JPH06194551A - Fluoride optical fiber and its production - Google Patents

Fluoride optical fiber and its production

Info

Publication number
JPH06194551A
JPH06194551A JP4345773A JP34577392A JPH06194551A JP H06194551 A JPH06194551 A JP H06194551A JP 4345773 A JP4345773 A JP 4345773A JP 34577392 A JP34577392 A JP 34577392A JP H06194551 A JPH06194551 A JP H06194551A
Authority
JP
Japan
Prior art keywords
fiber
fluoride
metal
optical fiber
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4345773A
Other languages
Japanese (ja)
Inventor
Kazuo Fujiura
和夫 藤浦
Atsushi Mori
淳 森
Yasutake Oishi
泰丈 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4345773A priority Critical patent/JPH06194551A/en
Publication of JPH06194551A publication Critical patent/JPH06194551A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • C03C25/1061Inorganic coatings
    • C03C25/1063Metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To produce the fluoride optical fiber having high strength and high weatherability by passing the fluoride optical fiber, which is formed by heating and stretching a base material for the optical fiber, in the melt of a metal, thereby coating its surface with the metal. CONSTITUTION:The base material 1 consisting of fluoride glass is passed through an electric oven 2 for drawing, by which the base material is drawn. This fluoride glass is then passed in the metal melt 3 in a die 4 for metal coating heated by a heater 5 for heating the die. The surface of the drawn fluoride fiber is, therefore, coated with the metal. Such fiber is taken up by a bobbin 6 for taking up the fiber. The metal having a m.p. below the glass transition temp. of the fluoride glass is used as the coating material for the fluoride glass by taking the crystallization of the glass into consideration. More specifically, metals, such as In and Sn, and alloys, such as Pb-Sn and Ag-Sn, are used. The fiber is passed in the melt in the same manner as the coating of a UV curing coat in the drawing process, by which the uniform coating is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信用あるいはセン
サ用の低損失伝送媒体、光アンプまたはレーザ用の増幅
媒体または医療用に用いられる高エネルギ伝送媒体とし
て用いられるフッ化物光ファイバおよびその作製方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluoride optical fiber used as a low-loss transmission medium for optical communication or a sensor, an amplification medium for an optical amplifier or a laser, or a high energy transmission medium used for medical purposes, and the same. The present invention relates to a manufacturing method.

【0002】[0002]

【従来の技術】ZrF4 を主成分とするフッ化物光ファ
イバは、赤外線波長領域で優れた透過特性を有するた
め、センサあるいは赤外領域の高出力レーザ用の伝送媒
体として注目されている。
2. Description of the Related Art Fluoride optical fibers containing ZrF 4 as a main component have attracted attention as a transmission medium for a sensor or a high power laser in the infrared region because they have excellent transmission characteristics in the infrared wavelength region.

【0003】さらに、赤外領域まで透過するということ
は、すなわちレーリー散乱が低い領域に透過窓を有して
いることを意味し、結果として石英よりも低損失なファ
イバの実現が期待される。
Further, transmission to the infrared region means that a transmission window is provided in a region where Rayleigh scattering is low, and as a result, it is expected to realize a fiber having a lower loss than quartz.

【0004】さらに、近年、フッ化物光ファイバは光フ
ァイバアンプ、特にPrを活性イオンとする1.3μm
領域で高い利得が得られる増幅媒体として注目されてい
る。しかし、フッ化物ガラスが赤外領域までの透過特性
を有することは、すなわちガラスを構成する成分の結合
力が弱いということを意味する。このため、フッ化物光
ファイバは機械的強度が不十分で、このファイバの実用
化に対する重大な障害であると考えられている。さら
に、フッ化物で構成されるため、大気中の水分と反応し
加水分解を起こすため、結晶化が生じ結果的に強度が低
下するという欠点もあった。従来のフッ化物光ファイバ
用の被覆材料はFEP(fluoro ethylenepropylene cop
olymer:テフロン(商品名))かもしくはUV硬化ポリ
アクリレートのいずれかであった。これらの樹脂は一見
して大気中の水分に対する被覆材として有効であるよう
に思われるが、分子構造として水分子の透過が可能であ
り、高温における耐候性試験においては、被覆材を通し
て浸入した水分による光ファイバの侵食が生じる。この
ため、長期にわたり、十分な信頼性が確保できないとい
う欠点があった。
Further, in recent years, a fluoride optical fiber is an optical fiber amplifier, particularly 1.3 μm in which Pr is an active ion.
It is attracting attention as an amplification medium that can obtain high gain in the region. However, the fact that the fluoride glass has a transmission characteristic up to the infrared region means that the binding force of the components constituting the glass is weak. For this reason, the fluoride optical fiber has insufficient mechanical strength and is considered to be a serious obstacle to practical use of this fiber. Furthermore, since it is composed of a fluoride, it reacts with moisture in the atmosphere to cause hydrolysis, which causes crystallization, resulting in a decrease in strength. Conventional coating materials for fluoride optical fibers are FEP (fluoro ethylenepropylene cop).
olymer: Teflon (trade name)) or UV-curable polyacrylate. At first glance, these resins seem to be effective as a coating material for moisture in the atmosphere, but they are capable of permeating water molecules as a molecular structure, and in the weather resistance test at high temperature, the moisture that penetrates through the coating material Erosion of the optical fiber due to. Therefore, there is a drawback that sufficient reliability cannot be ensured for a long period of time.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明の目的
は、機械的強度および耐候性が改善されたフッ化物光フ
ァイバおよびその作製方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fluoride optical fiber having improved mechanical strength and weather resistance, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、本発明のフッ化物光ファイバはフッ化物ガラ
スによって構成されたフッ化物光ファイバにおいて、前
記フッ化物ガラスの表面が金属により覆われていること
を特徴とする。
In order to achieve such an object, the fluoride optical fiber of the present invention is a fluoride optical fiber made of fluoride glass, wherein the surface of the fluoride glass is covered with a metal. It is characterized by being

【0007】本発明のフッ化物光ファイバの作製方法
は、フッ化物ガラスよりなる光ファイバ用母材を加熱延
伸して所定の外径を有するフッ化物光ファイバを形成す
る工程と該フッ化物光ファイバを、金属の融液中を通過
させてその表面に前記金属を被覆する工程とを含むこと
を特徴とする。
The method for producing a fluoride optical fiber according to the present invention comprises the steps of heating and stretching an optical fiber base material made of fluoride glass to form a fluoride optical fiber having a predetermined outer diameter, and the fluoride optical fiber. Through a melt of metal to coat the surface of the metal with the metal.

【0008】[0008]

【作用】従来使用されていた被覆材は樹脂であり、水分
に対し透過性を有している。しかし、金属は水の透過性
は低く、かつ機械的強度および展延性を有するため、フ
ァイバの機械的強度および耐候性を改善できる。また、
フッ化物ガラスはガラス転移温度が300℃前後と低
く、石英ファイバのように高温でのCVD法によるカー
ボンコートは不可能である。本発明では、ガラスの結晶
化を考慮し、フッ化物ガラスのガラス転移温度以下の融
点を有する金属をその被覆材として用いる。具体的に
は、In,Snなどの金属およびPb−Sn,Ag−S
nの合金を用いる。これらの金属および合金はガラス転
移温度以下で融液となるため、線引き過程でUVキュア
ーコートの被覆と同様に融液の中をファイバを通過させ
ることによって均一な被覆が可能である。以上のよう
に、本発明を用いることによって、容易に高強度かつ高
耐候性のフッ化物光ファイバが作製できる。
The coating material used conventionally is a resin and is permeable to moisture. However, the metal has low water permeability and mechanical strength and ductility, so that the mechanical strength and weatherability of the fiber can be improved. Also,
Fluoride glass has a low glass transition temperature of about 300 ° C., and carbon coating by the CVD method at a high temperature is impossible like quartz fiber. In the present invention, a metal having a melting point equal to or lower than the glass transition temperature of fluoride glass is used as the coating material in consideration of crystallization of glass. Specifically, metals such as In and Sn and Pb-Sn and Ag-S are used.
n alloy is used. Since these metals and alloys become a melt below the glass transition temperature, a uniform coating is possible by passing the fiber through the melt during the drawing process as in the case of the UV cure coat. As described above, by using the present invention, a high-strength and high-weatherability fluoride optical fiber can be easily manufactured.

【0009】[0009]

【実施例】以下、図面を参照しつつ本発明の実施例を詳
細に説明するが、本発明は実施例によりなんら限定され
るものではない。
Embodiments of the present invention will now be described in detail with reference to the drawings, but the present invention is not limited to the embodiments.

【0010】図1は、本発明に用いられる線引き装置の
概略を示す模式図である。
FIG. 1 is a schematic view showing an outline of a wire drawing apparatus used in the present invention.

【0011】まず、フッ化物ガラス母材1を線引き用電
気炉2を通過させることにより線引きする。この線引き
されたフッ化物ガラスを、ダイス加熱用ヒータ5により
加熱された金属被覆用ダイス4内の金属融液3中を通過
させる。これにより線引きされたフッ化物ファイバの表
面は金属により被覆される。金属により被覆されたファ
イバはファイバ巻取り用ボビン6により巻取られる。
First, the fluoride glass base material 1 is drawn by passing through an electric furnace 2 for drawing. The drawn fluoride glass is passed through the metal melt 3 in the metal coating die 4 heated by the die heating heater 5. The surface of the fluoride fiber thus drawn is coated with metal. The fiber coated with metal is wound by the fiber winding bobbin 6.

【0012】(実施例1)本実施例のファイバは、コア
組成49ZrF4 −25BaF2 −3.5LaF3 −2
YF3 −2.5AlF3 −18LiF(モル%)、クラ
ッド組成47.5ZrF4 −23.5BaF2 −2.5
LaF3 −2YF3 −4.5AlF3 −20NaF(モ
ル%)のガラスで構成されている。
Example 1 The fiber of this example has a core composition of 49ZrF 4 -25BaF 2 -3.5LaF 3 -2.
YF 3 -2.5AlF 3 -18LiF (mol%), clad composition 47.5ZrF 4 -23.5BaF 2 -2.5
LaF 3 -2YF 3 is composed of a glass -4.5AlF 3 -20NaF (mol%).

【0013】本実施例ではローテイショナルキャスティ
ング法で作製した母材を用い、表面を耐水研磨紙400
0番まで研磨した後、ZrOCl2 の塩酸溶液でエッチ
ング後乾燥させ線引きに用いた。被覆用の金属としては
Inを用い、200℃に加熱したダイスにInを入れ、
線引きしたファイバを通過させつつInを融解させるこ
とによりファイバの表面にInを被覆した。ダイスの温
度はInの融点以上であれば被覆の形成が可能である
が、270℃以上になるとフッ化物ガラスの結晶化が生
じ、ファイバの強度および光学特性が著しく低下した。
このため、被覆を形成するためのダイスの温度は270
℃以下に保持することが望ましい。
In this embodiment, a base material produced by the rotational casting method is used, and the surface thereof is water resistant abrasive paper 400.
After polishing to No. 0, it was etched with a hydrochloric acid solution of ZrOCl 2 , dried, and used for drawing. In was used as a coating metal, and In was put in a die heated to 200 ° C.
The surface of the fiber was coated with In by melting the In while passing the drawn fiber. If the temperature of the die is equal to or higher than the melting point of In, it is possible to form a coating, but if the temperature is 270 ° C. or higher, the fluoride glass is crystallized, and the strength and optical characteristics of the fiber are significantly deteriorated.
Therefore, the temperature of the die for forming the coating is 270.
It is desirable to keep the temperature below ℃.

【0014】図2に本実施例により作製したファイバの
断面図を示す。
FIG. 2 shows a cross-sectional view of the fiber produced by this example.

【0015】作製したファイバのクラッド外径は125
μm、Inの被覆の厚さは10μmであり、従って、フ
ァイバ外径は145μmであった。被覆の厚さは1μm
以下であると被覆の際に生じる表面の凹凸および傷の影
響で十分な強度および耐候性が得られず、500μm以
上になると金属の特性により変形が回復できなくなり結
果的にファイバに歪みが生じ強度が低下する。このた
め、機械的強度および耐候性の観点から、被覆の厚さは
1μm以上500μm以下であることが望ましい。
The outer diameter of the cladding of the produced fiber is 125.
The thickness of the coating of μm, In was 10 μm, so the outer diameter of the fiber was 145 μm. Coating thickness is 1 μm
If it is below, sufficient strength and weather resistance cannot be obtained due to the influence of surface irregularities and scratches generated during coating, and if it exceeds 500 μm, the deformation cannot be recovered due to the characteristics of the metal and as a result the fiber is distorted and the strength is increased. Is reduced. Therefore, the thickness of the coating is preferably 1 μm or more and 500 μm or less from the viewpoint of mechanical strength and weather resistance.

【0016】このようにして作製したファイバの引っ張
り強度を測定した。ファイバの引っ張り強度は、ゲージ
長1m、引っ張り速度60mm/min、試料本数50
本の引っ張り試験により行なった。引っ張り強度の平均
値は1GPaであり、従来法で作製したUV硬化アクリ
レート樹脂をコートしたファイバの強度450MPaに
比較して大幅に向上した。
The tensile strength of the fiber thus manufactured was measured. The tensile strength of the fiber is 1 m in gauge length, 60 mm / min in pulling speed, and 50 in number of samples.
The pull test of the book was performed. The average value of the tensile strength was 1 GPa, which was significantly improved as compared with the strength of the fiber coated with the UV-curable acrylate resin produced by the conventional method of 450 MPa.

【0017】次に、耐候性を調べるために、80℃、湿
度70%にファイバを放置し、定期的にサンプリングし
たファイバの引っ張り強度を測定した。
Next, in order to examine the weather resistance, the fiber was left at 80 ° C. and 70% humidity, and the tensile strength of the fiber sampled periodically was measured.

【0018】測定結果を図3に示す。The measurement results are shown in FIG.

【0019】同図に示すように、In被覆をしない従来
のUV硬化アクリレート樹脂をコートしたファイバにお
いては、大気中の水分による表面からの加水分解により
結晶化が進行するため、ファイバの強度が急激に低下す
るが、Inを被覆したファイバでは100日以上放置し
てもほとんど強度の低下が認められず、耐候性が大幅に
向上していることがわかる。
As shown in the figure, in the fiber coated with the conventional UV-curable acrylate resin without In coating, the crystallization progresses due to the hydrolysis from the surface by the moisture in the atmosphere, so that the strength of the fiber is rapidly increased. However, in the fiber coated with In, even if left standing for 100 days or more, almost no decrease in strength is observed, and it is understood that the weather resistance is greatly improved.

【0020】(実施例2)被覆に使用する金属をSnと
した以外は、実施例1と同様の方法で金属被覆を表面に
形成したフッ化物光ファイバを作製した。Snを融解す
るためにダイスの温度は240℃とした。作製したファ
イバの外径は140μmであり、被覆の厚さは7.5μ
mであった。
(Example 2) A fluoride optical fiber having a metal coating formed on its surface was produced in the same manner as in Example 1 except that the metal used for coating was Sn. The temperature of the die was 240 ° C. in order to melt Sn. The produced fiber has an outer diameter of 140 μm and a coating thickness of 7.5 μm.
It was m.

【0021】作製したファイバの引っ張り強度の測定を
実施例1と同様の方法で行ない、強度の平均値として
1.1GPaを得た。また、実施例1と同様の方法で耐
候性試験を行なった結果、100日以上放置してもほと
んど強度劣化が生じなかった。
The tensile strength of the produced fiber was measured in the same manner as in Example 1 to obtain 1.1 GPa as the average strength value. In addition, as a result of a weather resistance test performed in the same manner as in Example 1, the strength was hardly deteriorated even after standing for 100 days or more.

【0022】(実施例3)被覆に使用する金属をPb−
Sn(60重量%)の合金とした以外は、実施例1と同
様の方法で金属被覆を表面に形成したフッ化物光ファイ
バを作製した。合金を融解するためにダイスの温度は1
80℃とした。作製したファイバの外径は135μmで
あり、被覆の厚さは7.5μmであった。
(Example 3) The metal used for coating was Pb-
A fluoride optical fiber having a metal coating formed on its surface was produced by the same method as in Example 1 except that an alloy of Sn (60% by weight) was used. The temperature of the die is 1 to melt the alloy
It was set to 80 ° C. The produced fiber had an outer diameter of 135 μm and a coating thickness of 7.5 μm.

【0023】作製したファイバの引っ張り強度の測定を
実施例1と同様の方法で行い、強度の平均値として90
0MPaを得た。また、実施例1と同様の方法で耐候性
試験を行なった結果、100日以上放置してもほとんど
強度劣化が生じなかった。
The tensile strength of the produced fiber was measured in the same manner as in Example 1, and the average value of the strength was 90%.
0 MPa was obtained. In addition, as a result of a weather resistance test performed in the same manner as in Example 1, the strength was hardly deteriorated even after standing for 100 days or more.

【0024】(実施例4)被覆に使用する金属をAg
(3.5重量%)−Sn(96.5重量%)の合金とし
た以外は、実施例1と同様の方法で金属被覆を表面に形
成したフッ化物光ファイバを作製した。合金を融解する
ためにダイスの温度は230℃とした。作製したファイ
バの外径は135μmであり、被覆の厚さは7.5μm
であった。
(Example 4) The metal used for coating was Ag.
A fluoride optical fiber having a metal coating formed on its surface was produced in the same manner as in Example 1 except that an alloy of (3.5 wt%)-Sn (96.5 wt%) was used. The temperature of the die was 230 ° C. to melt the alloy. The produced fiber has an outer diameter of 135 μm and a coating thickness of 7.5 μm.
Met.

【0025】作製したファイバの引っ張り強度の測定を
実施例1と同様の方法で行い、強度の平均値として1.
0GPaを得た。また、実施例1と同様の方法で耐候性
試験を行なった結果、100日以上放置してもほとんど
強度劣化が生じなかった。
The tensile strength of the produced fiber was measured in the same manner as in Example 1, and the average value of the strength was 1.
0 GPa was obtained. In addition, as a result of a weather resistance test performed in the same manner as in Example 1, the strength was hardly deteriorated even after standing for 100 days or more.

【0026】(実施例5)フッ化物光ファイバ母材を、
FEP樹脂からなるチューブに挿入し、フッ化物光ファ
イバ母材の表面をFEPで被覆した。この被覆されたフ
ッ化物光ファイバ母材を加熱して線引きし、その後、実
施例1と同様の方法を用いてFEP膜上にInを被覆し
た。
(Embodiment 5) A fluoride optical fiber preform is
It was inserted into a tube made of FEP resin, and the surface of the fluoride optical fiber preform was covered with FEP. The coated fluoride optical fiber preform was heated and drawn, and then the FEP film was coated with In using the same method as in Example 1.

【0027】作製したファイバの強度を測定したとこ
ろ、引っ張り強度の平均値として1.1GPaの値を得
た。実施例1の方法と同様の耐候性試験で、100日以
上経過しても、強度の低下は認められなかった。また、
FEPの代わりに、UV硬化アクリレート樹脂を用いて
も同様の効果が得られ、引っ張り強度の平均値は1.1
GPaであった。
When the strength of the manufactured fiber was measured, a value of 1.1 GPa was obtained as the average value of the tensile strength. In the same weather resistance test as in the method of Example 1, no decrease in strength was observed even after 100 days or more. Also,
The same effect can be obtained by using a UV curable acrylate resin instead of FEP, and the average tensile strength is 1.1.
It was GPa.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
高強度でかつ耐候性の高いファイバが作製できるため、
従来のファイバで実用化の障害になると予想されていた
信頼性の問題が克服できるという利点がある。
As described above, according to the present invention,
Since it is possible to manufacture a fiber with high strength and high weather resistance,
It has the advantage of overcoming the reliability problem that was predicted to be a barrier to practical use with conventional fibers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる線引き装置の概略構成を示
す模式図である。
FIG. 1 is a schematic diagram showing a schematic configuration of a drawing device used in the present invention.

【図2】Inにより被覆されたフッ化物光ファイバの断
面図である。
FIG. 2 is a cross-sectional view of a fluoride optical fiber coated with In.

【図3】フッ化物光ファイバの耐候性試験結果を示す特
性図である。
FIG. 3 is a characteristic diagram showing a result of a weather resistance test of a fluoride optical fiber.

【符号の説明】 1 フッ化物ガラス母材 2 線引き用電気炉 3 金属融液 4 金属被覆用ダイス 5 ダイス加熱用ヒータ 6 ファイバ巻取り用ボビン[Explanation of symbols] 1 Fluoride glass base material 2 Electric furnace for drawing 3 Metal melt 4 Metal coating die 5 Die heating heater 6 Fiber winding bobbin

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フッ化物ガラスによって構成されたフッ
化物光ファイバにおいて、前記フッ化物ガラスの表面が
金属により覆われていることを特徴とするフッ化物光フ
ァイバ。
1. A fluoride optical fiber made of fluoride glass, wherein the surface of the fluoride glass is covered with a metal.
【請求項2】 フッ化物ガラスよりなる光ファイバ用母
材を加熱延伸して所定の外径を有するフッ化物光ファイ
バを形成する工程と、 該フッ化物光ファイバを、金属の融液中を通過させてそ
の表面に前記金属を被覆する工程とを含むことを特徴と
するフッ化物光ファイバの作製方法。
2. A step of forming a fluoride optical fiber having a predetermined outer diameter by heating and stretching an optical fiber base material made of fluoride glass, and passing the fluoride optical fiber through a melt of metal. And a step of coating the surface thereof with the metal, the method for producing a fluoride optical fiber.
JP4345773A 1992-12-25 1992-12-25 Fluoride optical fiber and its production Pending JPH06194551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4345773A JPH06194551A (en) 1992-12-25 1992-12-25 Fluoride optical fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4345773A JPH06194551A (en) 1992-12-25 1992-12-25 Fluoride optical fiber and its production

Publications (1)

Publication Number Publication Date
JPH06194551A true JPH06194551A (en) 1994-07-15

Family

ID=18378880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4345773A Pending JPH06194551A (en) 1992-12-25 1992-12-25 Fluoride optical fiber and its production

Country Status (1)

Country Link
JP (1) JPH06194551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010105507A (en) * 2000-05-12 2001-11-29 윤종용 Alloy coated optical fiber and fabrication method thereof
US20150104138A1 (en) * 2013-10-10 2015-04-16 Michael David Johnson Method and Apparatus for Processing Optical Fiber Under Microgravity Conditions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010105507A (en) * 2000-05-12 2001-11-29 윤종용 Alloy coated optical fiber and fabrication method thereof
US20150104138A1 (en) * 2013-10-10 2015-04-16 Michael David Johnson Method and Apparatus for Processing Optical Fiber Under Microgravity Conditions
US9533915B2 (en) * 2013-10-10 2017-01-03 Michael David Johnson Method and apparatus for processing optical fiber under microgravity conditions

Similar Documents

Publication Publication Date Title
JPH10114550A (en) Optical fiber, its drawing device, and manufacture of optical fiber
JP2765033B2 (en) Optical fiber drawing method
US4427717A (en) Process for producing an object with a chiralic structure obtained from a shapeable material source
WO2013024839A1 (en) Method and device for manufacturing fiber-optic strands
US9533915B2 (en) Method and apparatus for processing optical fiber under microgravity conditions
JPS6198305A (en) Manufacture of optical fiber having synthetic resin coating and optical fiber having synthetic resin coating produced thereby
JPH07115878B2 (en) Method for producing optical fiber with high mechanical resistance by drawing with large tensile force
JPH06194551A (en) Fluoride optical fiber and its production
JP2635475B2 (en) Optical fiber coating forming method
JP4983559B2 (en) Method for manufacturing metal-coated optical fiber
CN111427115B (en) Surface modified metal coating optical fiber and preparation method and preparation system thereof
JP2928723B2 (en) Optical fiber manufacturing method
JPS61136941A (en) Manufacture of metal-coated optical fiber
JPH0692683A (en) Optical fiber of fluoride
JP2009251376A (en) Metal covered optical fiber and manufacturing method thereof
JP2003226559A (en) Method of manufacturing optical fiber
JPH06273642A (en) Fluoride optical fiber
JP3196947B2 (en) Fabrication method of fluoride optical fiber
JP3683429B2 (en) Optical fiber drawing method
JPH07234322A (en) Method for drawing plastic optical fiber
JP2968678B2 (en) Method for producing optical fiber and spinning furnace for producing optical fiber
JPS63201031A (en) Production of optical fiber
JPS6245186B2 (en)
JPH0555456B2 (en)
JP2001124938A (en) Manufacturing method of gi-type plastic optical fiber