JPH06197408A - Storage battery controller for electric vehicle - Google Patents

Storage battery controller for electric vehicle

Info

Publication number
JPH06197408A
JPH06197408A JP4344225A JP34422592A JPH06197408A JP H06197408 A JPH06197408 A JP H06197408A JP 4344225 A JP4344225 A JP 4344225A JP 34422592 A JP34422592 A JP 34422592A JP H06197408 A JPH06197408 A JP H06197408A
Authority
JP
Japan
Prior art keywords
storage battery
current
time
charging
instantaneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4344225A
Other languages
Japanese (ja)
Inventor
Motoyuki Hayashida
素行 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MOTOR JIDOSHA KK
Original Assignee
MOTOR JIDOSHA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MOTOR JIDOSHA KK filed Critical MOTOR JIDOSHA KK
Priority to JP4344225A priority Critical patent/JPH06197408A/en
Publication of JPH06197408A publication Critical patent/JPH06197408A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/20DC electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To use in combination a continuous storage battery and an instantaneous storage battery. CONSTITUTION:Transistors Ca1, Ca1 are connected between a continuous storage battery 1 and a motor 3, transistors Cb1, Cb2 are connected between an instantaneous storage battery 2 and the motor 3, and the transistors Ca1, Cb1 are alternately turned ON, OFF at the time of discharging, and the transistors Ca2, Cb2 are alternately turned ON, OFF at the time of charging by a duty ratio set corresponding to required charge/discharge current flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車に使用され
る蓄電池の制御装置に関し、特に、少電流・長時間型の
持続性蓄電池と大電流・短時間型の瞬発性蓄電池を組み
合わせて電気自動車に使用する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a storage battery used in an electric vehicle, and more particularly to a combination of a low-current / long-time type persistent storage battery and a high-current / short-time type instantaneous storage battery. Related to technology used in automobiles.

【0002】[0002]

【従来の技術】近年、燃料消費節約と燃焼排気による大
気汚染、騒音問題を改善する上から、例えば誘導電動機
を原動機とする方式の電気自動車、又は内燃機関と前記
誘導電動機を複合した原動機とする方式の電気自動車が
開発されている。この電気自動車の動力源として搭載さ
れる蓄電池には、その蓄電池の充放電能力からみたと
き、その構造や極板の材質、電解液の性質などにより持
続性電池と瞬発性電池の2種類に大別される。持続性蓄
電池の代表は鉛蓄電池であり、瞬発性蓄電池の代表はニ
ッケル、カドミウム蓄電池である。
2. Description of the Related Art In recent years, in order to save fuel consumption and improve air pollution and noise problems due to combustion exhaust gas, an electric vehicle using an induction motor as a prime mover or a prime mover combining an internal combustion engine and the induction motor is used. Scheme electric vehicles have been developed. The storage battery mounted as a power source for this electric vehicle is classified into two types, a continuous battery and a flash battery, depending on the structure, the material of the electrode plate, the properties of the electrolyte, etc. Be separated. Lead storage batteries are representative of persistent storage batteries, and nickel and cadmium storage batteries are representative of instantaneous storage batteries.

【0003】持続性電池は、放電時、長時間にわたって
放電出来るが、放電電流が比較的小さく、一時に大電流
を放電することができないという特性を有し、また充電
時、概して充電電流も小さい電流で長時間行うことが要
求される小電流・長時間型の蓄電池である。これに対し
て瞬発性電池は一時に大きな電流の放電が可能な特性を
有し、また充電時にも大きな電流で急速充電が可能な大
電流・短時間型の蓄電池である。
A long-lasting battery can be discharged for a long time at the time of discharging, but has a characteristic that the discharging current is relatively small and a large current cannot be discharged at one time, and the charging current is generally small at the time of charging. It is a small current, long time type storage battery that is required to be operated for a long time with electric current. On the other hand, the instantaneous battery is a large-current / short-time type storage battery which has a characteristic that it can discharge a large current at one time and can be rapidly charged with a large current even during charging.

【0004】電気自動車に搭載する蓄電池として求めら
れる性能は、加速能力を高め登坂能力を確保することが
可能であり、かつ短時間で充電できる性能であり、この
点で電気自動車には瞬発性電池が望ましい。
The performance required as a storage battery to be mounted on an electric vehicle is that it is possible to increase the acceleration ability and ensure the climbing ability and can be charged in a short time. Is desirable.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、持続性
蓄電池は大量生産・回収方式も確立され、安価である
が、瞬発性蓄電池はニッケル、コバルト、銀などを使用
するものが多く、高価である上、安全且つ安価に回収す
る方式が確立されたとは言い難く、瞬発性蓄電池だけを
電気自動車に用いるのは難点がある。
However, although the persistent storage battery has a mass production / collection system established and is inexpensive, many instantaneous storage batteries use nickel, cobalt, silver, etc. and are expensive. However, it is hard to say that a safe and inexpensive recovery method has been established, and it is difficult to use only the instantaneous storage battery for an electric vehicle.

【0006】一方、性能面からみても、内燃機関と電動
機からなる複合原動機を搭載した電気自動車では、長距
離走行の場合、蓄電池のみに長距離走行のエネルギ供給
を依存するのではなく内燃機関を運転して電力の欠乏を
補うので、ある程度の持続性能があれば足りる。また加
速性能や登坂性能を確保するためには短時間内に大きな
電流を必要とするが、登坂や高速走行および強度の加速
など大電流を必要とする時には内燃機関も加勢すること
ができるので、大電流・短時間での充放電が可能である
という電気自動車の蓄電池に要求される性能は、かなり
緩和された条件となっている。さらに蓄電池の貯蔵電力
が欠乏してくると内燃機関の運転により走行中も蓄電池
を充電することが出来るので、短時間内に充電できると
いうことは必須の条件ではなくなっている。したがって
持続性蓄電池を電気自動車に使用することが出来ないこ
とはなく、安価な持続性蓄電池と、大電流・短時間型の
瞬発性蓄電池と、を組み合わせて使用できれば、電気自
動車に最適な動力源となる。
On the other hand, in terms of performance, in an electric vehicle equipped with a composite prime mover composed of an internal combustion engine and an electric motor, in the case of long-distance running, the internal combustion engine is not dependent on only the storage battery for supplying energy for long-distance running. It runs to make up for the lack of power, so a certain level of sustainability is sufficient. Also, in order to secure acceleration performance and climbing performance, a large current is required within a short time, but the internal combustion engine can be energized when a large current is required for climbing, high-speed running, and intense acceleration, The performance required for a storage battery of an electric vehicle, which is capable of charging / discharging with a large current and in a short time, is considerably relaxed. Furthermore, when the stored power of the storage battery becomes insufficient, the storage battery can be charged even while the internal combustion engine is running, so that charging in a short time is not an essential condition. Therefore, it is possible to use a persistent storage battery in an electric vehicle, and if an inexpensive persistent storage battery and a large-current / short-time instantaneous storage battery can be used in combination, it is an optimal power source for an electric vehicle. Becomes

【0007】本発明ではこのような従来の課題に鑑みて
なされたもので、持続性蓄電池と瞬発性蓄電池を組み合
わせて使用することが可能な電気自動車用蓄電池制御装
置を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a storage battery control device for an electric vehicle that can be used in combination with a persistent storage battery and an instantaneous storage battery. .

【0008】[0008]

【課題を解決するための手段】このため本発明は、充放
電電流量が小さく長時間にわたって充放電される持続性
蓄電池と、一時に大きな電流量で充放電が可能な瞬発性
蓄電池と、を夫々充電回路及び放電回路を介して共通の
発電源及び負荷に接続する一方、前記持続性蓄電池また
は瞬発性蓄電池の要求充放電電流量を検出する電流検出
手段と、該要求充放電電流量が小さい時には前記持続性
蓄電池の電流分担割合が大きくなるように制御し、要求
充放電電流量が大きい時には瞬発性蓄電池の電流分担割
合が大きくなるように制御する制御手段と、を備えるよ
うにした。
Therefore, the present invention provides a persistent storage battery that has a small charge / discharge current amount and is charged / discharged for a long time, and an instantaneous storage battery that can be charged / discharged with a large current amount at a time. While connected to a common power generation source and load via a charging circuit and a discharging circuit, respectively, a current detection means for detecting a required charging / discharging current amount of the persistent storage battery or the instantaneous storage battery, and the required charging / discharging current amount is small. A control means is provided so that the current sharing ratio of the persistent storage battery is increased at times, and the current sharing ratio of the instantaneous storage battery is increased when the required charge / discharge current amount is large.

【0009】また、前記各蓄電池の充電回路、放電回路
に夫々スイッチ手段を介装し、前記制御手段は、前記各
蓄電池用のスイッチ手段のいずれか一方がオンとなるよ
うに切り換え、且つ要求充放電電流量に応じて各スイッ
チ手段のオン時間の時間割合を可変制御することにより
電流分担割合を制御するように構成した。
Further, a switch means is provided in each of the charging circuit and the discharging circuit of each of the storage batteries, and the control means is switched so that one of the switch means for each of the storage batteries is turned on, and the demand is satisfied. The current sharing ratio is controlled by variably controlling the time ratio of the ON time of each switch according to the discharge current amount.

【0010】[0010]

【作用】上記の構成によれば、充放電時、持続性蓄電池
または瞬発性蓄電池の要求充放電電流量は電流検出手段
により検出され、持続性蓄電池と瞬発性蓄電池の電流分
担割合はこの要求充放電電流量に基づいて制御手段によ
り制御される。即ち、要求充放電電流量が小さい時には
前記持続性蓄電池の電流分担割合が大きくなるように制
御し、要求充放電電流量が大きい時には瞬発性蓄電池の
電流分担割合が大きくなるように制御することにより、
両蓄電池を組み合わせて電気自動車に搭載することが可
能となる。
According to the above construction, the required charge / discharge current amount of the persistent storage battery or the instantaneous storage battery is detected by the current detecting means at the time of charging / discharging, and the current sharing ratio of the persistent storage battery and the instantaneous storage battery is the required charging / discharging ratio. It is controlled by the control means based on the discharge current amount. That is, when the required charge / discharge current amount is small, the current sharing ratio of the persistent storage battery is controlled to be large, and when the required charge / discharge current amount is large, the current sharing ratio of the instantaneous storage battery is controlled to be large. ,
Both storage batteries can be combined and installed in an electric vehicle.

【0011】また制御手段により、要求充放電電流量に
応じて各蓄電池用のスイッチ手段のいずれか一方がオン
となるように制御することにより時間割合を可変して電
流分担割合をうまく調整することが可能となる。
Further, the control means controls one of the switch means for each storage battery to be turned on in accordance with the required charge / discharge current amount, thereby varying the time ratio and adjusting the current sharing ratio well. Is possible.

【0012】[0012]

【実施例】以下、本発明の一実施例を図1〜4に基づい
て説明する。図1は本実施例の電気自動車用蓄電池制御
装置を示し、このシステムは例えば複合原動機方式の電
気自動車に備えられる。図1において、持続性蓄電池1
は、放電時、比較的小さい電流量で長時間にわたって放
電され、充電時、概して小さい電流量で長時間、充電す
ることが要求される少電流・長時間型の蓄電池であり、
例えば鉛蓄電池等が使用される。また、瞬発性蓄電池2
は、一時に大きな電流量の放電が可能な特性を有し、ま
た充電時にも大きな電流量で急速充電が可能な大電流・
短時間型の蓄電池であり、例えばニッケル・カドミウム
蓄電池等が使用される。電動機3は負荷にも発電源にも
なりうる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a storage battery control device for an electric vehicle of this embodiment, and this system is provided in, for example, an electric vehicle of a combined prime mover system. In FIG. 1, a persistent storage battery 1
Is a low-current / long-time type storage battery that is required to be discharged for a long time with a relatively small current amount during discharging, and is generally required to be charged for a long time with a small current amount during charging.
For example, a lead storage battery is used. Also, the instantaneous storage battery 2
Has the characteristic of being able to discharge a large amount of current at one time, and it is also capable of performing rapid charging with a large amount of current during charging.
It is a short-time storage battery, and for example, a nickel-cadmium storage battery or the like is used. The electric motor 3 can be both a load and a power source.

【0013】持続性蓄電池1と電動機3との間の放電回
路は、持続性蓄電池1から順次、逆流防止用ダイオード
Da1とPNPトランジスタCa1、電流検出手段とし
ての電流センサ4が接続することによって構成され、充
電回路は、電動機3から順次、電流センサ4、PNPト
ランジスタCa2、逆流防止用ダイオードDa2が接続
することによって構成されている。
The discharge circuit between the persistent storage battery 1 and the electric motor 3 is constructed by connecting the backflow prevention diode Da1, the PNP transistor Ca1 and the current sensor 4 as current detecting means in this order from the persistent storage battery 1. The charging circuit is configured by sequentially connecting the current sensor 4, the PNP transistor Ca2, and the backflow prevention diode Da2 from the electric motor 3.

【0014】同様にして瞬発性蓄電池2と電動機3との
間の放電回路は、瞬発性蓄電池2から順次、逆流防止用
ダイオードDb1とPNPトランジスタCb1、電流セ
ンサ4が接続することによって構成され、充電回路は、
電動機3から順次、電流センサ4、PNPトランジスタ
Cb2、逆流防止用ダイオードDb2が接続することに
よって構成されている。尚、トランジスタCa1、Ca
2、Cb1、Cb2には高速スイッチング素子が用いら
れ、電流センサ4には充放電電流量が検出可能であるだ
けでなく、充放電が判別可能なように電流方向も検出可
能なものが用いられる。
Similarly, the discharge circuit between the instantaneous storage battery 2 and the electric motor 3 is constructed by connecting the reverse current prevention diode Db1, the PNP transistor Cb1, and the current sensor 4 in order from the instantaneous storage battery 2 to charge the battery. The circuit is
A current sensor 4, a PNP transistor Cb2, and a backflow prevention diode Db2 are sequentially connected from the electric motor 3. The transistors Ca1 and Ca
2, Cb1 and Cb2 are fast switching elements, and the current sensor 4 is not only capable of detecting the amount of charge / discharge current but also capable of detecting the current direction so that charge / discharge can be discriminated. .

【0015】尚、トランジスタCa1、Ca2、Cb
1、Cb2がスイッチ手段に相当する。制御手段として
の電源制御装置5は、A/D変換器6、不揮発メモリ
7、及びマイクロコンピュータ8が備えられ、各トラン
ジスタのベースに接続している。また電源制御装置5に
は、並設された電気自動車の総合制御装置から、総合制
御装置の活性化完了を意味する信号であるStart-acknow
legde (以後St-aknと略記する) 信号が送信され、電源
制御装置5はこのSt-akn信号を受信してから制御を開始
する。St-akn信号受信前は総合制御装置に使用している
半導体素子の種類によっては活性化以前に給電すると破
損することがあるので、トランジスタCa1、Ca2、
Cb1、Cb2がすべて電流を遮断する状態に保ってお
く。また電流センサ4により検出される消費電流値が要
求充放電電流値として電源制御装置5のA/D変換器6
に入力される。A/D変換器6は入力されたこの充放電
電流値をディジタル化する。不揮発メモリ7には、電動
機3の要求充放電電流値に対応した各トランジスタに対
するオン時間の時間割合が、瞬発性蓄電池2のオン時間
のデューティ比(図4)として予め設定されて記憶され
ている。マイクロコンピュータ8には要求充放電電流値
に基づいて各トランジスタを制御するソフトウェアが内
蔵されている。
The transistors Ca1, Ca2, Cb
1, Cb2 correspond to the switch means. The power supply control device 5 as a control means includes an A / D converter 6, a non-volatile memory 7, and a microcomputer 8, and is connected to the bases of the respective transistors. In addition, the power supply control device 5 receives a Start-acknowledge signal from the integrated control devices of the electric vehicles arranged in parallel, which is a signal indicating completion of activation of the integrated control devices.
A legde (hereinafter abbreviated as St-akn) signal is transmitted, and the power supply control device 5 starts control after receiving this St-akn signal. Before receiving the St-akn signal, depending on the type of semiconductor device used in the integrated control device, it may be damaged if power is supplied before activation. Therefore, the transistors Ca1, Ca2,
All of Cb1 and Cb2 are kept in a state of cutting off the current. Further, the consumption current value detected by the current sensor 4 is used as the required charging / discharging current value and the A / D converter 6 of the power supply controller 5
Entered in. The A / D converter 6 digitizes the input charge / discharge current value. In the non-volatile memory 7, the time ratio of the on time for each transistor corresponding to the required charge / discharge current value of the electric motor 3 is preset and stored as the duty ratio (FIG. 4) of the on time of the instantaneous storage battery 2. . The microcomputer 8 contains software that controls each transistor based on the required charging / discharging current value.

【0016】次に電源制御装置5の処理を図2のフロー
チャートに基づいて説明する。ステップ(図中では
「S」と記してあり、以下同様とする)1では、総合制
御装置又はスタートスイッチ等からのSt-akn信号を受信
するまで待機する。前述のようにSt-akn信号の受信前
は、各トランジスタCa1、Ca2、Cb1、Cb2は
すべて電流を遮断する状態に保たれている。St-akn信号
を受信するとステップ2に進む。
Next, the processing of the power supply controller 5 will be described with reference to the flowchart of FIG. In step (denoted as "S" in the drawing, the same applies hereinafter) 1, the process waits until the St-akn signal is received from the integrated control device, the start switch, or the like. As described above, before receiving the St-akn signal, each of the transistors Ca1, Ca2, Cb1 and Cb2 is kept in a state of cutting off the current. When the St-akn signal is received, the process proceeds to step 2.

【0017】ステップ2では、作動チャートである図3
(B)に示すように、トランジスタCa1、Cb1のい
ずれか又は双方のベースにオン信号を出力してトランジ
スタCa1、Cb1の双方を遮断状態から導通状態に変
化させ、小電流モードで充放電を行う。これにより通電
方向の判別が可能となる。ステップ3では、電流センサ
4により検出された充電電流又は放電電流値を入力し、
これをA/D変換器6でディジタル化した電流検出信号
に基づいて、持続性蓄電池1が充電状態であるのか放電
状態であるのかを判別する。電動機3が負荷回路となっ
ていれば、持続性蓄電池1は放電して通電方向は電動機
3方向となり、電動機3が発電回路となっていれば、持
続性蓄電池1は充電されて通電方向は持続性蓄電池1方
向となっている。
Step 2 is an operation chart shown in FIG.
As shown in (B), an ON signal is output to the base of either or both of the transistors Ca1 and Cb1 to change both of the transistors Ca1 and Cb1 from the cut-off state to the conduction state, and charge and discharge are performed in the small current mode. . This makes it possible to determine the energizing direction. In step 3, the charge current or discharge current value detected by the current sensor 4 is input,
Based on the current detection signal digitized by the A / D converter 6, it is determined whether the persistent storage battery 1 is in the charging state or the discharging state. If the electric motor 3 is a load circuit, the persistent storage battery 1 is discharged and the energizing direction is the electric motor 3 direction. If the electric motor 3 is a power generating circuit, the persistent storage battery 1 is charged and the energizing direction is continuous. It is one direction of the sex storage battery.

【0018】ステップ2から始めにステップ3に進む始
動時は、当然放電状態であり、放電状態の時は、ステッ
プ4以降に進む。ステップ4では、電流センサ4から要
求放電電流値を入力する。ステップ5では、不揮発メモ
リ7に記憶されている図4のグラフを参照して要求放電
電流値に基づいた各トランジスタCa1、Cb1の導通
期間、つまりオン時間割合を決定する。ここで、瞬発性
蓄電池2側のトランジスタCb1のオン時間割合を大き
く(小さく)することで充放電電流量を大きく(小さ
く)することにより制御できる。尚、スイッチング動作
のタイミングは、出力電流を平滑化して良好な結果を得
る為に、トランジスタCa1、Cb1の一方がオンして
いる時にもう一方がオフするような連続給電方式とす
る。また電流センサ4が持続性蓄電池1及び瞬発性蓄電
池2のバンク毎に設置されている時には不揮発メモリ7
には夫々の充放電電流の許容値を記憶しておき、夫々の
センサからの信号をこの充放電電流の許容値と対比して
演算する。
When starting from step 2 to step 3, the vehicle is naturally in the discharged state, and when it is in the discharged state, the procedure proceeds to step 4 and thereafter. In step 4, the required discharge current value is input from the current sensor 4. In step 5, with reference to the graph of FIG. 4 stored in the non-volatile memory 7, the conduction period of each of the transistors Ca1 and Cb1 based on the required discharge current value, that is, the on-time ratio is determined. Here, it can be controlled by increasing (decreasing) the on-time ratio of the transistor Cb1 on the side of the instantaneous storage battery 2 to increase (decrease) the amount of charge / discharge current. The timing of the switching operation is a continuous power feeding method in which one of the transistors Ca1 and Cb1 is turned on while the other is turned off in order to smooth the output current and obtain a good result. Further, when the current sensor 4 is installed for each bank of the persistent storage battery 1 and the instantaneous storage battery 2, the nonvolatile memory 7
The respective allowable values of the charging / discharging currents are stored in, and the signals from the respective sensors are compared with the allowable values of the charging / discharging currents for calculation.

【0019】例えば極長距離走行では、持続性蓄電池1
又は瞬発性蓄電池2のみに長距離走行のエネルギ供給を
依存するのではなく、内燃機関を運転して電力の欠乏を
補うので、そこそこの持続性性能があれば足り、要求放
電電流量は小さい。その場合には、持続性蓄電池1側の
トランジスタCa1、のオン期間を長く、瞬発性蓄電池
2側のトランジスタCb1のオン期間を短くする。具体
的には、図3(B)の小電流モードで示すように、例え
ば高速スイッチング素子の性能を考慮して決定した1サ
イクルのクロック数を仮に100 として、トランジスタC
a1、Cb1の導通期間を夫々80、20クロックとする。
尚、さらに小電流の時は極小電流モード(A)にしてト
ランジスタCa1を導通させ、トランジスタCb1を遮
断状態に保つようにしてもよい。
For example, when traveling for an extremely long distance, the persistent storage battery 1
Alternatively, rather than relying only on the instantaneous storage battery 2 to supply energy for long-distance traveling, the internal combustion engine is operated to compensate for the lack of electric power, so a sufficient sustainability is sufficient, and the required discharge current amount is small. In that case, the on period of the transistor Ca1 on the side of the persistent storage battery 1 is lengthened, and the on period of the transistor Cb1 on the side of the instantaneous storage battery 2 is shortened. Specifically, as shown in the small current mode of FIG. 3B, for example, assuming that the number of clocks in one cycle determined in consideration of the performance of the high speed switching element is 100, the transistor C
The conduction periods of a1 and Cb1 are 80 and 20 clocks, respectively.
It should be noted that, when the current is still smaller, the minimum current mode (A) may be set to make the transistor Ca1 conductive and keep the transistor Cb1 in the cutoff state.

【0020】また例えば登坂時、加速時では、中〜比較
的大きい電流を必要とし、トランジスタCa1、Cb1
のクロック期間を略拮抗させる状況、例えば図3(C)
に示すように、デューティ比が50クロックになるように
制御する。また導通させるクロック期間は放電電流によ
り即座に演算判別されて持続性蓄電池1の放電限界及瞬
発性蓄電池2の放電限界を越えないように調節される。
Further, for example, when climbing or accelerating, a medium to relatively large current is required, and the transistors Ca1 and Cb1 are required.
Situation in which the clock periods of the above are substantially equalized, for example, FIG. 3 (C)
As shown in, the duty ratio is controlled to be 50 clocks. Further, the clock period for conduction is adjusted by the discharge current so that the discharge limit of the persistent storage battery 1 and the discharge limit of the instantaneous storage battery 2 are not exceeded.

【0021】さらに放電電流が大電流となる時には、図
3(D)の大電流モードに示すように、正常な運転限度
までは瞬発性蓄電池2側のトランジスタCb1の導通ク
ロック数を大きく、持続性蓄電池1のトランジスタCa
1の導通クロック数を小さく制御する。この場合におい
ても夫々の放電限界電流を越えないように制御しなが
ら、電流が大きくなるにつれて瞬発性蓄電池2の分担を
大きくするように制御する。
Further, when the discharge current becomes a large current, as shown in the large current mode of FIG. 3D, the number of conduction clocks of the transistor Cb1 on the side of the instantaneous storage battery 2 is large and the sustainability is high until the normal operating limit. Transistor Ca of storage battery 1
The number of conduction clocks of 1 is controlled to be small. Even in this case, while controlling so as not to exceed the respective discharge limit currents, control is performed so that the share of the instantaneous storage battery 2 increases as the currents increase.

【0022】但し、蓄電池の特性としてあまり推奨され
る使用方法ではないが、例えば電気自動車において「追
越し」とか「高速道路への合流」等を行う場合、数秒か
ら数十秒の期間、特別な大電流を必要とすることがあ
る。また例えば内燃機関を搭載して通常の自動車の場
合、エンジンを始動する時のセルモータに通電する時、
その要求通電量は瞬発性蓄電池2の許容放電電流をはる
かに越えてしまう。このような場合、通常の放電限界電
流を越えて放電する必要があるが、普通、その時間は短
い。したがって短時間であれば、使用頻度と使用時間が
瞬発性蓄電池2の耐久性にあまり悪い影響を与えない範
囲で、緊急避難的にトランジスタCb1だけを導通させ
ることを許容するようする。さらに例えば図3(E)の
極大電流モードに示すように、持続性蓄電池1と瞬発性
蓄電池2をオーバーラップさせて、あるいは両者を連続
的に使用するようにしてもよい。
However, although it is not a recommended usage as a characteristic of the storage battery, for example, when performing "overtaking" or "merging on an expressway" in an electric vehicle, a special large period is required for several seconds to several tens of seconds. May require current. Also, for example, in the case of an ordinary automobile equipped with an internal combustion engine, when energizing the starter motor when starting the engine,
The required energization amount far exceeds the allowable discharge current of the instantaneous storage battery 2. In such a case, it is necessary to discharge beyond the normal discharge limit current, but the time is usually short. Therefore, for a short time, the transistor Cb1 is allowed to conduct only in an emergency evacuation within a range in which the use frequency and the use time do not adversely affect the durability of the instantaneous storage battery 2. Further, for example, as shown in the maximum current mode of FIG. 3 (E), the persistent storage battery 1 and the instantaneous storage battery 2 may be overlapped, or both may be continuously used.

【0023】ステップ6では、上記のようにして設定さ
れたオン時間のデューティ比に基づいてトランジスタC
a1、Cb1をオン・オフ制御する。次に制動時に電動
機3が発電機として機能する時は、ステップ3で充電状
態であると判別されてステップ7に進み、放電時と同様
に電流センサ4からの要求充電電流値を入力し、ステッ
プ8で要求充電電流値に基づいた各トランジスタCa
2、Cb2の導通期間を決定する。充電時も放電時と同
様に連続充電方式とし、電流センサ4が持続性蓄電池1
及び瞬発性蓄電池2のバンク毎に設置されている時には
充放電電流の許容値と対比して演算し、この許容値を越
えないようにする。そしてステップ9でトランジスタC
a2、Cb2をオン・オフ制御する。
In step 6, the transistor C is set based on the duty ratio of the ON time set as described above.
ON / OFF control of a1 and Cb1. Next, when the electric motor 3 functions as a generator during braking, it is determined in step 3 that the battery is in a charged state, the process proceeds to step 7, and the required charging current value from the current sensor 4 is input in the same manner as during discharging, Each transistor Ca based on the required charging current value in 8
2. Determine the conduction period of Cb2. The continuous charging method is used for charging as well as discharging, and the current sensor 4 is used for the persistent storage battery 1.
When the flash storage battery 2 is installed in each bank, the charge / discharge current is calculated in comparison with the allowable value so that the allowable value is not exceeded. Then, in step 9, the transistor C
ON / OFF control of a2 and Cb2.

【0024】St-akn信号が停止した時には、ステップ10
でSt-akn信号の停止が検知されてこのルーチンを終了す
る。かかる構成によれば、持続性蓄電池1と瞬発性蓄電
池2のデューティ比を要求充放電電流値に基づいて設定
し、このデューティ比に基づいてトランジスタCa1、
Ca2、Cb1、Cb2をオン・オフ制御するので、蓄
電池の性能に最適な充放電電流量とすることが出来、ま
たこのように組み合わせて使用することにより、大電流
を必要とする高速走行性、加速性、登坂性能等について
も良好であり、極長距離走行においても充分な持続性能
が得られ、また大電流で急速充電も可能であり、性能、
コスト等、総合的に将来の電気自動車にふさわしい電源
システムとすることが出来る。
When the St-akn signal is stopped, step 10
Then, the stop of the St-akn signal is detected, and this routine ends. According to this configuration, the duty ratio of the persistent storage battery 1 and the instantaneous storage battery 2 is set based on the required charge / discharge current value, and the transistor Ca1,
Since Ca2, Cb1, and Cb2 are controlled to be turned on / off, the charge / discharge current amount can be optimized for the performance of the storage battery, and by using such a combination, high-speed running performance that requires a large current, It has good acceleration performance, climbing performance, etc., sufficient sustainability can be obtained even during extremely long distance runs, and quick charging with a large current is also possible.
It is possible to make a power supply system suitable for future electric vehicles in terms of cost, etc.

【0025】そしてこのシステムは、内燃機関と電動機
を備える複合原動機型の電気自動車にも適用できる。そ
の場合、蓄電池の充電は別途設けられた発電回路から制
動時以外に充電させることもできる。その他のシステム
としては、電動機のみを備える電気自動車にも、また、
電動フォークリフトや、その他の蓄電池を動力源とする
機器にも有効である。
This system can also be applied to a hybrid prime mover type electric vehicle equipped with an internal combustion engine and an electric motor. In that case, the storage battery can be charged from a separately provided power generation circuit other than during braking. Other systems include electric vehicles with electric motors only,
It is also effective for electric forklifts and other devices that use a storage battery as a power source.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、電
流検出手段により検出された要求充放電電流量に応じて
持続性蓄電池と瞬発性蓄電池の電流分担割合を制御する
ことにより、両蓄電池を組み合わせて各蓄電池に最適な
充放電電流量で充放電することが出来る。また両蓄電池
を組み合わせて使用することにより、大電流を必要とす
る高速走行性、加速性、登坂性能等も良好であり、極長
距離走行においても充分な持続性能が得られ、また大電
流で急速充電も可能であり、電気自動車にふさわしい電
源システムとすることが出来る。
As described above, according to the present invention, both storage batteries are controlled by controlling the current sharing ratio of the persistent storage battery and the instantaneous storage battery according to the required charge / discharge current amount detected by the current detection means. Can be combined with each other to charge and discharge with an optimum amount of charge and discharge current for each storage battery. In addition, by using both storage batteries in combination, the high current running performance, acceleration performance, and climbing performance that require a large current are good, and sufficient sustainability can be obtained even at extremely long distances. Rapid charging is also possible, making it a power supply system suitable for electric vehicles.

【0027】また各蓄電池の充電回路、放電回路に介装
されたスイッチ手段のいずれか一方がオンとなるように
切り換え、オン時間の時間割合を可変とすることによ
り、電流分担割合をうまく調節することが出来る。
Further, by switching one of the switch means interposed in the charging circuit and the discharging circuit of each storage battery to be turned on and making the time ratio of the on time variable, the current sharing ratio is adjusted well. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】図1の動作を示すフローチャート。FIG. 2 is a flowchart showing the operation of FIG.

【図3】図1の高速スイッチング素子の作動チャート。FIG. 3 is an operation chart of the high speed switching element of FIG.

【図4】図1の不揮発メモリに記憶されている関係図。FIG. 4 is a relational diagram stored in the nonvolatile memory of FIG. 1.

【符号の説明】[Explanation of symbols]

1 持続性蓄電池 2 瞬発性蓄電池 3 電動機 4 電流センサ 5 電源制御装置 6 A/D変換器 7 不揮発メモリ 8 マイクロコンピュータ 1 Sustainable storage battery 2 Instantaneous storage battery 3 Electric motor 4 Current sensor 5 Power supply control device 6 A / D converter 7 Non-volatile memory 8 Micro computer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】充放電電流量が小さく長時間にわたって充
放電される持続性蓄電池と、一時に大きな電流量で充放
電が可能な瞬発性蓄電池と、を夫々充電回路及び放電回
路を介して共通の発電源及び負荷に接続する一方、 前記持続性蓄電池または瞬発性蓄電池の要求充放電電流
量を検出する電流検出手段と、 該要求充放電電流量が小さい時には前記持続性蓄電池の
電流分担割合が大きくなるように制御し、要求充放電電
流量が大きい時には瞬発性蓄電池の電流分担割合が大き
くなるように制御する制御手段と、 を備えたことを特徴とする電気自動車用蓄電池制御装
置。
1. A continuous storage battery, which has a small amount of charge / discharge current and is charged / discharged for a long time, and an instantaneous storage battery, which can be charged / discharged with a large amount of current at one time, are commonly provided via a charging circuit and a discharging circuit, respectively. Current detecting means for detecting the required charging / discharging current amount of the persistent storage battery or the instantaneous storage battery while being connected to the power generation source and the load, and the current sharing ratio of the persistent storage battery when the required charging / discharging current amount is small. A storage battery control device for an electric vehicle, comprising: a control unit that controls to increase, and a control unit that controls to increase the current sharing ratio of the instantaneous storage battery when the required charging / discharging current amount is large.
【請求項2】前記各蓄電池の充電回路、放電回路に夫々
スイッチ手段を介装し、前記制御手段は、前記各蓄電池
用のスイッチ手段のいずれか一方がオンとなるように切
り換え、且つ要求充放電電流量に応じて各スイッチ手段
のオン時間の時間割合を可変制御することにより電流分
担割合を制御することを特徴とする請求項1に記載の電
気自動車用蓄電池制御装置。
2. A charging circuit and a discharging circuit of each of the storage batteries are respectively provided with switch means, and the control means is switched so that one of the switch means for each of the storage batteries is turned on, and the required charge is satisfied. 2. The storage battery control device for an electric vehicle according to claim 1, wherein the current sharing ratio is controlled by variably controlling the time ratio of the ON time of each switch according to the discharge current amount.
JP4344225A 1992-12-24 1992-12-24 Storage battery controller for electric vehicle Pending JPH06197408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4344225A JPH06197408A (en) 1992-12-24 1992-12-24 Storage battery controller for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4344225A JPH06197408A (en) 1992-12-24 1992-12-24 Storage battery controller for electric vehicle

Publications (1)

Publication Number Publication Date
JPH06197408A true JPH06197408A (en) 1994-07-15

Family

ID=18367601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4344225A Pending JPH06197408A (en) 1992-12-24 1992-12-24 Storage battery controller for electric vehicle

Country Status (1)

Country Link
JP (1) JPH06197408A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037901A (en) * 2001-07-25 2003-02-07 Toyota Motor Corp Regenerative control device for vehicle
JP2007049792A (en) * 2005-08-08 2007-02-22 Toyota Motor Corp Power supply for vehicle
JP2010057291A (en) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd Power supply for vehicle
CN102227857A (en) * 2008-11-26 2011-10-26 山特维克矿山工程机械有限公司 Method for using mining vehicle, arrangement in mine, rock drilling rig, and mining vehicle
CN102564426A (en) * 2010-10-28 2012-07-11 Smk株式会社 Information providing device, information providing server, vehicle support system, navigation device
JP2012206562A (en) * 2011-03-29 2012-10-25 Pacific Ind Co Ltd Tire sensor unit
JPWO2012165340A1 (en) * 2011-06-01 2015-02-23 株式会社日立製作所 Power storage system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037901A (en) * 2001-07-25 2003-02-07 Toyota Motor Corp Regenerative control device for vehicle
JP4742462B2 (en) * 2001-07-25 2011-08-10 トヨタ自動車株式会社 Vehicle regeneration control device
JP2007049792A (en) * 2005-08-08 2007-02-22 Toyota Motor Corp Power supply for vehicle
JP2010057291A (en) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd Power supply for vehicle
CN102227857A (en) * 2008-11-26 2011-10-26 山特维克矿山工程机械有限公司 Method for using mining vehicle, arrangement in mine, rock drilling rig, and mining vehicle
JP2012510014A (en) * 2008-11-26 2012-04-26 サンドビク マイニング アンド コンストラクション オサケ ユキチュア Mining vehicle usage, mine equipment, rock rig and mining vehicle
US8660760B2 (en) 2008-11-26 2014-02-25 Sandvik Mining And Construction Oy Method for using mining vehicle, arrangement in mine, rock drilling rig, and mining vehicle
EP3534486A1 (en) * 2008-11-26 2019-09-04 Sandvik Mining and Construction Oy Method for using mining vehicle, arrangement in mine, rock drilling rig, and mining vehicle
CN102564426A (en) * 2010-10-28 2012-07-11 Smk株式会社 Information providing device, information providing server, vehicle support system, navigation device
CN102564426B (en) * 2010-10-28 2015-11-25 Smk株式会社 Information provider unit and server, vehicle assistance system, guider
JP2012206562A (en) * 2011-03-29 2012-10-25 Pacific Ind Co Ltd Tire sensor unit
JPWO2012165340A1 (en) * 2011-06-01 2015-02-23 株式会社日立製作所 Power storage system

Similar Documents

Publication Publication Date Title
US9018894B2 (en) Vehicular power supply system
JP6384412B2 (en) Power supply
JP4553019B2 (en) Automotive power supply
JP3655277B2 (en) Electric motor power management system
US6932175B2 (en) Control apparatus for hybrid vehicle
CN108475829B (en) Lithium ion battery charging and discharging control device
US10259340B1 (en) Inverter control using randomized pulse width modulation
JP6056965B2 (en) Vehicle control apparatus and control method
JP2004023803A (en) Voltage controller for battery pack
JPH10309002A (en) Energy regenerative device for hybrid car
CN104340212A (en) Vehicle and vehicle control method
KR101876091B1 (en) System and Method for determining Regen Mode
JP2004306844A (en) Power supply system for vehicle
JPH06197408A (en) Storage battery controller for electric vehicle
US7098556B2 (en) Control system of regeneration system and control method thereof
US11279339B2 (en) Control system for hybrid vehicle
JP2001292533A (en) Battery management device for electric vehicle
JP2006341708A (en) Controller for hybrid vehicle
JP5867312B2 (en) Vehicle control system
JP6079725B2 (en) Vehicle power supply control device
RU2735702C2 (en) Vehicle and method of driving vehicle control
JP5067040B2 (en) Control device for hybrid vehicle
JPH07123512A (en) Automobile with auxiliary motor function
JPH0974611A (en) Charge control device
JP2591669Y2 (en) Control device for vehicle generator