JPH0619476B2 - Tidal current commutation timing prediction method - Google Patents

Tidal current commutation timing prediction method

Info

Publication number
JPH0619476B2
JPH0619476B2 JP24501885A JP24501885A JPH0619476B2 JP H0619476 B2 JPH0619476 B2 JP H0619476B2 JP 24501885 A JP24501885 A JP 24501885A JP 24501885 A JP24501885 A JP 24501885A JP H0619476 B2 JPH0619476 B2 JP H0619476B2
Authority
JP
Japan
Prior art keywords
tidal current
time
commutation
predicted
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24501885A
Other languages
Japanese (ja)
Other versions
JPS62105076A (en
Inventor
六典 佐賀
裕 島谷
和生 茨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP24501885A priority Critical patent/JPH0619476B2/en
Publication of JPS62105076A publication Critical patent/JPS62105076A/en
Publication of JPH0619476B2 publication Critical patent/JPH0619476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、海峡又は狭水道における潮流の転流時期を予
測する潮流転流時期予測方法に関するものである。
TECHNICAL FIELD The present invention relates to a tidal current commutation timing prediction method for predicting the tidal current commutation timing in a strait or narrow water supply.

〔従来技術〕[Prior art]

海峡又は狭水道を通航する船舶は潮流変化、特に流れの
方向が換わる転流の前後で、自由な操船が不可能となる
ことがあり、他船への衝突、岩礁への乗場等海難事故の
危険性がある。これに対する対策として、従来は海上保
安庁から発表される潮汐表をもとに潮流の変化を予測し
たり、潮流信号として海流の方向により機械的に信号板
が反転するもので潮流の方向のみを表示していた。
Ships that pass through the strait or narrow water supply may not be able to operate freely before and after tidal current changes, especially before and after commutation in which the direction of the flow changes, causing collisions with other ships, landing on reefs, and other marine accidents. There is a risk. As measures against this, conventionally, the tidal table announced by the Japan Coast Guard is used to predict changes in tidal current, or the signal board is mechanically inverted by the direction of the ocean current as a tidal current signal. It was displayed.

しかしながら、上記潮汐表により潮流の変化を予測する
方法では海峡又は狭水道の局所の潮流変化、特に転流時
期の予測はできないという問題があった。また、海流の
方向により機械的に信号板が反転するものでは潮流の方
向のみを表示する方法では潮流変化の予測、特に転流時
期の予測が極めて困難であという欠点があった。
However, there is a problem in that it is impossible to predict the local tidal current change in the strait or narrow water supply, especially the commutation time, by the method of predicting the tidal current change using the tide table. Further, in the case where the signal plate is mechanically inverted depending on the direction of the ocean current, the method of displaying only the direction of the tidal current has a drawback that it is extremely difficult to predict the tidal current change, especially the commutation time.

これに対する対策として本出願人は、先に潮流予測方法
を開発し特許出願している{特願昭60−197299
号(特開昭62−58186号公報)}。この潮流予測
方法は過去の潮流の観測データ(潮流データ)より、そ
れらのデータが示す近似式を作成し該近似式による予測
値と観測データからの値とから誤差を算出し、一定時間
にその誤差の量に対応したグレード評価を行って補正角
を求め、転流判定角度(適用海域により決まる)に至る
時刻(転流時期)の予測を行ない、転流時直前の予測値
予報の不安定性(後に詳述する)を除去するため、転流
予測時期の予め定められた範囲に入った時その予測を固
定するものである。
As a countermeasure against this, the applicant has previously developed a power flow prediction method and applied for a patent (Japanese Patent Application No. 60-197299).
(JP-A-62-58186)}. This tidal current forecasting method creates an approximate expression indicated by those data from past observed tidal current data (tidal current data), calculates an error from a predicted value by the approximate expression and a value from the observed data, and calculates the error at a certain time. Uncertainty of the forecasted value immediately before the commutation by predicting the time (commutation time) to reach the commutation determination angle (determined by the applicable sea area) by performing the grade evaluation corresponding to the amount of error and obtaining the correction angle. In order to eliminate (detailed later), the prediction is fixed when it enters a predetermined range of the commutation prediction time.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら上記潮流予測方法は、転流時直前の予測値
予報の不安定性を除去するという作用効果があるもの
の、後に詳述するように潮流の特異状況により転流の予
測時期と実際の転流時期に大きな誤差が発生することが
あり、航行船舶の適正な運航に障害を与える可能性があ
るという問題があった。
However, although the above tidal current prediction method has the effect of eliminating the instability of the forecasted value forecast immediately before the time of commutation, as will be described in detail later, the predicted timing of the commutation and the actual commutation timing depend on the unique situation of the tidal current. There is a problem in that a large error may occur, which may hinder the proper operation of the sailing ship.

本発明は上述の点に鑑みてなされたもので、転流時直前
の予測値予報の不安定性を除去すると共に、潮流の特異
状況により予測転流時期と実際の転流時期との間に大き
な誤差の発生することのない潮流転流時期予測方法を提
供することにある。
The present invention has been made in view of the above points, and eliminates the instability of the predicted value forecast immediately before the time of commutation, and greatly reduces the predicted commutation timing and the actual commutation timing depending on the peculiar situation of the tidal current. An object of the present invention is to provide a tidal current commutation timing prediction method that does not cause an error.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明は、潮流を観測しその
観測結果より潮流データを作成し、一定時間該潮流デー
タを記憶し、該記憶された過去の潮流デーにより流速と
角度換算した流向を示す近似式を作成し、該近似式によ
り予測される観測データ取得時の流向値の予測値と観測
データによる流向角の地との誤差を算出し、一定時間毎
にグレード評価を行い、該グレードにより補正角を算定
し、該補正角により転流時期を算出予測すると共に、潮
流の流速が零となる時期付近では、流速の予測値と観測
値の比較を行い、両者の差が所定の範囲外の場合流速の
観測値から流速と時刻の近似式を新たに作成し、両者の
差が所定の範囲内になるまで該近似式の更新を行い、前
記グイレード評価による補正角の継続更新を、前記更新
された近似式による転流時期の算出予測に変更するよう
に構成した。
In order to solve the above problems, the present invention observes a tidal current, creates tidal current data from the observation result, stores the tidal current data for a certain period of time, and calculates a current direction and an angle-converted current direction by the stored past tidal current data. Create an approximation formula shown below, calculate the error between the predicted value of the flow direction value at the time of acquisition of observation data predicted by the approximation formula and the ground of the flow direction angle based on the observation data, and perform grade evaluation at regular time intervals. The correction angle is calculated by, and the commutation time is calculated and predicted by the correction angle, and in the vicinity of the time when the tidal current velocity becomes zero, the predicted value of the flow velocity and the observed value are compared, and the difference between the two is within a predetermined range. In the case of outside, newly create an approximate expression of the flow velocity and time from the observed value of the flow velocity, update the approximate expression until the difference between the two falls within a predetermined range, and continuously update the correction angle by the guilade evaluation, According to the updated approximation It was configured to change in the calculation prediction of commutation time.

〔作用〕[Action]

本発明によれば、近似式により流向角の予測される観測
データ取得時の予測値と該取得時に観測データより得ら
れた流向角との誤差を算出し、該誤差を一定時間毎にグ
レード評価を行い補正角を算定し、該補正角により転流
時期を算出予測すると共に、潮流の流速が零となる転流
時期付近では流速の予測値と観測値の比較を行い、両者
の差が所定の範囲外の場合には所定の範囲になるまで流
速の観測値から流速と時刻の近似式を新たに作成し、グ
レード評価による補正角の継続更新を、更新された近似
式による転流時期の算出予測に変更するので、転流時期
の予測値を実際の転流時期に略一致させることが可能と
なる。
According to the present invention, an error between the predicted value at the time of observation data acquisition in which the flow direction angle is predicted by the approximate expression and the flow direction angle obtained from the observation data at the time of acquisition is calculated, and the error is graded at regular intervals. By calculating the correction angle and calculating and predicting the commutation timing based on the correction angle, the predicted value of the flow velocity and the observed value are compared in the vicinity of the commutation timing when the flow velocity of the tidal current becomes zero, and the difference between the two is determined. If the value is out of the range, a new approximation formula for the flow velocity and time is newly created from the observed value of the flow velocity until it reaches the predetermined range, and the correction angle is continuously updated by grade evaluation, and the commutation timing of the updated approximation formula is calculated. Since the calculation is changed to the prediction, it is possible to make the predicted value of the commutation timing substantially coincide with the actual commutation timing.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の潮流転流時期予測方法に用いるデータ
処理装置のシステム構成を示すブロック図である。同図
に示すように、本データ処理装置は、海峡又は狭水道1
の所定箇所の改定に沈設した潮流センサ2からの潮流の
流速及び流向の観測信号をデータ処理装置3で処理し、
信号装置4に送り、該信号処理装置4において、前記海
峡又は狭水道を航行中の船舶から観測できる表示盤5に
潮流の流向、流速及び転流時刻等の潮流予測データを表
示したり、或いは音声再生装置6及びスピーカ7を通し
て音声で航行中の船舶に潮流予測データを知らせる。
FIG. 2 is a block diagram showing the system configuration of a data processing device used in the tidal current commutation timing prediction method of the present invention. As shown in the figure, this data processing device is
The data processing device 3 processes the observation signal of the flow velocity and the flow direction of the tidal current from the tidal current sensor 2 which is sunk in the revision of the predetermined location of
It is sent to the signal device 4, and in the signal processing device 4, tidal current prediction data such as the tidal current direction, velocity and commutation time is displayed on the display panel 5 which can be observed from a ship navigating the strait or narrow water supply, or The tidal current prediction data is notified to the marine vessel by voice through the voice reproduction device 6 and the speaker 7.

第3図はデータ処理装置3の構成を示すブロック図であ
り、図示するように、データ処理装置3は前記潮流セン
サ2からの潮流の流速及び流向きの観測信号を中央処理
装置(CPU)22に入力したり、該中央処理装置22
からの信号を信号処理装置4に出力する入出力(I/
O)回路21、記憶装置23、印字装置24、操作盤2
5、CRT26等を具備し、前記中央処理装置で潮流セ
ンサ2からの流速及び流向の観測信号を収集し、前記記
憶装置23に該観測データを格納し、これら観測データ
に基づき転流時刻等の潮流予測値を算出し、表示盤5及
びスピーカ7を介して航行中の船舶に予報を発する。海
峡又は狭水道1の潮の流れは、第2図に示すように、矢
印A或いはBに示すように西向きになったり東向きにな
ったり、更には矢印C或いはDに示すように渦になった
りする。
FIG. 3 is a block diagram showing the configuration of the data processing device 3. As shown in the figure, the data processing device 3 receives the observation signals of the flow velocity and the flow direction of the tidal current from the tidal current sensor 2 in a central processing unit (CPU) 22. Input to the central processing unit 22
Input / output (I /
O) circuit 21, storage device 23, printing device 24, operation panel 2
5, the CRT 26 and the like, the central processing unit collects the observation signals of the flow velocity and the flow direction from the tidal current sensor 2, stores the observation data in the storage device 23, and based on these observation data, the commutation time, etc. The tidal current prediction value is calculated, and a forecast is issued to the marine vessel through the display panel 5 and the speaker 7. As shown in FIG. 2, the tide flow of the strait or narrow channel 1 becomes westward or eastward as shown by arrow A or B, and further becomes a vortex as shown by arrow C or D. Or

第4図は前記海峡又は狭水道1の潮流の流向及び流速を
示す図である。図示するように、潮の流れは時間ととも
に変化し流速が零となる時刻t1,t2,t3, ……の点で潮
流の方向が変わる、即ち転流が起こる。この潮流の流速
や流向は、下式で近似できる。
FIG. 4 is a diagram showing the flow direction and flow velocity of the tidal current in the strait or narrow water supply 1. As shown in the figure, the direction of the tidal current changes, that is, commutation occurs at the points of time t 1, t 2, t 3, ... At which the flow velocity changes with time and the flow velocity becomes zero. The velocity and direction of this tidal current can be approximated by the following equation.

Y(t)=Σ{aisin(cit+k)bicos(di+k)}・・・・(1) ここで、流速はY(t)の絶対値、流向は第4図の位相
角度である。この位相角度をθとすると、 θ=sin-1{Y(t)/MaxY(t)}±2nπ =sin-1{Σ{aisin(cit+k)+bicos(di+k)}/ Max{Σaisin(cit+k)+Σbicos(di+k)}〕 ±2nπ ここでΣbcos(d+k)は時刻と無関係で、周
期波のバイアス値(交流に加えた直流分)に相当する。
多くの場合この値は零に近く、この場合θは、 θ=sin-1〔Σaisin(cit+k)/MaxΣaisin(cit+k)〕±2n
π また、Y(t)は大略同様の周期で繰り返されることが多い
ので、a,c共にそれぞれa,cで代表されるとす
ると θ=sin-1{sin(ct+k)/1} ±2nπ =ct+k±2nπ となる。
Y (t) = Σ {a i sin (c i t + k) b i cos (d i + k)} ... (1) where the flow velocity is the absolute value of Y (t) and the flow direction is the 4 is a phase angle of FIG. If this phase angle is θ, θ = sin −1 {Y (t) / MaxY (t)} ± 2n π = sin −1 {Σ {a i sin (c i t + k) + b i cos (d i + k)} / Max {Σa i sin (c i t + k) + Σb i cos (d i + k)}] ± 2nπ where Σb i cos (d i + k) is independent of the time and It corresponds to the bias value (DC component added to AC).
In most cases, this value is close to zero, and in this case, θ = sin -1 [Σa i sin (c i t + k) / Max Σa i sin (c i t + k)] ± 2n
π In addition, Y (t) is often repeated at almost the same cycle, so if a i and c i are represented by a and c, respectively, θ = sin −1 {sin (ct + k) / 1 } ± 2nπ = ct + k ± 2nπ.

但し、k,c,dは天体の運行で定まる固定定数、
,bは過去の観測データより決定される係数、t
は時間である。ま、k,c,d,a,bは時間
と共に変化するので、i=1,2,3,……n回目(周
期)とし、データと区別している。潮流の流速や流向が
上記近似式で表すことができるとすれば、過去の一定期
間(i=1,2,3,……)の観測データから上記係数a
,bを求め、潮流センサ2からの観測データにより
潮流の流れが変わる時間、所謂転流時刻が予測できる。
However, k, c i , and d i are fixed constants determined by the operation of the celestial body,
a i and b i are coefficients determined from past observation data, t
Is time. Since k, c i , d i , a i , and b i change with time, i = 1, 2, 3, ... If the flow velocity and flow direction of the tidal current can be expressed by the above approximate expression, the above coefficient a can be calculated from the observation data of a certain past period (i = 1, 2, 3, ...).
i , b i are obtained, and the time when the flow of the tidal current changes, that is, the so-called commutation time can be predicted by the observation data from the tidal current sensor 2.

中央処理装置22は過去の観測データから上記係数
,bを算出し、所定時間毎の観測データをもとに
観測時を基準に潮流の流速、流向を予測する。その際、
流向については前記所定の観測時間毎に後述するグレー
ド評価方法により、予測値の補正を行なっている。
The central processing unit 22 calculates the coefficients a i and b i from the past observation data, and predicts the flow velocity and the flow direction of the tidal current based on the observation time based on the observation data at every predetermined time. that time,
Regarding the flow direction, the predicted value is corrected at each of the predetermined observation times by the grade evaluation method described later.

第6図は転流予測のための処理の流れを示す図である。
潮流センサ2からの観測データより流向角度θを求める
(ステップ201)。次に上記(1)式に基づいて、予
測値の流向角θ′を求め(ステップ202)。これら予
測値の流向角θ′と観測データよりの流向角θとを比較
し両者の角度差、即ち角度誤差θe(θ′−θ=θe)
を求める(ステップ203)。該角度誤差θeを後述す
るグレード評価により、補正角度Δθを求め(ステップ
204)、前記予測値の流向角θ′を補正した補正角
θ″=θ′+Δθを求め(ステップ205)、前に予測
した転流予測時刻の変更を行なう(ステップ206)。
所定時間(例えば15分)が経過したら(ステップ20
7)、前記ステップ201に戻り上記処理を繰り返す、
即ち予測のための処理を所定時間間隔で定期的に行ない
転流時刻の予測精度を上げる。
FIG. 6 is a diagram showing a flow of processing for commutation prediction.
The flow direction angle θ is determined from the observation data from the tidal current sensor 2 (step 201). Next, the flow direction angle θ'of the predicted value is obtained based on the above equation (1) (step 202). The flow direction angle θ ′ of these predicted values and the flow direction angle θ from the observed data are compared, and the angle difference between them, that is, the angle error θe (θ′−θ = θe)
Is calculated (step 203). The angle error θe is obtained by grade evaluation described later to obtain a correction angle Δθ (step 204), a correction angle θ ″ = θ ′ + Δθ obtained by correcting the flow direction angle θ ′ of the predicted value is obtained (step 205), and the prediction is performed in advance. The predicted commutation time is changed (step 206).
When a predetermined time (for example, 15 minutes) has elapsed (step 20
7) return to step 201 and repeat the above process,
That is, the processing for prediction is periodically performed at predetermined time intervals to improve the accuracy of prediction of commutation time.

第7図はグレード評価と補正角の関係を示す図である。
図示するようにグレードは角度誤差θeの大きさにより
A,B,C,D,Eの5段階に分け、それぞれグレード
A〜Eに応じて補正角Δθを与えている。即ち、第6図
の処理フローのステップ204において、記憶装置4に
格納されている第7図に示すテーブルを参照して補正角
Δθを求め、ステップ205において、予測補正、即ち
該補正角Δθにより、前記予測値の流向角度θ′を補正
した補正角θ″=θ′+Δθを求める。
FIG. 7 is a diagram showing the relationship between grade evaluation and correction angle.
As shown in the figure, the grade is divided into five stages of A, B, C, D and E according to the magnitude of the angle error θe, and a correction angle Δθ is given according to each grade A to E. That is, in step 204 of the processing flow of FIG. 6, the correction angle Δθ is obtained by referring to the table shown in FIG. 7 stored in the storage device 4, and in step 205, the prediction correction, that is, the correction angle Δθ is calculated. Then, a correction angle θ ″ = θ ′ + Δθ obtained by correcting the flow direction angle θ ′ of the predicted value is obtained.

上記の如く、過去の一定期間の観測データにより、これ
ら過去の観測データの示す近似式を求め、観測により得
られた観測データからの流向角と、前記近似式で求めら
れた予測値の流向角の角度誤差を求め、該角度誤差をグ
レード評価し転流時刻を予測する方法は、潮流の流向が
第4図に示すように時間と共に、正確に変化すれば予測
も正確であるが、実際は第5図(a)及び(b)に示す
ように潮流の特異状況により予測転流時期が実際の観測
転流時期より速くなる場合と遅くなる場合がある。第5
図(a)及び(b)は第4図のA部分の拡大図であり、
同図(a)は予測転流時期が実際より速い場合を示し、
Taは従来のグレード評価時で転流時刻を予測する時
期、Tbはそれにより予測される予測転流時期、Tcは
実際に観測した観測転流時期を示す。同図(b)は予測
転流時期が実際より遅い場合を示し、Tdは従来のグレ
ード評価法で転流時刻を予測する時期、Teはそれによ
り予測される予測転流時期、Tfは実際に観測した観測
転流時期を示す。
As described above, the approximate expression shown by these past observation data is obtained from the observation data of the past fixed period, and the flow direction angle from the observation data obtained by the observation and the flow direction angle of the predicted value obtained by the approximation expression are obtained. The method of determining the angle error of the, estimating the angle error and predicting the commutation time is accurate if the flow direction of the tidal current changes accurately with time as shown in FIG. As shown in FIGS. 5 (a) and 5 (b), the predicted commutation timing may be earlier or later than the actual observed commutation timing depending on the unique situation of the tidal current. Fifth
Figures (a) and (b) are enlarged views of the portion A in Figure 4,
The figure (a) shows the case where the predicted commutation time is earlier than the actual
Ta is the time when the commutation time is predicted in the conventional grade evaluation, Tb is the predicted commutation time predicted thereby, and Tc is the actually observed observed commutation time. The figure (b) shows the case where the predicted commutation time is later than the actual time, Td is the time when the commutation time is predicted by the conventional grade evaluation method, Te is the predicted commutation time predicted thereby, and Tf is the actual time. Indicates the observed observation commutation time.

そこで本実施例では更に第5図(a)における予測電流
時期Tbを実際に観測した観測転流時期Tcに間は同図
(b)における予測転流時期Teを実際に観測した観測
転流時期Tfに近付けるめ、処理を行なう。
Therefore, in this embodiment, the observed current commutation time Tb in FIG. 5B is actually observed while the observed current commutation time Tc in FIG. 5B is actually observed. Processing is performed to bring it closer to Tf.

第1図は本発明に係る潮流転流時期予測方法の処理の流
れを示すフローチャートである。同図において、ステッ
プ101のグレード評価補正角は第6図のステップ20
4のグレード評価により補正角Δθを求めるのに相当
し、ステップ102の予測補正は第6図のステップ20
5の予測補正、即ち補正角Δθにより予測値の流向角
θ′を補正した補正角θ″=θ′+Δθを求める予測補
正に相当する。
FIG. 1 is a flowchart showing the flow of processing of the tidal current commutation timing prediction method according to the present invention. In FIG. 6, the grade evaluation correction angle in step 101 is the step 20 in FIG.
This is equivalent to obtaining the correction angle Δθ by grade evaluation of No. 4, and the prediction correction of Step 102 is Step 20 of FIG.
5 corresponds to the predictive correction, that is, the predictive correction for obtaining the corrected angle θ ″ = θ ′ + Δθ obtained by correcting the flow direction angle θ ′ of the predicted value by the corrected angle Δθ.

前記ステップ101において、グレード評価により補正
角Δθが得られたら転流予測時期の補正を実施する(ス
テップ102)。即ち上記補正角θ″=θ′+Δθを求
める。この場合、転流時期、即ち潮流の流速が零となる
時期付近までの各時刻と潮流速度の対応を予測する。次
にステップ103で潮流流速の前記各時刻で予測した予
測値ど実際にその時刻で観測した観測値とを比較する予
測・観測比較処理を行なう。次にステップ104におい
て、この予測値と観測値の一致性を確認し、一致してい
ればステップ105において予測値を表示する状態を継
続する。ステップ104で予測値と観測値が一致しない
場合はステップ106において、潮流速度の観測値のサ
ンプルを収集し、その時点以前の観測データの規定量を
含めて近似式の作成処理を実施する(ステップ10
7)。この場合代表的な近似式の例としては、例えば y=kxn である。ここで y=潮流速度変化 x=時刻 k=定数 n=定数 である。次にステップ107で得られた近似式を用いて
得られた各時刻における潮流の流速の予測値とその時刻
で実際に観測した潮流の流速の観測値との比較を行ない
(ステップ108)、その一致性を判定し(ステップ1
09)、一致していれば前記ステップ105の表示に移
行し、不一致であれば前記ステップ106の潮流速度の
観測値のサンプル収集に戻り、前記ステップ106から
ステップ109までの処理を実行する。
When the correction angle Δθ is obtained by the grade evaluation in step 101, the commutation prediction time is corrected (step 102). That is, the correction angle θ ″ = θ ′ + Δθ is obtained. In this case, the correspondence between each time until the commutation time, that is, the time when the flow velocity of the tidal current becomes zero and the tidal current velocity is predicted. Prediction / observation comparison processing for comparing the predicted value predicted at each of the times with the observed value actually observed at that time is performed.Next, in step 104, the matching between the predicted value and the observed value is confirmed, If they match, the state in which the predicted value is displayed is continued in step 105. If the predicted value and the observed value do not match in step 104, a sample of the observed value of the flow velocity is collected in step 106, and the sample before that time is collected. Approximate expression creation processing is performed including the specified amount of observation data (step 10).
7). In this case, an example of a typical approximate expression is y = kx n . Here, y = change in tidal current velocity x = time k = constant n = constant. Next, the predicted value of the tidal current velocity at each time obtained using the approximate expression obtained in step 107 is compared with the observed value of the tidal current velocity actually observed at that time (step 108). Determine match (step 1
09), if they match, the process moves to the display of step 105. If they do not match, the process returns to the sample collection of the observed value of the tidal current velocity in step 106, and the processes from step 106 to step 109 are executed.

上記処理の具体的例を以下に説明する。A specific example of the above processing will be described below.

第5図のTaにおける流速をya、その次の観測におけ
る流速をyaとすると、この場合の流速の差Δya
は、 Δya=ya−ya 流速観測の時間間隔を単位時間と見做すと、x=1で、 Δya=k を得る。次の観測値として流速yaを得た場合、ya
との差Δyaは、 Δya=Δya2 (∵x=2) となる。つまり logΔya=logΔya+nlog2 となり、ここでΔya,Δyaは既知であることか
ら、 n=(logΔya−logΔya)/log2 としてnが求められる。つまい上記ya,ya,ya
の観測により流速変化の近似式が得られる。これで第
3回目の実測値yaに対する予測が行えることになる
が、予測の結果、実測値yaとの誤差が運用上問題と
ならない範囲として認められる場合は、この近似式を第
4回目の予測に用いることとし、若しこの誤差が大きい
と判断される場合は、第2回目と第3回目の実測を用い
上記と同様の手順で近似式を更新する。この操作を繰返
し予測値を実際の転流時期に近づける。
Assuming that the flow velocity at Ta in FIG. 5 is ya and the flow velocity at the next observation is ya 1 , the difference in flow velocity in this case Δya 1
When the time interval of Δya 1 = ya-ya 1 flow velocity observation is regarded as a unit time, x = 1, and Δya 1 = k is obtained. When the flow velocity ya 2 is obtained as the next observation value, ya
The difference Δya 2 from Δya 2 is Δya 2 = Δya 1 2 2 (∵x = 2). That is, logΔya 2 = logΔya 1 + nlog2, and since Δya 2 and Δya 1 are known here, n is calculated as n = (logΔya 2 −logΔya 1 ) / log 2 . Sweet potato above ya, ya 1 , ya
From the observation of 2 , an approximate expression of the flow velocity change can be obtained. Although will be now able to predict for the third round of the measured values ya 3, the result of the prediction, if the error between the actual measurement value ya 3 is recognized as the range that do not operational problems, the approximate expression 4th If it is determined that this error is large, the approximate expression is updated in the same procedure as above using the second and third actual measurements. This operation is repeated to bring the predicted value closer to the actual commutation time.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明に係る潮流転流時期予測方法
は、最終転流時期付近までは近似式により予測される観
測データ取得時の流向角の予測値と観測データからの値
との誤差を算出し、該誤差の一定時間毎にグレード評価
を行ない、該グレードにより補正角を算定し、該補正角
により転流時期の算出予測を行ない、潮流の流速が零と
なる転流時期付近では、流速の予測値と観測値の比較を
行ない、両者の差が所定の範囲内になるまで近似式の更
新を継続し、該更新された近似式で転流時期の予測を行
なうから、グレート評価による補正角の継続更新のみに
よる転流時期の算出予測を行なう場合より、潮流転流時
期が正確に予測でき海峡又は狭水道を航行する船舶の安
全な航行に極めて優れた効果を発揮する。
As described above, the tidal current commutation timing prediction method according to the present invention, until near the final commutation timing, the error between the predicted value of the flow direction angle at the time of observation data acquisition predicted by the approximate expression and the value from the observation data. Calculated, the grade is evaluated at regular intervals of the error, the correction angle is calculated by the grade, the commutation timing is calculated and predicted by the correction angle, and in the vicinity of the commutation timing when the flow velocity of the tidal current is zero, The estimated value of the flow velocity is compared with the observed value, and the approximation formula is continuously updated until the difference between the two falls within a predetermined range, and the commutation time is predicted by the updated approximation formula. Compared with the case where the calculation and prediction of the commutation time is performed only by continuously updating the correction angle, the tidal current commutation time can be accurately predicted, which is extremely effective for safe navigation of a ship traveling in the strait or narrow water.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る潮流転流時期予測方法の処理の流
れを示すフローチャート、第2図は潮流予測装置のシス
テム構成を示すブロック図、第3図は第2図のデータ処
理装置のシステム構成を示すブロック図、第4図は海峡
又は狭水道の潮の流方向及び流速を示す図、第5図
(a),(b)は第4図のA部分(転流時期近傍)の拡
大図、第6図は転流予測のための処理の流れを示す図、
第7図はグレード評価と補正角の関係を示す図である。 図中、1……海峡又は狭水道、2……潮流センサ、3…
…データ処理装置、4……信号装置、5……表示盤、6
……音声再生装置、7……スピーカ、21……入出力回
路、22……中央処理装置、23……記憶装置、24…
…印字装置、25……操作盤、26……CRT。
FIG. 1 is a flow chart showing the flow of processing of the tidal current commutation timing prediction method according to the present invention, FIG. 2 is a block diagram showing the system configuration of the tidal current prediction apparatus, and FIG. 3 is the system of the data processing apparatus of FIG. Block diagram showing the configuration, FIG. 4 is a diagram showing the flow direction and flow velocity of the tide of the strait or narrow water supply, and FIGS. 5 (a) and 5 (b) are enlargements of part A (near commutation timing) of FIG. FIG. 6 is a diagram showing a flow of processing for commutation prediction,
FIG. 7 is a diagram showing the relationship between grade evaluation and correction angle. In the figure, 1 ... Channel or narrow water supply, 2 ... Tidal current sensor, 3 ...
… Data processing device, 4 …… Signal device, 5 …… Display panel, 6
...... Voice playback device, 7 ... speaker, 21 ... input / output circuit, 22 ... central processing unit, 23 ... storage device, 24 ...
… Printing device, 25 …… Operation panel, 26 …… CRT.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 茨田 和生 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (56)参考文献 特公 平4−31358(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuo Ibarata 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. (56) References Japanese Patent Publication 4-31358 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】潮流を観測しその観測結果より潮流データ
を作成し、一定時間該潮流データを記憶し、該記憶され
た過去の潮流データにより流速と角度換算した流向を示
す近似式を作成し、該近似式により予測される観測デー
タ取得時の流向角の予測値と観測データによる流向角の
値との誤差を算出し、一定時間毎にグレード評価を行
い、該グレードにより補正角を算定し、該補正角により
転流時期を算出予測すると共に、潮流の流速が零となる
時期付近では、流速の予測値と観測値の比較を行い、両
者の差が所定の範囲外の場合流速の観測値から流速と時
刻の近似式を新たに作成し、両者の差が所定の範囲内に
なるまで該近似式の更新を行い、前記グレード評価によ
る補正角の継続更新を、前記更新された近似式による転
流時期の算出予測に変更することを特徴とする潮流転流
時期予測方法。
1. A tidal current is observed, tidal current data is created from the result of the observation, the tidal current data is stored for a certain period of time, and an approximate expression indicating a current direction and an angle-converted current direction is created from the stored past tidal current data. Calculating the error between the predicted value of the flow direction angle when acquiring the observation data predicted by the approximate expression and the value of the flow direction angle based on the observation data, performing grade evaluation at regular time intervals, and calculating the correction angle according to the grade , The commutation timing is calculated and predicted from the correction angle, and the predicted value of the flow velocity and the observed value are compared near the time when the tidal current velocity becomes zero, and the flow velocity is observed if the difference between the two is outside the specified range. An approximate expression of the flow velocity and time is newly created from the value, the approximate expression is updated until the difference between the two is within a predetermined range, and the continuous update of the correction angle by the grade evaluation is performed by the updated approximate expression. Prediction of commutation time by Trends commutation timing prediction method characterized by further.
JP24501885A 1985-10-31 1985-10-31 Tidal current commutation timing prediction method Expired - Lifetime JPH0619476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24501885A JPH0619476B2 (en) 1985-10-31 1985-10-31 Tidal current commutation timing prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24501885A JPH0619476B2 (en) 1985-10-31 1985-10-31 Tidal current commutation timing prediction method

Publications (2)

Publication Number Publication Date
JPS62105076A JPS62105076A (en) 1987-05-15
JPH0619476B2 true JPH0619476B2 (en) 1994-03-16

Family

ID=17127349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24501885A Expired - Lifetime JPH0619476B2 (en) 1985-10-31 1985-10-31 Tidal current commutation timing prediction method

Country Status (1)

Country Link
JP (1) JPH0619476B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700871B1 (en) * 1993-01-28 1995-04-07 Roger Jean Michel Signaling lights for submersible sea pavement.
JP2016206067A (en) * 2015-04-24 2016-12-08 株式会社東芝 Sensor monitoring system, disaster monitoring system, and disaster monitoring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197299A (en) * 1984-03-16 1985-10-05 Sanyo Chem Ind Ltd Dehydration assistant and method

Also Published As

Publication number Publication date
JPS62105076A (en) 1987-05-15

Similar Documents

Publication Publication Date Title
CA1093662A (en) Shipboard reference for an aircraft navigation system
CN107179693A (en) Based on the Huber robust adaptive filtering estimated and method for estimating state
JPH0619476B2 (en) Tidal current commutation timing prediction method
JP2786494B2 (en) Radio navigation equipment
KR20200024094A (en) Gm calculation system, method and program thereof, and shear wave period prediction system, method and program thereof
JPS5956108A (en) Navigation device
Trump Estimating absolute current velocities by merging shipboard Doppler current profiler data with LORAN-C data
JPS59125014A (en) Composite bow bearing measuring device
GB2170672A (en) Satellite navigation receiver
Lu et al. Ocean vehicle inertial navigation method based on dynamic constraints
Severance Jr Optimum filtering and smoothing of buoy wave data
JPH0431358B2 (en)
JPS5937415A (en) Analyzer for sideslipping speed of ship
Touya et al. Automatic on‐line measurement of ship's attitude by use of servo‐type inclinometers
JPS5956107A (en) Navigation device
Watson et al. Ultra-short baseline acoustic tracking system
JP2000088585A (en) Distance calculation device and position calculation device
JPS61247917A (en) Automatic navigation device
RU2057680C1 (en) Ship's actual stability meter
Jourdan Doppler sonar navigator error propagation and correction
JP2736325B2 (en) Small constant integration tracking measurement method
Wilson et al. The acoustic Doppler current profiling system at AOML
Verstelle Speed trials with the Decca Navigator
JPS58216910A (en) Position measuring method in radio navigation system
JPH1073656A (en) Automatic radar plotting aiding device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term