of the charging voltage can be reduced by compensating with the DC power supply 16.

【0023】前記する双方向性電源機能を有する直流電
源14又は15の一例を図2に示す。図2において、19は入
力交流電源、20は双方向整流回路、TH1 とTH2 はサ
イリスタである。図2の双方向整流回路20はサイリスタ
TH1 とTH2 で構成される逆並列接続の3相全波整流
回路で構成されているため、可逆の電力変換機能を有
し、入力交流電源19の交流電力を直流電力に変換して出
力することも出来、また直流電力を入力交流電源19に回
生することも出来る。
FIG. 2 shows an example of the DC power supply 14 or 15 having the bidirectional power supply function described above. In FIG. 2, 19 is an input AC power supply, 20 is a bidirectional rectification circuit, and TH 1 and TH 2 are thyristors. The bidirectional rectifier circuit 20 shown in FIG. 2 is composed of an antiparallel three-phase full-wave rectifier circuit composed of thyristors TH 1 and TH 2 , and therefore has a reversible power conversion function and the input AC power supply 19 has a The AC power can be converted to DC power and output, and the DC power can be regenerated to the input AC power supply 19.

【0024】従って図2に示すような双方向性電源機能
を有する直流電源を図1の直流電源15及び16にそれぞれ
設けることによって、コンデンサ12又は13の充電電圧E
d12の脈動が発生する場合に直流電源15及び16の電圧制
御機能によって前記充電電圧Ed12 の脈動が抑制され、
コンデンサ12や13の静電容量を比較的に小容量とするこ
とができる。また、直流電源15と16、コンデンサ12と13
をそれぞれ直列接続した中点を、図1の如く接続し、こ
の中点の端子Oをインピーダンス素子17を介して接地極
18に接続する。図1の如く端子Oをインピーダンス接地
することにより端子P又は端子Nの大地電位が、インピ
ーダンス接地しない場合に比較して半分になる。このた
め電力変換装置全体の大地電位が低くなり、絶縁距離も
小さくなり電力変換装置も小形化できる。また電力変換
装置の大地電位が低くなると運転操作や定期点検などに
おける人身安全面からも、保護性が大幅に向上する。
Therefore, by providing a DC power supply having a bidirectional power supply function as shown in FIG. 2 to the DC power supplies 15 and 16 of FIG. 1, respectively, the charging voltage E of the capacitor 12 or 13 is charged.
When the pulsation of d12 occurs, the pulsation of the charging voltage E d12 is suppressed by the voltage control function of the DC power supplies 15 and 16,
The capacitance of the capacitors 12 and 13 can be made relatively small. In addition, DC power supplies 15 and 16, capacitors 12 and 13
1 are connected in series as shown in FIG. 1, and the terminal O at this middle point is connected to the ground electrode via the impedance element 17.
Connect to 18. By grounding the terminal O with impedance as shown in FIG. 1, the ground potential of the terminal P or the terminal N becomes half as compared with the case without impedance grounding. Therefore, the ground potential of the entire power conversion device is lowered, the insulation distance is reduced, and the power conversion device can be downsized. Further, when the ground potential of the power conversion device becomes low, the protection performance is significantly improved in terms of personal safety in driving operations and periodic inspections.

【0025】図3は本発明の他の実施例として適用可能
な双方向性電源の回路構成例を示す。図3において、21
はPWM制御コンバータでD1 はダイオード、T1 は自
己消弧素子を示す。PWM制御コンバータ21は公知の如
く高速で電力制御方向の切換が容易に可能であるため、
図1の直流電源15及び16を図3の構成とすると、前記図
2の構成を採用するよりより効果的である。
FIG. 3 shows a circuit configuration example of a bidirectional power supply applicable as another embodiment of the present invention. In FIG. 3, 21
Is a PWM control converter, D 1 is a diode, and T 1 is a self-turn-off device. Since the PWM control converter 21 can easily switch the power control direction at high speed as is well known,
When the DC power supplies 15 and 16 of FIG. 1 have the configuration of FIG. 3, it is more effective than the configuration of FIG.

【0026】図4は前述と同様に双方向性電源の回路構
成例を示す。図4において、19は入力交流電源、22は入
力変圧器、23は循環電流形コンバータ、TH1 とTH2
はサイリスタ、X1 とX2 は直流リアクトルである。循
環電流形コンバータ23も変圧器22の2次側2巻線にそれ
ぞれサイリスタTH1 とTH2 で構成される3相全波整
流回路を設け、直流リアクトルX1 とX2 を介して循環
電流を流す方式であるために、図3のPWM制御コンバ
ータ21と同様に高速で電流制御することができ、図3の
構成と同様の効果が得られる。
FIG. 4 shows an example of the circuit configuration of the bidirectional power source, as described above. In FIG. 4, 19 is an input AC power supply, 22 is an input transformer, 23 is a circulating current source converter, and TH 1 and TH 2
Is a thyristor, and X 1 and X 2 are DC reactors. The circulating current source converter 23 is also provided with a three-phase full-wave rectifier circuit composed of thyristors TH 1 and TH 2 on the secondary side two windings of the transformer 22, respectively, and the circulating current is supplied via the DC reactors X 1 and X 2. Because of the flow system, the current control can be performed at high speed similarly to the PWM control converter 21 of FIG. 3, and the same effect as the configuration of FIG. 3 can be obtained.

【0027】図5は本発明の請求項3に対応する実施例
を示す回路図である。この図において図1と同一機能を
有する回路要素に同一番号を付して示し、24は差電圧検
出保護回路である。差電圧検出保護回路24はコンデンサ
12と13の充電電圧Ed12 の差電圧を検出し、差電圧の値
が所定値以上になると電力変換装置に保護動作を行なう
機能を有するものである。この保護動作としては、出力
端子U,V,Wよりの出力電流im を制限する機能でも
良く、電力変換装置の運転を停止させる機能であっても
良く、特に限定するものではない。
FIG. 5 is a circuit diagram showing an embodiment corresponding to claim 3 of the present invention. In this figure, circuit elements having the same functions as those in FIG. 1 are designated by the same reference numerals, and 24 is a differential voltage detection protection circuit. The differential voltage detection protection circuit 24 is a capacitor
It has a function of detecting a difference voltage between the charging voltages E d12 of 12 and 13 and performing a protection operation on the power conversion device when the value of the difference voltage exceeds a predetermined value. As the protection operation, the output terminal U, V, may be a function of limiting the output current i m of from W, may be a function of stopping the operation of the power converter, it is not particularly limited.

【0028】電力変換装置は差電圧検出保護回路24の作
用によって、コンデンサ12や13の充電電圧Ed12 の過大
な脈動を保護することが出来る。また3レベルインバー
タ回路14の半導体スイッチS1 とS2 、またはS3 とS
4 の直流短絡が発生しても、コンデンサ12と13の差電圧
が過大となるから高速に検出保護できる。この結果より
図5の構成では電力変換装置の保護性を大幅に改善する
ことが出来る。
The power converter can protect the excessive pulsation of the charging voltage E d12 of the capacitors 12 and 13 by the action of the differential voltage detection protection circuit 24. Further, the semiconductor switches S 1 and S 2 or S 3 and S of the three-level inverter circuit 14
Even if the DC short circuit 4 occurs, the differential voltage between the capacitors 12 and 13 becomes too large, so that detection and protection can be performed at high speed. As a result, the configuration of FIG. 5 can significantly improve the protection of the power conversion device.

【0029】多レベルインバータとして3レベルインバ
ータ回路14を引用したが直流電圧がコンデンサによって
4分割されたような多レベルインバータでも、その直流
電源の中点をインピーダンス素子で接地しても良く、ま
たは2個の直流電源あるいは個々のコンデンサごとの直
流電源の構成としても良く、本発明ではその構成を限定
するものではない。その他本発明の要旨を変更しない範
囲において、種々設計変更を行なって実施出来るもので
ある。
Although the 3-level inverter circuit 14 is cited as the multi-level inverter, even in the multi-level inverter in which the DC voltage is divided into four by the capacitor, the midpoint of the DC power supply may be grounded by an impedance element, or 2 The configuration may be one DC power source or a DC power source for each individual capacitor, and the present invention does not limit the configuration. In addition, various design changes can be made without departing from the scope of the present invention.

【0030】[0030]

【発明の効果】以上説明のように、本発明によれば、次
の効果が得られる電力変換装置を提供することができ
る。 (1)コンデンサの静電容量を増加させなくても、その
充電電圧の脈動を軽減することができる。この結果、次
の効果が得られる。 (a)電力変換装置の大形化、高価格化を防止すること
ができる。 (b)3レベルインバータ回路の直流短絡事故などが発
生しても過大な事故電流が流れない。このため半導体ス
イッチの事故保護が容易になる。
As described above, according to the present invention, it is possible to provide a power conversion device that achieves the following effects. (1) The pulsation of the charging voltage can be reduced without increasing the capacitance of the capacitor. As a result, the following effects are obtained. (A) It is possible to prevent the power conversion device from becoming large and expensive. (B) An excessive fault current does not flow even if a DC short circuit fault occurs in the three-level inverter circuit. Therefore, accident protection of the semiconductor switch is facilitated.

【0031】(2)コンデンサの充電電圧の脈動が低減
できるから、半導体スイッチなど主回路用品の電圧定格
を必要以上に高くする必要がなくなるために、電圧利用
率が向上して、電力変換装置の高価格化を防止すること
ができる。
(2) Since the pulsation of the charging voltage of the capacitor can be reduced, it is not necessary to raise the voltage rating of the main circuit article such as the semiconductor switch more than necessary, so that the voltage utilization rate is improved and the power conversion device Higher prices can be prevented.

【0032】(3)電力変換装置の大地電圧を、従来技
術より低くするように、直流電圧の中点をインピーダン
ス素子を介して接地するため、電力変換装置内部の絶縁
距離などを小さくすることができ、電力変換装置を小形
化することができ、保守性も向上できる。 (4)差電圧検出保護回路を設けることにより、信頼性
の高い直流短絡保護など電力変換装置の保護性を大幅に
向上させることができる。 (5)電力変換装置の制御応答が速くても、充電電圧の
脈動を軽減することができるから、高性能の電力変換装
置を提供することができる。
(3) Since the ground voltage of the power converter is lower than that of the prior art, the midpoint of the DC voltage is grounded through the impedance element, so that the insulation distance inside the power converter can be reduced. Therefore, the power converter can be downsized, and the maintainability can be improved. (4) By providing the differential voltage detection protection circuit, it is possible to significantly improve the protection of the power conversion device such as highly reliable DC short circuit protection. (5) Even if the control response of the power converter is fast, the pulsation of the charging voltage can be reduced, so that a high-performance power converter can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電力変換装置の請求項1及び請求項2
に対応する実施例の構成図。
FIG. 1 is a power conversion device according to the present invention.
The block diagram of the Example corresponding to.

【図2】上記実施例の直流電源15,16に用いられる双方
向性電源として、サイリスタによる可逆コンバータを適
用する場合の一例を示す主回路構成図。
FIG. 2 is a main circuit configuration diagram showing an example in which a reversible converter using a thyristor is applied as a bidirectional power source used for the DC power sources 15 and 16 of the above embodiment.

【図3】上記実施例の直流電源15,16に用いられる双方
向性電源として、PWM制御コンバータを適用する場合
の一例を示す主回路構成図。
FIG. 3 is a main circuit configuration diagram showing an example of a case where a PWM control converter is applied as a bidirectional power source used for the DC power sources 15 and 16 of the above embodiment.

【図4】上記実施例の直流電源15,16に用いられる双方
向性電源として、サイリスタによる可逆コンバータを適
用する場合の一例を示す主回路構成図。
FIG. 4 is a main circuit configuration diagram showing an example of a case where a reversible converter using a thyristor is applied as a bidirectional power source used for the DC power sources 15 and 16 of the above embodiment.

【図5】本発明の電力変換装置の請求項3に対応する実
施例の構成図。
FIG. 5 is a configuration diagram of an embodiment corresponding to claim 3 of the power converter of the present invention.

【図6】従来の3レベルインバータを用いた電力変換装
置を示す主回路構成図。
FIG. 6 is a main circuit configuration diagram showing a power conversion device using a conventional three-level inverter.

【図7】従来の電力変換装置のコンデンサ充電電圧の脈
動例を示す波形図。
FIG. 7 is a waveform diagram showing a pulsating example of a capacitor charging voltage of a conventional power conversion device.

【符号の説明】[Explanation of symbols]

11…直流電源、 12,13…コンデンサ、
14…3レベルインバータ回路、 15,16…双方向性電源
で成る直流電源、17…インピーダンス素子、 18
…接地極、19…入力交流電源、 20 …
双方向整流回路、21…PWM制御コンバータ、 22
…入力変圧器、23…循環電流形コンバータ、 24
…差電圧検出保護回路、S1 ,S2 ,S3 ,S4 …半
導体スイッチ、P,O,N…直流入力端子、 U,
V,W…交流出力端子、im …出力電流、
d …直流電圧、Ed12 …充電電圧、
TH1 ,TH2 …サイリスタ、D1 …ダイオード、
1 …自己消弧素子、X1 ,X2 …直流
リアクトル。
11 ... DC power supply, 12, 13 ... Capacitor,
14 ... 3-level inverter circuit, 15, 16 ... DC power supply composed of bidirectional power supply, 17 ... Impedance element, 18
… Grounding electrode, 19… Input AC power supply, 20…
Bidirectional rectifier circuit, 21 ... PWM control converter, 22
… Input transformer, 23… Circulating current type converter, 24
... differential voltage detection protection circuit, S 1, S 2, S 3, S 4 ... semiconductor switches, P, O, N ... DC input terminals, U,
V, W ... AC output terminal, i m ... output current,
E d ... DC voltage, E d12 ... Charging voltage,
TH 1 , TH 2 ... Thyristor, D 1 ... Diode,
T 1 ... Self-extinguishing element, X 1 , X 2 ... DC reactor.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多レベルインバータ回路を有する電力変
換装置において、多レベルインバータ回路の直流入力端
子側の直流回路の構成のために接続される直流電源を、
前記直流回路の中点と、その正負入力端子間に双方向性
電源機能を有する直流電源をそれぞれ少なくとも1個づ
つ設けて、中点電位に対する正負直流電圧の脈動を軽減
したことを特徴とする電力変換装置。
1. A power converter having a multi-level inverter circuit, wherein a DC power supply connected for the configuration of a DC circuit on the DC input terminal side of the multi-level inverter circuit is provided.
At least one DC power supply having a bidirectional power supply function is provided between the midpoint of the DC circuit and its positive and negative input terminals to reduce the pulsation of the positive and negative DC voltage with respect to the midpoint potential. Converter.
【請求項2】 多レベルインバータ回路を有する電力変
換装置において、多レベルインバータ回路の直流入力端
子側に接続される直流電源を少なくとも2個に分割し
て、前記直流電源の中点と前記直流入力端子中点を接続
して、この接続した中点をインピーダンス素子を介して
接地することを特徴とする電力変換装置。
2. A power converter having a multi-level inverter circuit, wherein a DC power source connected to a DC input terminal side of the multi-level inverter circuit is divided into at least two, and a midpoint of the DC power source and the DC input. A power conversion device characterized in that a terminal midpoint is connected and the connected midpoint is grounded via an impedance element.
【請求項3】 多レベルインバータ回路を有する電力変
換装置において、多レベルインバータ回路の直流入力端
子側に接続されるコンデンサの充電電圧を、前記直流入
力端子の中点電位に対して、正側と負側に分けて差電圧
を検出し、差電圧が所定値以上となると保護動作を行な
う差電圧検出保護回路を有することを特徴とする電力変
換装置。
3. A power converter having a multi-level inverter circuit, wherein the charging voltage of a capacitor connected to the DC input terminal side of the multi-level inverter circuit is set to the positive side with respect to the midpoint potential of the DC input terminal. A power conversion device comprising: a differential voltage detection and protection circuit that detects a differential voltage separately on the negative side and performs a protection operation when the differential voltage exceeds a predetermined value.
JP34182692A 1992-12-22 1992-12-22 Power converter Expired - Lifetime JP3529399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34182692A JP3529399B2 (en) 1992-12-22 1992-12-22 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34182692A JP3529399B2 (en) 1992-12-22 1992-12-22 Power converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002104688A Division JP3396681B2 (en) 2002-04-08 2002-04-08 Power converter

Publications (2)

Publication Number Publication Date
JPH06197540A true JPH06197540A (en) 1994-07-15
JP3529399B2 JP3529399B2 (en) 2004-05-24

Family

ID=18349054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34182692A Expired - Lifetime JP3529399B2 (en) 1992-12-22 1992-12-22 Power converter

Country Status (1)

Country Link
JP (1) JP3529399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304475B1 (en) 1998-06-16 2001-10-16 Mitsubishi Denki Kabushiki Kaisha Switching power supply for gas laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304475B1 (en) 1998-06-16 2001-10-16 Mitsubishi Denki Kabushiki Kaisha Switching power supply for gas laser

Also Published As

Publication number Publication date
JP3529399B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
JP2954333B2 (en) AC motor variable speed system
Steinke Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter
US7269037B2 (en) Power supply with a direct converter
RU2414043C1 (en) Non-transformer frequency converter for controlled medium voltage electric drive
US5287260A (en) GTO rectifier and inverter
Chen et al. 10 kV SiC MOSFET based medium voltage power conditioning system for asynchronous microgrids
JP3226246B2 (en) High voltage self-excited converter for grid interconnection
JP3171551B2 (en) High voltage output power converter
JPH11318032A (en) Power supply system
Inaba et al. A new speed control system for DC motors using GTO converter and its application to elevators
JP3529399B2 (en) Power converter
JP3396681B2 (en) Power converter
Teichmann et al. Three-level topologies for low voltage power converters in drives, traction and utility applications
US4636932A (en) dv/dt Protection circuit device for an AC-DC converter apparatus
JP3315303B2 (en) Motor control device
KR102635793B1 (en) Integrated Static VAR Generator and Transformer for Railway Electric Power Quality Improvement
Chiba et al. DC Fault Ride-Through Control of Half-Bridge MMCs for the HVDC Grid with DC Circuit Breakers
JP6847322B1 (en) Power conversion system
JP3028694B2 (en) DC power supply
Zhuang et al. Effect of DC capacitance of a STATCON on the dynamic performance at a weak HVDC terminal
JPH06113444A (en) Protective device of self-excited converter
Shakweh et al. Multi-megawatt, medium voltage, PWM, voltage source, sine-wave-output converter for industrial drive applications
JP2016171711A (en) Power storage device
JP2022183645A (en) Power conversion device
Häfner et al. Advanced power electronics for reducing mains pollution—Active power filters and optimized utility interfaces

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

EXPY Cancellation because of completion of term