JPH06196653A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH06196653A
JPH06196653A JP4343670A JP34367092A JPH06196653A JP H06196653 A JPH06196653 A JP H06196653A JP 4343670 A JP4343670 A JP 4343670A JP 34367092 A JP34367092 A JP 34367092A JP H06196653 A JPH06196653 A JP H06196653A
Authority
JP
Japan
Prior art keywords
film
groove
capacitor
oxide film
upper edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4343670A
Other languages
Japanese (ja)
Inventor
Atsushi Ishigami
敦士 石上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4343670A priority Critical patent/JPH06196653A/en
Publication of JPH06196653A publication Critical patent/JPH06196653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide an oxidation-resistant film near the upper edge part of a capacitor trench so as to have a capacitor electrode and a capacitor oxide film separated from each other. CONSTITUTION:An N<+>-type impurity layer 14 which is the one side capacitor electrode is formed on the surface of a P-type silicon substrate 11 in a trench 13 formed in the substrate 11 and a capacitor oxide film 16 is formed on the inner wall of the impurity layer 14. The trench 13 is filled with a polycrystalline silicon film 17 which is the other side capacitor electrode. A silicon nitride film 27 which is oxidation-resistant is formed on the surface of the polycrystalline silicon film 17 and near the upper edge part 13a of the trench 13 and the rest of the part of the polycrystalline silicon film 17 is covered with a silicon oxide film 25. A gate electrode 20 is formed on the substrate 11 and near the upper edge part 13a of the trench 13 with a gate oxide film 21 therebetween. An N<+>-type impurity layer 18 which is a drain region is formed and an aluminum wiring (bit line) 24 which is formed on an interlayer insulating film 22 is connected to the N<+>-type impurity layer 18 through a contact hole 23 formed in the interlayer insulating film 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は特に溝型のキャパシタ
電極を構成する半導体記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device having a groove type capacitor electrode.

【0002】[0002]

【従来の技術】ダイナミックRAMのメモリセルの高集
積化に伴い、メモリセルの構成要素であるキャパシタも
微細化されているが、キャパシタ容量はソフトエラー防
止、及びセンスアンプのセンスのためのS/N比確保の
ため数十fFの値が必要である。このため、この微細化
に対応するため、従来半導体基板に溝を形成したキャパ
シタを形成することにより、その容量を増加させたメモ
リセルがある。
2. Description of the Related Art As a memory cell of a dynamic RAM has been highly integrated, a capacitor which is a constituent element of the memory cell has been miniaturized. However, the capacitor capacity is S / S for soft error prevention and sense amplifier sensing. A value of several tens of fF is necessary to secure the N ratio. Therefore, in order to cope with this miniaturization, there is a memory cell in which the capacitance is increased by forming a capacitor having a groove formed in a conventional semiconductor substrate.

【0003】図4は従来の溝型のキャパシタ電極を有す
るメモリセルの構成を示す断面図である。P型シリコン
基板11に素子分離のためのフィールド酸化膜12が形成さ
れ、リソグラフィ工程により溝13が開孔され、この溝13
の表面にイオン注入法によってN+ 型不純物層14が形成
される。次のリソグラフィ工程でN+ 型不純物層15が形
成され、その後、N+ 層14,15にはキャパシタ酸化膜16
が形成される。
FIG. 4 is a sectional view showing the structure of a conventional memory cell having a groove type capacitor electrode. A field oxide film 12 for element isolation is formed on a P-type silicon substrate 11, and a groove 13 is opened by a lithography process.
N + by ion implantation on the surface of The type impurity layer 14 is formed. N + in the next lithography process Type impurity layer 15 is formed, and then N + Capacitor oxide film 16 on layers 14 and 15
Is formed.

【0004】さらにキャパシタ酸化膜16、フィールド酸
化膜12上には一定電圧が印加される多結晶シリコン膜17
でなるキャパシタ電極が形成され、その側方にはN+
不純物層14と電気的に接触するソース領域のN+ 型不純
物層19、そしてゲート酸化膜21を介したゲート電極20を
隔てた側の基板表面にドレイン領域のN+ 型不純物層18
が形成される。
Further, a polycrystalline silicon film 17 to which a constant voltage is applied is formed on the capacitor oxide film 16 and the field oxide film 12.
Capacitor electrodes made of is formed, on its side N + Of the source region N + which is in electrical contact with the type impurity layer 14 N + of the drain region is formed on the surface of the substrate on the side of the gate electrode 20 with the gate impurity film 19 and the gate oxide film 21 interposed therebetween. Type impurity layer 18
Is formed.

【0005】このように1つのスイッチングトランジス
タ及び1つのキャパシタから構成されるメモリセルは、
スイッチングトランジスタを制御してキャパシタへの情
報の書き込み及び読み出しが行われる。
As described above, the memory cell composed of one switching transistor and one capacitor is
Information is written to and read from the capacitor by controlling the switching transistor.

【0006】しかしながら、このような構成では、溝上
縁部13aからソース領域方向に延在されるキャパシタ電
極の幅W1 は、その合わせずれを考慮して0.5μm程
度必要であり、また、ソース領域の幅W2 はN+ 層15と
ゲート電極20との合わせずれを考慮し1.0μm程度必
要であるため、ゲート電極20と溝上縁部13aの間には
1.5μm程度の余裕が必要である。これはメモリセル
の微細化の妨げとなり好ましくない。
However, in such a structure, the width W1 of the capacitor electrode extending from the groove upper edge portion 13a in the source region direction needs to be about 0.5 μm in consideration of the misalignment, and the source region is also required. Width W2 is N + Considering the misalignment between the layer 15 and the gate electrode 20, about 1.0 μm is required, so that a margin of about 1.5 μm is required between the gate electrode 20 and the groove upper edge portion 13a. This hinders miniaturization of the memory cell and is not preferable.

【0007】図5は図4の構成を微細化の面で改善した
従来の溝型のキャパシタ電極を有するメモリセルの構成
を示す断面図である。図4と相違する点はキャパシタ電
極を基板上には延ばさずに、ゲート電極20を溝上縁部13
aの近傍まで近付けた構成になっている。
FIG. 5 is a sectional view showing the structure of a conventional memory cell having a groove-type capacitor electrode, which is an improvement of the structure of FIG. 4 in terms of miniaturization. 4 is different from FIG. 4 in that the gate electrode 20 is provided on the upper edge portion of the groove 13 without extending the capacitor electrode on the substrate.
The configuration is such that it is brought close to a.

【0008】これにより、図4における合わせ余裕は不
要となり微細化が可能である。さらにゲート、キャパシ
タ電極部を含む全面にCVD法によりシリコン酸化膜22
を堆積し、コンタクトホール23を形成し、ビット線とな
るアルミニウム配線24がこのコンタクトホール23を介し
てドレイン領域のN+ 層18と接続される。
As a result, the alignment margin shown in FIG. 4 is not necessary, and miniaturization is possible. Further, the silicon oxide film 22 is formed on the entire surface including the gate and the capacitor electrode portion by the CVD method.
To form a contact hole 23, and an aluminum wiring 24 serving as a bit line is formed through the contact hole 23 to form N + in the drain region. Connected with layer 18.

【0009】ところが、上記図5の構成には問題があ
る。メモリセルの製造過程において、キャパシタ電極の
形成後もゲート酸化膜形成等の酸化工程が数回入るた
め、キャパシタ電極の多結晶シリコン膜17表面も酸化さ
れる。
However, there is a problem with the configuration shown in FIG. In the manufacturing process of the memory cell, an oxidation process such as formation of a gate oxide film is performed several times even after the formation of the capacitor electrode, so that the surface of the polycrystalline silicon film 17 of the capacitor electrode is also oxidized.

【0010】このようにしてできた多結晶シリコン酸化
膜25は溝内部のキャパシタ酸化膜16と多結晶シリコン膜
17表面が接する部分30にも形成される。一般にシリコン
が酸化される場合、体積膨脹を伴うため、部分30の多結
晶シリコンが酸化されることにより溝内壁に応力が加わ
り、メモリセルそのものの電気的特性が劣化するという
問題が起こる。
The polycrystalline silicon oxide film 25 thus formed is the capacitor oxide film 16 inside the groove and the polycrystalline silicon film.
17 It is also formed in the portion 30 where the surfaces are in contact. In general, when silicon is oxidized, the polycrystalline silicon in the portion 30 is oxidized, so that stress is applied to the inner wall of the groove and the electrical characteristics of the memory cell itself are deteriorated.

【0011】[0011]

【発明が解決しようとする課題】このように従来のゲー
ト電極を溝に近付ける微細化のための構造において、製
造過程途中の酸化工程で溝内壁に応力が加わってしまい
電気的特性が劣化するという欠点がある。
As described above, in the conventional structure for miniaturizing the gate electrode close to the groove, stress is applied to the inner wall of the groove during the oxidation process during the manufacturing process, and the electrical characteristics are deteriorated. There are drawbacks.

【0012】この発明は上記のような事情を考慮してな
されたものであり、その目的は、メモリセルの電気的特
性の劣化なく、メモリセルの微細化を達成する半導体記
憶装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a semiconductor memory device which achieves miniaturization of a memory cell without deterioration of electric characteristics of the memory cell. It is in.

【0013】[0013]

【課題を解決するための手段】この発明の半導体記憶装
置は、半導体基板に形成された溝と前記溝の内壁表面に
形成され一方のキャパシタ電極となる導電層と、前記導
電層が存在する溝の内壁に形成されたキャパシタ絶縁膜
と、前記溝上縁部に近接した基板上でありかつ前記導電
層上にゲート電極を有するデータ転送用のトランジスタ
と、前記キャパシタ絶縁膜により前記基板と絶縁され前
記溝に埋設された他方のキャパシタ電極となる導電膜
と、前記導電膜から露出している溝上縁部近傍の内壁を
覆いこの溝上縁部近傍での前記キャパシタ絶縁膜と導電
膜が直接接しないようした耐酸化性を有する膜とを具備
したことを特徴とする。
According to another aspect of the present invention, there is provided a semiconductor memory device including a groove formed in a semiconductor substrate, a conductive layer formed on a surface of an inner wall of the groove to serve as one of capacitor electrodes, and a groove including the conductive layer. A capacitor insulating film formed on the inner wall of the substrate, a transistor for data transfer on the substrate near the upper edge of the groove and having a gate electrode on the conductive layer, and insulated from the substrate by the capacitor insulating film. The conductive film to be the other capacitor electrode buried in the groove is covered with the inner wall near the upper edge of the groove exposed from the conductive film so that the capacitor insulating film and the conductive film near the upper edge of the groove do not come into direct contact with each other. And a film having oxidation resistance as described above.

【0014】[0014]

【作用】この発明では、耐酸化性膜の存在によって、酸
化工程によりキャパシタ電極層のキャパシタ絶縁膜と接
している表面の近傍が酸化されない。このため、溝の内
壁に応力が加わることはない。
In the present invention, due to the presence of the oxidation resistant film, the vicinity of the surface of the capacitor electrode layer which is in contact with the capacitor insulating film is not oxidized by the oxidation step. Therefore, no stress is applied to the inner wall of the groove.

【0015】[0015]

【実施例】以下、図面を参照してこの発明を実施例によ
り説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings.

【0016】図1はこの発明の一実施例による溝型のキ
ャパシタ電極を有するメモリセルの構成を示す断面図で
ある。P型シリコン基板11上にフィールド酸化膜12が形
成され、基板11に溝13が形成されている。溝13に面する
基板11表面に一方のキャパシタ電極となるN+ 型不純物
層14が形成されている。N+ 型不純物層14が形成された
溝13の内壁面にはキャパシタ酸化膜16が形成されてい
る。溝13を埋める他方のキャパシタ電極となる多結晶シ
リコン膜17が形成され、フィールド酸化膜12にまで延在
する。この多結晶シリコン膜17上において、溝上縁部13
a近傍には耐酸化性を有するシリコン窒化膜27が形成さ
れ、その他はシリコン酸化膜25で覆われている。
FIG. 1 is a sectional view showing the structure of a memory cell having a groove type capacitor electrode according to an embodiment of the present invention. A field oxide film 12 is formed on a P-type silicon substrate 11, and a groove 13 is formed in the substrate 11. On the surface of the substrate 11 facing the groove 13, one of the capacitor electrodes N + A type impurity layer 14 is formed. N + A capacitor oxide film 16 is formed on the inner wall surface of the groove 13 in which the type impurity layer 14 is formed. A polycrystalline silicon film 17 to be the other capacitor electrode filling the groove 13 is formed and extends to the field oxide film 12. On the polycrystalline silicon film 17, the groove upper edge portion 13
A silicon nitride film 27 having oxidation resistance is formed in the vicinity of a, and the others are covered with a silicon oxide film 25.

【0017】溝上縁部13に近接する基板11上にゲート酸
化膜21を介してゲート電極20が形成されている。ゲート
電極20を隔てた溝13の反対側の基板11表面にドレイン領
域となるN+ 型不純物層18が形成されている。これらゲ
ート電極20及びキャパシタ部分上を含む全面にシリコン
酸化膜でなる層間絶縁膜22が堆積され、その上に形成さ
れるアルミニウム配線(ビット線)24とN+ 型不純物層
18が層間絶縁膜22のコンタクトホール23を介して接続さ
れている。
A gate electrode 20 is formed on the substrate 11 adjacent to the groove upper edge portion 13 with a gate oxide film 21 interposed therebetween. N + becomes a drain region on the surface of the substrate 11 on the side opposite to the groove 13 with the gate electrode 20 separated. The type impurity layer 18 is formed. An interlayer insulating film 22 made of a silicon oxide film is deposited on the entire surface including the gate electrode 20 and the capacitor portion, and an aluminum wiring (bit line) 24 and N + formed on the interlayer insulating film 22. Type impurity layer
18 are connected through a contact hole 23 in the interlayer insulating film 22.

【0018】上記実施例の構成によれば、溝上縁部3a
の近傍に近接してゲート電極20を設けたことによりメモ
リセルの微細化に寄与し、また、キャパシタ電極となる
多結晶シリコン膜17の表面が溝上縁部13a近傍でキャパ
シタ酸化膜16と接する部分ではがシリコン窒化膜で覆わ
れている。このため、このシリコン窒化膜27の下の多結
晶シリコン膜17(キャパシタ電極)の表面は酸化され
ず、溝13の内壁に応力が加わることがない。この結果、
信頼性と微細化の両面を達成できる構造になる。図2及
び図3は上記図1の構成の製造方法を工程順に示す断面
図である。
According to the structure of the above embodiment, the groove upper edge 3a is formed.
By providing the gate electrode 20 in the vicinity of the vicinity of the gate electrode 20, it contributes to miniaturization of the memory cell, and the surface of the polycrystalline silicon film 17 serving as the capacitor electrode is in contact with the capacitor oxide film 16 in the vicinity of the groove upper edge 13a. Is covered with a silicon nitride film. Therefore, the surface of the polycrystalline silicon film 17 (capacitor electrode) under the silicon nitride film 27 is not oxidized, and stress is not applied to the inner wall of the groove 13. As a result,
The structure achieves both reliability and miniaturization. 2 and 3 are sectional views showing a method of manufacturing the structure of FIG. 1 in the order of steps.

【0019】まず、図2に示されるように、P型シリコ
ン基板11上に素子分離のためのフィールド酸化膜12を形
成する。続いてリソグラフィ工程、RIE法により基板
11に溝13を形成する。その後、熱拡散により溝13に面す
る基板11の表面にN+ 型不純物層14を形成する。
First, as shown in FIG. 2, a field oxide film 12 for element isolation is formed on a P-type silicon substrate 11. Subsequent lithography process, substrate by RIE method
Groove 13 is formed in 11. After that, N + is formed on the surface of the substrate 11 facing the groove 13 by thermal diffusion. A type impurity layer 14 is formed.

【0020】上記リソグラフィ工程で用いたレジスト膜
を剥離し、熱酸化により溝13内壁部を含めた素子領域に
キャパシタ酸化膜16を形成する。次に溝13を含めて全面
に多結晶シリコン膜17、レジスト膜を順次堆積した後、
パターニングによりレジスト膜26を、溝13上を含む所定
部分に残存させる。この後、このレジスト膜26をマスク
にして等方性エッチングを行うことにより、キャパシタ
電極(多結晶シリコン膜17)を形成する。その際、溝上
縁部3a近傍の多結晶シリコン膜17も除去される。
The resist film used in the above lithography process is stripped off, and a capacitor oxide film 16 is formed in the element region including the inner wall of the groove 13 by thermal oxidation. Next, after sequentially depositing a polycrystalline silicon film 17 and a resist film over the entire surface including the groove 13,
By patterning, the resist film 26 is left in a predetermined portion including on the groove 13. Then, isotropic etching is performed using the resist film 26 as a mask to form a capacitor electrode (polycrystalline silicon film 17). At that time, the polycrystalline silicon film 17 in the vicinity of the groove upper edge portion 3a is also removed.

【0021】次に、図3に示されるように、レジスト膜
26を除去した後、全面にシリコン窒化膜を堆積し、RI
E法によりシリコン基板11の表面に達するまでエッチン
グする。このとき、溝上縁部3a近傍の溝内壁には、シ
リコン窒化膜27が残存する。すなわち、キャパシタ電極
である多結晶シリコン膜17表面と、キャパシタ酸化膜16
が接している部分がシリコン窒化膜で覆われる。
Next, as shown in FIG. 3, a resist film is formed.
After removing 26, a silicon nitride film is deposited on the entire surface and RI
Etching is performed by the E method until the surface of the silicon substrate 11 is reached. At this time, the silicon nitride film 27 remains on the inner wall of the groove near the upper edge 3a of the groove. That is, the surface of the polycrystalline silicon film 17 which is the capacitor electrode and the capacitor oxide film 16
The portion in contact with is covered with the silicon nitride film.

【0022】次に、前記図1に示されるように、熱酸化
によりゲート酸化膜21を形成する。このとき、多結晶シ
リコン膜17の表面でシリコン窒化膜27で覆われていない
部分が酸化されるので、多結晶シリコン酸化膜25も形成
される。さらに、全面に多結晶シリコンを堆積し、その
上に形成したレジストパターン(図示せず)をマスクに
してRIEを行い、ゲート電極20を形成する。
Next, as shown in FIG. 1, the gate oxide film 21 is formed by thermal oxidation. At this time, the portion of the surface of the polycrystalline silicon film 17 not covered with the silicon nitride film 27 is oxidized, so that the polycrystalline silicon oxide film 25 is also formed. Further, polycrystalline silicon is deposited on the entire surface, and RIE is performed using a resist pattern (not shown) formed thereon as a mask to form a gate electrode 20.

【0023】ゲート電極20をマスクにしてイオン注入を
行い、熱処理を施してドレイン領域となるN+ 型不純物
層18を形成する。全面にCVD法によりシリコン酸化膜
でなる層間絶縁膜22を堆積形成し、N+ 型不純物層18上
の層間絶縁膜22にコンタクトホール23を設ける。層間絶
縁膜22上にアルミニウム配線24(ビット線)を形成し、
コンタクトホール23を介してN+ 型不純物層18と電気的
に接続する。
Ion implantation is performed using the gate electrode 20 as a mask, and heat treatment is performed to form N + which becomes a drain region. A type impurity layer 18 is formed. An interlayer insulating film 22 made of a silicon oxide film is deposited and formed on the entire surface by a CVD method, and N + A contact hole 23 is provided in the interlayer insulating film 22 on the type impurity layer 18. Aluminum wiring 24 (bit line) is formed on the interlayer insulating film 22,
N + via contact hole 23 It is electrically connected to the type impurity layer 18.

【0024】上記構成によれば、メモリセルにおいて他
方のキャパシタ電極となっている多結晶シリコン膜17を
例えば0V等の一定電位にし、一方のキャパシタ電極で
あるN+ 層14のゲート電極20側をソース領域とするスイ
ッチングトランジスタのオン,オフによりキャパシタへ
の情報書き込み及び読み出し制御が行われる。
According to the above structure, the polycrystalline silicon film 17 serving as the other capacitor electrode in the memory cell is set to a constant potential such as 0 V, and the one capacitor electrode N +. Information writing to and reading from the capacitor are controlled by turning on and off the switching transistor whose source region is on the gate electrode 20 side of the layer 14.

【0025】[0025]

【発明の効果】以上説明したようにこの発明によれば、
耐酸化性を有する膜によって、キャパシタ電極であるシ
リコン酸化膜から露出している溝上縁部近傍の内壁を覆
い、この部分で酸化工程による応力が発生しないように
したので、メモリセルの電気的特性の劣化なく、かつメ
モリセルの微細化を達成する半導体記憶装置が提供でき
る。
As described above, according to the present invention,
The oxidation resistance film covers the inner wall near the upper edge of the groove exposed from the silicon oxide film, which is the capacitor electrode, so that stress due to the oxidation process does not occur at this part, so the electrical characteristics of the memory cell are improved. It is possible to provide a semiconductor memory device that achieves miniaturization of a memory cell without deterioration of the memory cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による構成の断面図。FIG. 1 is a sectional view of a structure according to an embodiment of the present invention.

【図2】図1の構成の製造過程途中を示す第1の断面
図。
FIG. 2 is a first cross-sectional view showing the manufacturing process of the configuration of FIG.

【図3】図1の構成の製造過程途中を示す第2の断面
図。
3 is a second cross-sectional view showing the manufacturing process of the configuration of FIG. 1. FIG.

【図4】従来の溝型のキャパシタ電極を有するメモリセ
ルの構成を示す第1の断面図。
FIG. 4 is a first cross-sectional view showing the structure of a conventional memory cell having a groove-type capacitor electrode.

【図5】従来の溝型のキャパシタ電極を有するメモリセ
ルの構成を示す第2の断面図。
FIG. 5 is a second cross-sectional view showing the configuration of a memory cell having a conventional groove-type capacitor electrode.

【符号の説明】 11…P型シリコン基板、12…フィールド酸化膜、13…
溝、14,18…N+ 型不純物層、16…キャパシタ酸化膜、
17…多結晶シリコン膜、20…ゲート電極、21…ゲート酸
化膜、22…層間絶縁膜、23…コンタクトホール、24…ア
ルミニウム配線、25…シリコン酸化膜、26…レジスト
膜、27…シリコン窒化膜。
[Explanation of symbols] 11 ... P-type silicon substrate, 12 ... Field oxide film, 13 ...
Grooves, 14, 18 ... N + -Type impurity layer, 16 ... Capacitor oxide film,
17 ... Polycrystalline silicon film, 20 ... Gate electrode, 21 ... Gate oxide film, 22 ... Interlayer insulating film, 23 ... Contact hole, 24 ... Aluminum wiring, 25 ... Silicon oxide film, 26 ... Resist film, 27 ... Silicon nitride film .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板に形成された溝と、 前記溝の内壁表面に形成され一方のキャパシタ電極とな
る導電層と、 前記導電層が存在する溝の内壁に形成されたキャパシタ
絶縁膜と、 前記溝上縁部に近接した基板上でありかつ前記導電層上
にゲート電極を有するデータ転送用のトランジスタと、 前記キャパシタ絶縁膜により前記基板と絶縁され前記溝
に埋設された他方のキャパシタ電極となる導電膜と、 前記導電膜から露出している溝上縁部近傍の内壁を覆い
この溝上縁部近傍での前記キャパシタ絶縁膜と導電膜が
直接接しないようした耐酸化性を有する膜とを具備した
ことを特徴とする半導体記憶装置。
1. A groove formed in a semiconductor substrate, a conductive layer formed on a surface of an inner wall of the groove to serve as one capacitor electrode, and a capacitor insulating film formed on an inner wall of the groove in which the conductive layer exists. A transistor for data transfer, which is on the substrate adjacent to the upper edge of the groove and has a gate electrode on the conductive layer, and another capacitor electrode which is insulated from the substrate by the capacitor insulating film and is embedded in the groove. A conductive film; and a film having oxidation resistance that covers the inner wall near the upper edge of the groove exposed from the conductive film and prevents the conductive film from directly contacting the capacitor insulating film near the upper edge of the groove. A semiconductor memory device characterized by the above.
JP4343670A 1992-12-24 1992-12-24 Semiconductor storage device Pending JPH06196653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343670A JPH06196653A (en) 1992-12-24 1992-12-24 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4343670A JPH06196653A (en) 1992-12-24 1992-12-24 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH06196653A true JPH06196653A (en) 1994-07-15

Family

ID=18363336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343670A Pending JPH06196653A (en) 1992-12-24 1992-12-24 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH06196653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365953B2 (en) * 1996-04-23 2002-04-02 Intersil Americas Inc. Wafer trench article and process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365953B2 (en) * 1996-04-23 2002-04-02 Intersil Americas Inc. Wafer trench article and process
US6551897B2 (en) 1996-04-23 2003-04-22 Intersil Americas Inc. Wafer trench article and process

Similar Documents

Publication Publication Date Title
JP2608363B2 (en) Semiconductor memory device and method of manufacturing the same
JP4074674B2 (en) Method for manufacturing DRAM
US6197670B1 (en) Method for forming self-aligned contact
JPH0682793B2 (en) Semiconductor memory
US5610854A (en) Semiconductor memory device and fabrication process thereof
US5461248A (en) Trench capacitor memory cell and process for formation thereof
KR100349986B1 (en) Manufacturing method of via hole for bit line of memory cell
JP2748050B2 (en) Semiconductor device and manufacturing method thereof
US5940714A (en) Method of fabricating a capacitor electrode structure in integrated circuit through self-aligned process
JP2557592B2 (en) Method of manufacturing semiconductor memory cell
US6285053B1 (en) Capacitor for a semiconductor memory device
JP2593524B2 (en) Method for manufacturing semiconductor device
JPH04252071A (en) Semiconductor device
JPH1187532A (en) Dram cell device and manufacture thereof
JPH09213911A (en) Semiconductor device and manufacturing method thereof
US5796167A (en) Semiconductor device with buried wiring layer and fabrication process thereof
JP2002076300A (en) Semiconductor device and its manufacturing method
JP2676168B2 (en) Semiconductor device
KR100487852B1 (en) Circuit arrangement comprising at least one capacitor and at least one transistor connected thereto
JP3190659B2 (en) Semiconductor memory and manufacturing method thereof
JPH06196653A (en) Semiconductor storage device
JP4394177B2 (en) Semiconductor device and manufacturing method thereof
JP2619101B2 (en) Method for manufacturing semiconductor device
JPH04348070A (en) Semiconductor device and its manufacture
JPH0834303B2 (en) Method for manufacturing semiconductor memory device