JPH06194362A - Metabolism analysis method - Google Patents

Metabolism analysis method

Info

Publication number
JPH06194362A
JPH06194362A JP5092596A JP9259693A JPH06194362A JP H06194362 A JPH06194362 A JP H06194362A JP 5092596 A JP5092596 A JP 5092596A JP 9259693 A JP9259693 A JP 9259693A JP H06194362 A JPH06194362 A JP H06194362A
Authority
JP
Japan
Prior art keywords
exp
value
concentration
function
approximate value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5092596A
Other languages
Japanese (ja)
Other versions
JPH0769328B2 (en
Inventor
Akiyo Shigematsu
昭世 重松
Junko Nishigaki
淳子 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seitai Kagaku Kenkyusho KK
Original Assignee
Seitai Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seitai Kagaku Kenkyusho KK filed Critical Seitai Kagaku Kenkyusho KK
Priority to JP5092596A priority Critical patent/JPH0769328B2/en
Publication of JPH06194362A publication Critical patent/JPH06194362A/en
Publication of JPH0769328B2 publication Critical patent/JPH0769328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To represent temporal variation of the concentration of drug or metabolite thereof in humor including blood accurately by approximating the temporal variation of the concentration of a labeled body, e.g. a drug, using a function shown by a specific formula CONSTITUTION:A drug, a poison, or a substrate is given to an animal and the temporal variation of the concentration of the substance and/or the metabolite thereof in humor, e.g. blood, is measured in order to analyze metabolism in the body of the animal. Temporal variation of concentration Cp in the humor is approximated by a function; Y=Aexp(-k1t)+B(1-exp(-k1t))-(1-exp(-k2t)exp(-k3t), or Y=A(exp(-k1t)+b-(1-exp(-k1t))-(l-exp(-k2t))exp(-k3t)). In the formula, (t) represents the time to be elapsed after dosage, and A, B, b, k1, k2, k3 represent constants. The analysis method can be applied to phleboclysis, endoceliac injection, or oral dispensation, and especially useful for phleboclysis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薬物、基質等の動態解析
方法に関するもので、特に放射性標識体等を利用して、
代謝経路の律速段階となる代謝プールの大きさはもとよ
り、代謝容量、代謝速度に関する定量的情報を得ること
ができる、薬物、基質等の動態解析方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for analyzing the kinetics of drugs, substrates, etc.
The present invention relates to a kinetic analysis method for drugs, substrates, etc., which can obtain quantitative information on the metabolic capacity and the metabolic rate as well as the size of the metabolic pool that is the rate-determining step of the metabolic pathway.

【0002】[0002]

【従来の技術】炭素、水素、硫黄、リン等の適当な放射
性同位体で標識した薬物、毒物、あるいは基質を静脈注
射、腹腔内注射、経口投与等の方法で動物に投与し、血
液中の放射能濃度の時間的変化を測定することにより、
動物体内での代謝を解析することができる。あるいは、
窒素等の適当な安定(非放射性)同位体で標識した薬物
等を静脈注射等の方法で動物に投与し、血液中の標識濃
度の時間的変化を測定することにより、体内での代謝を
解析することができる。
2. Description of the Related Art Drugs, toxins, or substrates labeled with a suitable radioisotope such as carbon, hydrogen, sulfur, or phosphorus are administered to animals by intravenous injection, intraperitoneal injection, oral administration, etc. By measuring the change in radioactivity concentration over time,
Metabolism in animals can be analyzed. Alternatively,
Metabolism in the body is analyzed by administering a drug labeled with an appropriate stable (non-radioactive) isotope, such as nitrogen, to animals by intravenous injection, etc., and measuring the time-dependent change in labeled concentration in blood. can do.

【0003】放射性標識体を静脈注射したとき、血液中
の放射能濃度の時間的変化は多くの場合、投与後の時間
の真数をグラフの横軸に、血液中放射能濃度の対数を縦
軸にプロットしたとき、近似的に、直線または2個もし
くは3個以上の直線部分を含む曲線で示されることを利
用して、解析されていた。
When a radiolabeled substance is intravenously injected, the time-dependent change in the radioactivity concentration in the blood is often the true number of the time after administration on the horizontal axis of the graph, and the logarithm of the blood radioactivity concentration on the vertical axis. When plotted on an axis, it was analyzed by utilizing the fact that it is approximately represented by a straight line or a curve containing two or more straight line portions.

【0004】前者、すなわち血液中放射能濃度の時間的
変化が片対数グラフ上で直線に近似される場合には、血
液中放射能濃度Cpの時間的変化は Cp=Co exp(-λt) で表され(t は投与後の時間、Co,λは定数)、標識体
の代謝に関与する代謝プールは存在しないと推定され
る。これに対して、後者の場合、すなわちグラフが2つ
以上の直線部分から成る場合には、血液中放射能濃度Cp
の時間的変化は Cp=C1 exp(-λ1t)+C2 exp(-λ2t)+C3 exp(-λ3t)+・・・ (1) で表され(C1, C2, C3;λ123 等は定数)、何ら
かの代謝プールの存在が推定される。
In the former case, that is, when the temporal change in the radioactivity concentration in the blood is approximated to a straight line on a semilogarithmic graph, the temporal change in the radioactivity concentration in the blood Cp is Cp = Co exp (-λt). (T is the time after administration, Co and λ are constants), and it is estimated that there is no metabolic pool involved in the metabolism of the labeled substance. On the other hand, in the latter case, that is, when the graph consists of two or more straight lines, the blood radioactivity concentration Cp
The change over time of Cp = C 1 exp (-λ 1 t) + C 2 exp (-λ 2 t) + C 3 exp (-λ 3 t) + ・ ・ ・ (1) (C 1 , C 2 , C 3 ; λ 1 , λ 2 , λ 3 etc. are constants), and the existence of some metabolic pool is estimated.

【0005】対応するCp,t の値の組合せから、C1,
C2, C3等およびλ123 等のパラメータの最適値を
求める演算プログラムも市販されている。
From the corresponding combination of Cp, t values, C 1 ,
Calculation programs for obtaining optimum values of parameters such as C 2 and C 3 and λ 1 , λ 2 and λ 3 are also commercially available.

【0006】しかし、グラフ上でtが充分小さい領域
(C1, λ1 に関して)およびtが充分大きい領域(C2,
λ2 等に関して)からC1, C2, C3 等およびλ123
等の定数(パラメータ)が精度よく求められるの
は、、λ1 がλ2 等より充分大きい場合、あるいはλ2
がλ3 等より充分大きい場合に限られる。λ1 とλ2
との差が比較的小さい場合には直線部分の占める割合が
小さくなり、グラフから求められるC1,C2およびλ2
の精度が悪く、得られたグラフの実測データとの適合が
極めて悪い。このような場合には、グラフを用いないで
各パラメータを算出する演算プログラムによる計算の精
度も極めて悪くなる。
However, on the graph, a region where t is sufficiently small (for C 1 , λ 1 ) and a region where t is sufficiently large (C 2 ,
λ 2 etc.) to C 1 , C 2 , C 3 etc. and λ 1 , λ 2 , λ 3
If the constant (parameter) is sufficiently greater than ,, lambda 1 being asked accurately has lambda 2, etc. etc., or lambda 2
Is limited to the case where is sufficiently larger than λ 3 etc. If the difference between λ 1 and λ 2 etc. is relatively small, the proportion occupied by the straight line part will be small and the accuracy of C 1 , C 2 and λ 2 etc. obtained from the graph will be poor, and the measured data of the obtained graph The conformity with is extremely poor. In such a case, the accuracy of calculation by an arithmetic program that calculates each parameter without using a graph becomes extremely poor.

【0007】C1, C2等およびλ12 等のパラメータの
精度が比較的良好な場合でも、それらのパラメータの値
を、推定される代謝モデル中のプールの容量や血液流速
等と直接結びつけることは困難であった。
Even when the accuracy of parameters such as C 1 and C 2 and λ 1 and λ 2 is relatively good, the values of those parameters are used as the pool volume and blood flow velocity in the estimated metabolic model. It was difficult to connect directly.

【0008】また、従来の関数(1) (単純な指数関数の
和)で表す方法が適用されるのは、血液中濃度Cpが常に
減少する場合に実質上限られており、減少の勾配が途中
で増加する場合(この場合変曲点が現れる)、特に濃度
Cpの時間的変化が顕著な極大を示す場合には、その適用
が困難であった。
The conventional method (1) (the sum of simple exponential functions) is applied when the blood concentration Cp is constantly decreased, and the slope of the decrease is midway. When the value increases with (in this case, an inflection point appears), especially the density
It was difficult to apply Cp when it showed a marked maximum with time.

【0009】[0009]

【発明が解決しようとする課題】それ故、血液等の体液
中での濃度の時間的変化を、比較的簡単な形の関数で精
度よく表現することができ、代謝モデルの推定や、その
中の代謝プールの大きさの少なくとも半定量的な推定を
可能にする、薬物、毒物、基質等の動態解析方法が切に
望まれている。減少の勾配が途中で増加したり、顕著な
極大を示す等、濃度Cpの時間的変化が複雑なプロフィル
を示す場合にも、濃度の時間的変化を比較的簡単な形の
関数で精度よく表現して、薬物等の体内動態を解析する
方法が切に望まれている。
Therefore, it is possible to accurately express the temporal change of the concentration in body fluid such as blood by a function of a relatively simple form, and to estimate the metabolic model and There is an urgent need for a method for analyzing the kinetics of drugs, toxins, substrates, etc., which enables at least semi-quantitative estimation of the size of the metabolic pool of E. coli. Even if the time-dependent change in concentration Cp shows a complicated profile, such as the decrease gradient increases in the middle or shows a remarkable maximum, the time-dependent change in concentration can be accurately expressed with a relatively simple function. Therefore, a method for analyzing the in vivo kinetics of drugs and the like has been earnestly desired.

【0010】本発明の目的は、第一に、血液等の体液中
での薬物等およびそれらの代謝物の濃度の時間的変化
を、複雑なプロフィルを有する場合でも、比較的簡単な
形の関数で精度よく表現することができる、薬物等の動
態解析方法を実現することにある。
The object of the present invention is, firstly, to obtain a function of the time-dependent change in the concentration of a drug or the like and a metabolite thereof in a body fluid such as blood in a relatively simple form even if the profile is complicated. It is to realize a dynamic analysis method for drugs and the like that can be accurately expressed by.

【0011】本発明の目的は、第二に、薬物等の生体内
における代謝モデルの推定や、その中の代謝プールの大
きさの少なくとも半定量的な推定を可能にする、薬物等
の体内動態解析方法を実現することにある。
Secondly, the object of the present invention is to estimate the in vivo metabolism model of a drug or the like, and at least semi-quantitatively estimate the size of the metabolic pool therein, the pharmacokinetics of the drug or the like. It is to realize the analysis method.

【0012】[0012]

【課題を解決するための手段】本発明では、上記目的を
達成するため、薬物等の標識体等の体液中での濃度Cpの
時間的変化を関数 Y=A exp(-k1t) + B{1−exp(-k1t)}{1−exp(-k2t')} exp(-k3t) (2) で近似的に表す(t は投与後の時間、A ,B ,k1,k2
k3は定数を表し、t'はt−d に等しく、d は0又は正の
実数を表すが、t がd より大きくないときt'は0であ
る)。
In the present invention, in order to achieve the above-mentioned object, the time-dependent change of the concentration Cp of a labeled substance such as a drug in a body fluid is expressed by a function Y = A exp (-k 1 t) + B {1−exp (-k 1 t)} {1−exp (-k 2 t ')} exp (-k 3 t) (2) is approximately expressed (t is the time after administration, A, B , K 1 , k 2 ,
k 3 represents a constant, t 'is equal to t-d, d is 0 or a positive real number, when t is not greater than d t' is 0).

【0013】投与後の時間t の真数をグラフの横軸に、
血液中標識体濃度Cpの対数を縦軸にプロットしたとき、
t=0 における曲線の切片からA を、t=0 付近において曲
線の接線の勾配からk1を、曲線の接線の勾配が最小とな
る部分の接線の勾配からk3を、それぞれ近似値として求
める。仮に k3=k2,k3=2k2, k3=3k2, k3=4k2, 2k3=k2, 3k3
k2, 4k3=k2 等とした場合について、それぞれ L={1−exp(-k2t)} exp(-k3t) が極大となるtm(その附近でCpの実測値の存在するt を
tmとしてもよい)において {Cp−A exp(-k1tm)} /{1−exp(-k1tm)} {1−exp(-k
2tm)} exp(-k3tm) の値を求め(A ,k1,k3としては前述の近似値を用い
る)、それをB の仮の近似値として、 A exp(-k1t) + B{1−exp(-k1t)}{1−exp(-k2t)} exp(-
k3t) の値がCp(実測値)に最も近い値を与えるようなk2の値
(k3との相対関係)を見出し、このk2を用いて Y=A exp(-k1t) +B {1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t) を血液中の標識体の濃度Cpの時間的変化を表す関数とす
る。
The true number of the time t after administration is plotted on the horizontal axis of the graph,
When the logarithm of the blood labeled substance concentration Cp is plotted on the vertical axis,
Approximate A from the intercept of the curve at t = 0, k 1 from the tangent slope of the curve near t = 0, and k 3 from the tangent slope of the part where the tangent of the curve is minimum. . If k 3 = k 2 , k 3 = 2k 2 , k 3 = 3k 2 , k 3 = 4k 2 , 2k 3 = k 2 , 3k 3 =
When k 2 and 4k 3 = k 2, etc., L m = {1−exp (-k 2 t)} exp (-k 3 t) is the maximum t m (the measured value of Cp around that). Exists t
(may be t m ), {Cp−A exp (-k 1 t m )} / {1−exp (-k 1 t m )} {1−exp (-k
2 t m )} exp (-k 3 t m ) is found (A, k 1 , k 3 use the above approximations), and A exp (-k 1 t) + B {1−exp (-k 1 t)} {1−exp (-k 2 t)} exp (-
The value of k 2 (relative relationship with k 3 ) that gives the value of k 3 t) closest to Cp (measured value) was found, and using this k 2 , Y = A exp (-k 1 t ) + B {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
Let p (-k 3 t) be a function representing the change over time in the concentration Cp of the labeled substance in blood.

【0014】{1−exp(-k1tm)}が1に近似できるとし
て、式 {Cp−A exp(-k1tm)}/{1−exp(-k2tm)} exp(-k3tm) を用いてB の仮の近似値を求めてもよい。
Assuming that {1−exp (−k 1 t m )} can be approximated to 1, the expression {Cp−A exp (−k 1 t m )} / {1−exp (−k 2 t m )} exp You may use (-k 3 t m ) to find a temporary approximation to B.

【0015】以上の計算に際し、 b=B /A として関数
(2) を下記のように書き換えて、 bを求めるほうが簡便
である。 Y= A[exp(-k1t)+ b{1−exp(-k1t)}{1−exp(-k2t)}exp(-k3t)] (3) b は1より大きくなることはない。
In the above calculation, b = B / A
It is easier to find (b) by rewriting (2) as follows. Y = A [exp (-k 1 t) + b {1−exp (-k 1 t)} {1−exp (-k 2 t)} exp (-k 3 t)] (3) b is 1 It never grows.

【0016】k2=mk3 (m は正の実数)の関係があると
き、 L={1−exp(-k2t)}exp(-k3t)が極大となるtmは tm={ln(m+1)}/mk3 である。 k2=mk3 (tm={ln(m+1)}/mk3 において得ら
れるL の極大値は {1−1/(m+1)}/{(m+1)/m} である。例えば、k2=k3であるとき、tm=ln2/k3であ
り、L の極大は1/4である。k2=2k3 であるとき、tm=l
n3/(2k3)である。L の極大値は(2/3)(3)-1/2 すなわち
約1/2.6である。 m>1 であるときL の極大値は、k2
k3であるときの極大値1/4より常に大きい。
When there is a relation of k 2 = mk 3 (m is a positive real number), t m at which L = {1−exp (-k 2 t)} exp (-k 3 t) becomes maximum is t m = {Ln (m + 1)} / mk 3 . The maximum value of L obtained at k 2 = mk 3 (t m = {ln (m + 1)} / mk 3 is {1-1 / (m + 1)} / {(m + 1) / m} For example, when k 2 = k 3 , t m = ln 2 / k 3 and the maximum of L is 1 / 4.When k 2 = 2k 3 , t m = 1
It is n3 / (2k 3). The maximum value of L is (2/3) (3) -1/2 or about 1 / 2.6. When m> 1, the maximum value of L is k 2 =
It is always larger than the maximum value 1/4 when k 3 .

【0017】k3=nk2 の関係があるとき、{1−exp(-k2
t)} exp(-k3t) が極大となるtmは tm={ln(n+1)−ln(n)}/k2={ln(n+1)−ln(n)}/(k3/n) である。tm={ln(n+1)−ln(n)}/(k3/n)において得られ
るL の極大値は [1−{n/(n+1)}]{n/(n+1)}n である。例えばk3=4k2
であれば、L の極大値は(1/5)(4/5)4 、すなわち約0.08
で、 n>1 であるときL の極大値は、k2=k3のときの極
大値1/4 より常に小さい。
When there is a relation of k 3 = nk 2 , {1-exp (-k 2
t)} exp (-k 3 t) is the maximum tm is t m = {ln (n + 1) −ln (n)} / k 2 = {ln (n + 1) −ln (n)} / (k 3 / n). The maximum value of L obtained at t m = {ln (n + 1) −ln (n)} / (k 3 / n) is [1− {n / (n + 1)}] {n / (n + 1)} n. For example, k 3 = 4k 2
Then the maximum of L is (1/5) (4/5) 4, or about 0.08.
Then, the maximum value of L when n> 1 is always smaller than the maximum value 1/4 when k 2 = k 3 .

【0018】このような関係を利用して、例えば、まず
k2=k3と仮定し、 {Cp/A −exp(-k1tm)}/[{1−exp(-k1tm)}/4] =4{Cp/A−exp(-k1ln2/k3)} /{1−exp(-k1ln2/k3)} を仮のb の値として、関数(3) すなわち Y=A Y0=A [exp(-k1t)+ b{1−exp(-k1t)}{1−exp(-k2
t)} exp(-k3t)] の値を求め、次いでk2=2k3 と仮定して、 {Cp−A exp(-k1tm)} /2.6 {1−exp(-k1tm)} tm
ln3/(2k3) を仮のb の値として、関数(3) の値を求め、Cpの実測値
との差異が減少するか、増大するか、判定する。もし実
測値との差異|Y −Cp|が全体として減少するならば、
m=k2/k3 の値をさらに3または4、あるいはそれより
大として、|Y −Cp|が最も小さくなるm=k2/k3の値
を見つける。
Utilizing such a relationship, for example, first,
Assuming that k 2 = k 3 , {Cp / A −exp (-k 1 t m )} / [{1−exp (-k 1 t m )} / 4] = 4 {Cp / A−exp (- k 1 ln2 / k 3 )} / {1−exp (-k 1 ln2 / k 3 )} is a temporary value of b, and the function (3), that is, Y = AY 0 = A [exp (-k 1 t) + b {1−exp (-k 1 t)} {1−exp (-k 2
t)} exp (-k 3 t)], and assuming that k 2 = 2k 3 , {Cp−A exp (-k 1 t m )} /2.6 {1−exp (-k 1 t m )} t m
LN3 / a (2k 3) as the value of the temporary b, obtains the value of the function (3), or the difference between the measured value of Cp is reduced, or increases, or not. If the difference from the measured value | Y−Cp | decreases as a whole,
By further increasing the value of m = k 2 / k 3 to 3 or 4, or higher, find the value of m = k 2 / k 3 where | Y−Cp | becomes the smallest.

【0019】k2=2k3 としたとき、k2=k3である場合よ
り実測値との差異|Y −Cp|が増大するなら、k3=nk2
(n=2,3,4等) として、上と同様の手順で最適のn を見
つける。
When k 2 = 2k 3 , if the difference | Y −Cp | from the measured value increases when k 2 = k 3 , then k 3 = nk 2
(n = 2, 3, 4, etc.), find the optimal n by the same procedure as above.

【0020】この最適のm またはn の値を用いて得られ
るb の値に対して、関数(3) の値とCpの実測値の差異
(標準偏差の和として表す)を求め、b およびk2の値、
さらに必要ならk1,k3の値を修正して、最適の関数(2)
または(3) を決定する。
The difference between the value of the function (3) and the measured value of Cp (expressed as the sum of standard deviations) is calculated for the value of b obtained by using this optimum value of m or n, and b and k A value of 2 ,
If necessary, modify the values of k 1 and k 3 to obtain the optimal function (2)
Or decide (3).

【0021】関数Y0の増加する領域において、k2の値を
修正しても|Y −Cp|の値が小さくならない場合には、
t の代りに、t が正の定数d より大きいとき t−d に等
しく、t がd より大きくないとき0である変数t'を用
い、適当なd の値を選択することにより、関数の近似の
精度を改善することができる。
In the increasing region of the function Y 0 , if the value of │Y-Cp│ does not become small even if the value of k 2 is modified,
By substituting for t a variable t'which is equal to t-d when t is greater than a positive constant d and is 0 when t is not greater than d, and choosing an appropriate value for d The accuracy of can be improved.

【0022】上記の計算は電子計算機を用いると容易に
行うことができる。電子計算機は、例えば、A について
有効数字1から9.999 まで、10進桁0.01から1000まで、
b,k1,k2,k3について、有効数字1から9.9 または9.
99まで、10進桁0.001から10までの数値信号を演算部へ
選択的に出力できるようにしておけば、充分に目的を達
する。
The above calculation can be easily performed by using an electronic calculator. The electronic computer, for example, has significant digits 1 to 9.999 for A, decimal digits 0.01 to 1000,
Significant digits 1 to 9.9 or 9. for b, k 1 , k 2 , k 3 .
If the numerical signals up to 99 and decimal digits from 0.001 to 10 can be selectively output to the arithmetic unit, the purpose is sufficiently achieved.

【0023】本発明の代謝解析方法は、静脈注射、腹く
う内注射、経口投与等、種々の投与方法に対して適用で
きるが、特に静脈注射により投与する場合に有用であ
る。静脈注射により放射能標識体を投与し、血液中の放
射能濃度の時間的変化を測定する場合、本発明で用いる
関数は血液中の放射能濃度の時間的変化の実測値に極め
てよく一致する。放射能標識体の代りに安定同位体で標
識された化合物を用いても同様である。標識体を用いず
に、化合物自体およびその代謝物の少なくとも一部を微
量分析法(液体クロマトグラフィ、ガスクロマトグラフ
ィ等)を用いて追跡する場合にも有効である。
The metabolic analysis method of the present invention can be applied to various administration methods such as intravenous injection, intraperitoneal injection, and oral administration, but is particularly useful when administered by intravenous injection. When the radiolabel is administered by intravenous injection and the time change of the radioactivity concentration in blood is measured, the function used in the present invention agrees very well with the measured value of the time change of the radioactivity concentration in blood. . The same applies when a compound labeled with a stable isotope is used instead of the radiolabel. It is also effective when tracing at least a part of the compound itself and its metabolites by using a microanalysis method (liquid chromatography, gas chromatography, etc.) without using a labeled substance.

【0024】本発明の代謝解析方法は、新薬の開発にお
いてその体内動態を明らかにする上で極めて有用であ
る。
The metabolic analysis method of the present invention is extremely useful in clarifying its pharmacokinetics in the development of new drugs.

【0025】[0025]

【実施例】以下に実施例を示し、本発明のさらに具体的
な説明とする。 [実施例1]34 MBq/mmolの14Cでメトキシ位に標識し
たイヌリン2.3 マイクロモルを含む溶液0.05ccを体重220 g の
ウィスター系雄ラットの門脈に注射し、15秒、75秒、 3
分、5分、10分、20分、30分、40分、50分、60分後にそ
れぞれ肝静脈から約 100マイクロリットルずつ採血し、常法によ
り血しょうを得、その放射能を液体シンチレーション計
数法により測定した。測定結果を表1に示す。
EXAMPLES The following examples are given to further illustrate the present invention. [Example 1] 0.05 cc of a solution containing 2.3 μmol of inulin labeled at the methoxy position with 34 Cq / mmol of 14 C was injected into the portal vein of a Wistar male rat weighing 220 g for 15 seconds, 75 seconds, 3 seconds.
Minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, and 60 minutes later, about 100 microliters of blood was collected from the hepatic vein, plasma was obtained by a conventional method, and its radioactivity was counted by liquid scintillation counting. It was measured by the method. The measurement results are shown in Table 1.

【0026】 [0026]

【0027】投与後の時間t の真数を横軸に、相対放射
能強度Cpの対数を縦軸にプロットしたグラフを作成し、
t =15秒,75秒,3分に対応する点の最も近傍を通る直
線を引き、その勾配および縦軸(t=0)の切片を求めた。
勾配は-0.6、切片は1530であった。また上記グラフ上
で、t =20,30,40,50,60分の各点の最も近傍を通る
直線の勾配を求めたところ、-0.05 であった。
A graph was prepared by plotting the true number of the time t after administration on the horizontal axis and the logarithm of the relative radioactivity intensity Cp on the vertical axis,
A straight line passing through the nearest point corresponding to t = 15 seconds, 75 seconds, and 3 minutes was drawn, and the slope and the intercept of the vertical axis (t = 0) were obtained.
The slope was -0.6 and the intercept was 1530. Further, when the gradient of the straight line passing through the nearest points of t = 20, 30, 40, 50, 60 minutes was calculated on the above graph, it was -0.05.

【0028】そこで仮にA として1530を、k1として 0.6
を、k3として 0.05 を、それぞれ選び、次にk2の値を決
定する。k2=mk3 におけるm を選ぶために、前記L の極
大値を与えるtmをまず推定する( L={1−exp(-k2t)} e
xp(-k3t))。k3=0.05であるとき、tmはm との間に表2
に示す関係を有する。
Then, suppose that 1530 is used as A and 0.6 is used as k 1.
Is selected as k 3 , 0.05, and then the value of k 2 is determined. In order to select m in k 2 = mk 3 , first estimate t m that gives the maximum value of L (L = {1−exp (-k 2 t)} e
xp (-k 3 t)). When k 3 = 0.05, t m is between m and
Have the relationship shown in.

【0029】 [0029]

【0030】実測値のある3分、5分、10分に近いtm
値3.04,4.80,11.0に対応するm として20, 10, 2 を選
び、これらに対してtmにおけるL の値を計算した。L の
値の計算過程を表3に示す。L はm ,k3,tmとの間に L ={1−exp(-mk3tm)}exp(-k3tm) の関係があるが、 1−exp(-mk3tm) = 1−exp{-ln(m+1)} = 1− 1/(m+1) が成立つので、L は L ={1− 1/(m+1)} exp(-k3tm) で表される。従って、m =20, 10, 2 に対してL は表3
の右欄に示す値となる。
20, 10 and 2 are selected as m corresponding to the values 3.04, 4.80 and 11.0 of t m which are close to 3 minutes, 5 minutes and 10 minutes where the measured values are, and the value of L at t m is set to these values. I calculated. Table 3 shows the calculation process of the value of L. L has the relationship of L = {1−exp (-mk 3 t m )} exp (-k 3 t m ) between m, k 3 and t m , but 1−exp (-mk 3 t m ) = 1-exp {-ln (m + 1)} = 1-1 / (m + 1) holds, so L is L = {1-1 / (m + 1)} exp (-k 3 t m ). Therefore, for m = 20, 10, 2
The values are shown in the right column of.

【0031】 表 3 m 1/(m+1) 1− 1/(m+1) k3tm exp(-k3tm) L 20 0.0476 0.952 0.152 0.854 0.818 10 0.0909 0.909 0.240 0.787 0.715 2 0.333 0.667 0.549 0.578 0.386 Table 3 m 1 / (m + 1) 1-1 / (m + 1) k 3 t m exp (-k 3 t m ) L 20 0.0476 0.952 0.152 0.854 0.818 10 0.0909 0.909 0.240 0.787 0.715 2 0.333 0.667 0.549 0.578 0.386

【0032】一方、3通りのtmに対する Cp/A −exp(-k
1tm)の値をCpの実測値を用いて算出した。計算過程およ
び結果を表4に示す。
On the other hand, Cp / A -exp (-k for t m triplicate
The value of 1 t m ) was calculated using the measured value of Cp. The calculation process and results are shown in Table 4.

【0033】 表 4 m tm exp(-k1tm) t Cp/A Cp/A −exp(-k1tm) 20 3.04 0.142 3 0.258 0.116 10 4.80 0.050 5 0.182 0.132 2 11.0 0.0025 10 0.101 0.0985Table 4 mt m exp (-k 1 t m ) t Cp / A Cp / A −exp (-k 1 t m ) 20 3.04 0.142 3 0.258 0.116 10 4.80 0.050 5 0.182 0.132 2 11.0 0.0025 10 0.101 0.0985

【0034】m =20, 10, 2 について、比 {Cp/A−exp
(-k1tm)} /L の値を求めると m =20 t=3 0.116/0.818 = 0.141 m =10 t=5 0.132/0.715 = 0.185 m = 2 t=10 0.0985/0.386 = 0.255 となった。この比の値はb の仮の値として用いることが
できる。
For m = 20, 10, 2, the ratio {Cp / A-exp
The value of (-k 1 t m )} / L is m = 20 t = 3 0.116 / 0.818 = 0.141 m = 10 t = 5 0.132 / 0.715 = 0.185 m = 2 t = 10 0.0985 / 0.386 = 0.255 It was The value of this ratio can be used as a temporary value for b.

【0035】そこで、k2および bの値として k2=20k3=1.0 b=0.14 k2=10k3=0.5 b=0.18 k2= 2k3=0.1 b=0.25 の3通りの組合せを選んで、Y を算出した(前述の通
り、A としては1530を、k1として 0.6を、k3として 0.0
5 を、それぞれ用いた)。その結果、最も実測値との差
の小さくなるのはk2=10k3=0.5 b=0.18の組合せで
あった。しかしこの組合せは t≧20においてCpの実測値
より10%程度大きいY を与えるので、b の値を0.16まで
小さくすると、 t≧20においてY の値とCpの実測値の誤
差は極めて小となり、しかも t<20における誤差も充分
小であった。
Therefore, as the values of k 2 and b, three combinations of k 2 = 20k 3 = 1.0 b = 0.14 k 2 = 10k 3 = 0.5 b = 0.18 k 2 = 2k 3 = 0.1 b = 0.25 are selected. , Y was calculated (as described above, A was 1530, k 1 was 0.6, and k 3 was 0.0.
5 were used respectively). As a result, it was the combination of k 2 = 10k 3 = 0.5 b = 0.18 that had the smallest difference from the actually measured value. However, this combination gives Y that is about 10% larger than the measured value of Cp at t ≥ 20, so if the value of b is reduced to 0.16, the error between the value of Y and the measured value of Cp at t ≥ 20 becomes extremely small. Moreover, the error at t <20 was sufficiently small.

【0036】結局、Cpの時間的変化を近似的に表す関数
Yとして Y=1530 [exp(-0.6t)+0.16{1−exp(-0.6t)} {1−exp(-
0.5t)}exp(-0.05t)] が得られた。各測定時間における Yの値とCpの実測値と
を、表5に比較して示した。また、図1にグラフとして
示した。図1には、投与後の時間t の真数が横軸に、相
対放射能強度Cpの対数が縦軸に示されている。
After all, a function that approximately represents the temporal change of Cp
As Y Y = 1530 [exp (-0.6t) +0.16 {1−exp (-0.6t)} {1−exp (-
0.5t)} exp (-0.05t)] was obtained. Table 5 compares the Y value and the measured Cp value at each measurement time. Further, it is shown as a graph in FIG. In FIG. 1, the abscissa represents the true number of the time t 1 after administration, and the ordinate represents the logarithm of the relative radioactivity intensity Cp.

【0037】 [0037]

【0038】A の値1530は血しょう中の標識イヌリンの
初期濃度を、k1の値 0.6はイヌリンの肝臓等の組織への
移行速度を、k3の値0.05は尿へのイヌリンの排泄速度
を、k2は肝臓等の組織から血液へのイヌリンの再供給速
度を、b はその寄与の大きさを示すものと考えられる。
The excretion rate of inulin the initial concentration of the labeled inulin value 1530 in plasma of A, the value 0.6 of k 1 is the rate of migration to the tissues such as the liver of the inulin, the value 0.05 of k 3 is urine It is considered that k 2 represents the resupply rate of inulin from tissues such as liver to blood, and b represents the magnitude of its contribution.

【0039】[実施例2]上記のような計算はパーソナ
ルコンピュータを用いて行ってもよく、短時間で手間を
かけずに計算できる。パーソナルコンピュータに予め、
前記関数(3) におけるA について有効数字1から9.999
まで、10進桁0.1 から1000まで、b ,k1,k2,k3につい
て、有効数字1から9.99まで、10進桁0.001 から10まで
の数値信号を演算部へ選択的に出力できるようにしてお
く。放射能の測定結果をパーソナルコンピュータに入力
し、予め設定しておいたプログラムに従って計算を行わ
せれば、上記と同じ結果を得ることができる。
[Embodiment 2] The above calculation may be performed by using a personal computer, and the calculation can be performed in a short time without any trouble. In advance on the personal computer
Significant digits 1 to 9.999 for A in function (3) above
Up to 10 decimal digits from 0.1 to 1000, b, k 1 , k 2 , k 3 significant digits from 1 to 9.99 and decimal digits from 0.001 to 10 can be selectively output to the arithmetic unit. Keep it. The same result as above can be obtained by inputting the measurement result of radioactivity into a personal computer and performing calculation according to a preset program.

【0040】[実施例3]実施例1において、t が20分
以上ではexp(-k2tm)は1に比して無視できる。それ故 t
≧20におけるCp測定値についてCp/Aと(exp-k3t)の比の
平均値を求め、その結果0.16をb の仮の値とした。実施
例1と同様、m =20, 10, 2 に対してL の値を求め、{C
p/A −exp(-k1tm)} /L の比を求めると、 m =20 t=3 0.116/0.818 = 0.141 m =10 t=5 0.132/0.715 = 0.185 となる。3分と5分の間には測定点がないが、内挿によ
りm =16が最適と推定されたので、k2を0.8 とすると、
10分までの各測定時間における Yの値とCpの実測値との
関係は表6に示す通りとなった。
[Third Embodiment] In the first embodiment, exp (-k 2 t m ) is negligible as compared with 1 when t is 20 minutes or more. Hence t
The average value of the ratios of Cp / A and (exp-k 3 t) was calculated for the measured Cp values for ≧ 20, and 0.16 was set as the temporary value of b. Similar to the first embodiment, the value of L is calculated for m = 20, 10, 2, and {C
The ratio of p / A-exp (-k 1 t m )} / L is m = 20 t = 3 0.116 / 0.818 = 0.141 m = 10 t = 5 0.132 / 0.715 = 0.185. Although there is no measurement point between 3 minutes and 5 minutes, it is estimated by interpolation that m = 16 is optimal, so if k 2 is 0.8,
Table 6 shows the relationship between the Y value and the measured Cp value for each measurement time up to 10 minutes.

【0041】 [0041]

【0042】この結果から、15秒および75秒での関数y
の値はCp実測値に対し+の誤差が大きくなり、k2として
0.8 は過大で、むしろ0.6 が適当と判断された。
From this result, the function y at 15 and 75 seconds
Value increases the error of + to Cp Found, as k 2
0.8 was too large, and rather 0.6 was judged appropriate.

【0043】[実施例4]Sprague Dawley系のラットに
体重1kg当たり20mgのイナペリソン(筋肉弛緩剤)を
門脈から投与し、採取した静脈血から血清を得、ガスク
ロマトグラフィと質量分析により分離したイナペリソン
の濃度は、表7のごとくであった。
Example 4 Sprague Dawley rats were administered 20 mg / kg body weight of inaperisone (muscle relaxant) from the portal vein, serum was obtained from the collected venous blood, and separated by gas chromatography and mass spectrometry. The concentrations were as shown in Table 7.

【0044】 [0044]

【0045】本発明に従ってイナペリソンの濃度Cpを近
似的に表わす関数を求めたところ、下記の関数が得られ
た。 Y=4.7[exp(-0.115t)+0.6 {1−exp(-0.115t)} {1−exp
(-0.02t)}exp(-0.028t)] Yの値とCpの実測値との関係は表8に示す通りとなっ
た。
When a function approximating the concentration Cp of inaperisone was determined according to the present invention, the following function was obtained. Y = 4.7 [exp (-0.115t) +0.6 {1−exp (-0.115t)} {1−exp
(-0.02t)} exp (-0.028t)] The relationship between the Y value and the measured Cp value is shown in Table 8.

【0046】 [0046]

【0047】関数を Y=5.0[exp(-0.115t)+0.6 {1−exp(-0.115t)} {1−exp
(-0.018t')}exp(-0.028t)] t'= t−5 とすると、Y の値は表9に示す通りとなり、30分ないし
45分の領域の近似の精度がよくなった。
The function Y = 5.0 [exp (-0.115t) +0.6 {1−exp (-0.115t)} {1−exp
(-0.018t ')} exp (-0.028t)] t' = t−5, the value of Y becomes as shown in Table 9, 30 minutes or
The accuracy of the 45-minute region approximation is improved.

【0048】 [0048]

【0049】[0049]

【発明の効果】本発明の薬物、毒物、基質等の動態解析
方法によれば、血液等の体液中の標識体の濃度の時間的
変化を、比較的簡単な形の関数で精度よく表現すること
ができる。特に、極大や変曲点を示す等、複雑なプロフ
ィルを有する変化は、従来のコンパートメントモデルで
は表現が困難であったけれども、本発明によると、コン
ボリューション等の複雑な計算を行なうことなく、比較
的簡単な形の関数で精度よく表現できる。
EFFECTS OF THE INVENTION According to the method for analyzing the kinetics of drugs, toxic substances, substrates, etc. of the present invention, the temporal change in the concentration of the labeled substance in the body fluid such as blood can be accurately expressed with a relatively simple function. be able to. In particular, a change having a complicated profile, such as showing a maximum or an inflection point, is difficult to be expressed by the conventional compartment model, but according to the present invention, a comparison is performed without performing a complicated calculation such as convolution. Can be expressed accurately with a simple function.

【0050】また本発明によれば、薬物、毒物、基質等
の生体内における推定される代謝モデル中の、代謝プー
ルの大きさを少なくとも半定量的に推定することができ
る。そればかりでなく、代謝プールの大きさと、体液の
流量あるいは組織の摂取速度との相対関係が推定でき、
一方について情報があれば他方について推定することが
できる。
Further, according to the present invention, the size of the metabolic pool in the in vivo estimated metabolic model of drugs, poisons, substrates, etc. can be estimated at least semi-quantitatively. Not only that, but the relative relationship between the size of the metabolic pool and the body fluid flow rate or tissue uptake rate can be estimated,
If there is information about one, it can be estimated about the other.

【図面の簡単な説明】[Brief description of drawings]

【図1】 放射能強度の時間変化を示す関数及び実測値
を示すグラフである。
FIG. 1 is a graph showing a function showing a temporal change in radioactivity intensity and an actually measured value.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 特定の物質を動物に投与し、その物質お
よびその代謝物又はその何れかの血液等の体液中での濃
度の時間的変化を測定することにより動物体内での代謝
を解析する方法において、 前記体液中での濃度Cpの時間的変化を関数 Y=A exp(-k1t) + B{1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t) または Y=A[exp(-k1t) + b{1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t)] (t は投与後の時間、A ,B ,B ,k1,k2,k3は定数)
で近似的に表すことを特徴とする代謝解析方法。
1. Analysis of metabolism in an animal body by administering a specific substance to an animal and measuring the time-dependent change in the concentration of the substance and its metabolite or any one of them in body fluid such as blood. In the method, the time change of the concentration Cp in the body fluid is calculated by a function Y = A exp (-k 1 t) + B {1−exp (-k 1 t)} {1−exp (-k 2 t)}. ex
p (-k 3 t) or Y = A [exp (-k 1 t) + b {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
p (-k 3 t)] (t is the time after administration, A, B, B, k 1 , k 2 , k 3 are constants)
A metabolic analysis method characterized by being represented approximately by.
【請求項2】 前記特定の物質が薬物、毒物または基質
である、請求項1または2の代謝解析方法。
2. The metabolic analysis method according to claim 1, wherein the specific substance is a drug, a toxic substance or a substrate.
【請求項3】 前記特定の物質が、放射性同位体または
安定同位体で標識した薬物、毒物、または基質であり、
体液中の標識体濃度の時間的変化を測定することにより
動物体内での代謝を解析するものである、請求項2の代
謝解析方法。
3. The specific substance is a drug, toxin, or substrate labeled with a radioactive or stable isotope,
The metabolic analysis method according to claim 2, wherein the metabolism in the animal body is analyzed by measuring the time-dependent change in the concentration of the labeled substance in the body fluid.
【請求項4】 前記特定の物質が、放射性同位体で標識
した薬物、毒物、または基質である、請求項3の代謝解
析方法。
4. The metabolic analysis method according to claim 3, wherein the specific substance is a drug, a toxic substance, or a substrate labeled with a radioisotope.
【請求項5】 前記特定の物質を静脈注射により動物に
投与する、請求項1ないし4のいずれかの代謝解析方
法。
5. The metabolic analysis method according to claim 1, wherein the specific substance is administered to an animal by intravenous injection.
【請求項6】 前記体液が血液である、請求項1ないし
5の何れかの代謝解析方法。
6. The metabolic analysis method according to claim 1, wherein the body fluid is blood.
【請求項7】 投与後の時間t の真数をグラフの横軸
に、前記特定の物質及びその代謝物又はその何れかの体
液中での濃度の実測値Cpの対数を縦軸にプロットし、 このグラフ上の曲線の t=0 またはその付近における接
線の勾配からk1の近似値を、縦軸の切片からA の近似値
を求め、 k1の近似値を求めた領域よりt が大きい領域において、
曲線の勾配が近似的に一定となる部分の接線の勾配から
k3の近似値を求め、 仮に k3=mk2 (m=1,2,3,4,・・・・) または nk3=k2 (n=1,2,3,4,・・・・) としたとき、m またはn のうち少なくとも1つに対応す
るk2について {1−exp(-k2t)} exp(-k3t) が極大となるt 、または測定値を有するそれに近いt を
tmとし、tmにおいて {Cp−A exp(-k1tm)} /{1−exp(-k1tm)} {1−exp(-k
2tm)}exp(-k3tm) の値を求めてB の仮の値とするか、 {Cp/A −exp(-k1tm)} /{1−exp(-k1tm)} {1−exp(-k2
tm)}exp(-k3tm) の値を求めてb の仮の値とし、 この仮のB またはb の値、前記A の近似値、前記k1の近
似値、および前記k3の近似値を用いて、関数 Y=A exp(-k1t) + B{1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t) 又は Y=A[exp(-k1t) + b{1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t)] の値がCpに最も近い値を与えるようにk2を選び、 必要に応じてB またはb の値を修正して、t の全領域に
わたってY とCpの差が小さくなるようにし、 前記A , k1, k3の近似値、前記B またはb の値、および
前記k2の値、またはそれらをY とCpの差が小さくなるよ
うに修正した値を用いて、関数 Y=A exp(-k1t) +B {1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t) 又は Y=A[exp(-k1t) +b {1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t)] を体液中の前記濃度Cpの時間的変化を表す関数とする、
請求項1ないし6の何れかの代謝解析方法。
7. The true number of the time t after administration is plotted on the horizontal axis of the graph, and the logarithm of the measured value Cp of the concentration of the specific substance and its metabolite or one of the metabolites in the body fluid is plotted on the vertical axis. , Approximate value of k 1 is obtained from the gradient of the tangent line at or near t = 0 of the curve on this graph, and approximate value of A is obtained from the intercept of the vertical axis, and t is larger than the area where the approximate value of k 1 is obtained. In the area,
From the tangent slope where the slope of the curve is approximately constant
obtains an approximate value of k 3, if k 3 = mk 2 (m = 1,2,3,4, ····) or nk 3 = k 2 (n = 1,2,3,4, ···・), For which k 2 corresponds to at least one of m or n, {1−exp (-k 2 t)} exp (-k 3 t) is a maximum t, or it has a measured value. Close t
t m, and at t m {Cp−A exp (-k 1 t m )} / {1−exp (-k 1 t m )} {1−exp (-k
2 t m )} exp (-k 3 t m ), and use it as the temporary value of B, or {Cp / A −exp (-k 1 t m )} / {1−exp (-k 1 t m )} {1−exp (-k 2
t m )} exp (-k 3 t m ), and the temporary value of b is obtained, and the temporary value of B or b, the approximate value of A, the approximate value of k 1 , and k 3 The function Y = A exp (-k 1 t) + B {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
p (-k 3 t) or Y = A [exp (-k 1 t) + b {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
The value of p (-k 3 t)] is to select k 2 to provide the value closest to Cp, modify the value of B or b as necessary, a difference of Y and Cp over the entire region of t is Using the approximate value of A, k 1 , k 3 , the value of B or b, and the value of k 2 , or a value obtained by modifying them so that the difference between Y and Cp becomes small. , Function Y = A exp (-k 1 t) + B {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
p (-k 3 t) or Y = A [exp (-k 1 t) + b {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
p (-k 3 t)] is a function representing the temporal change of the concentration Cp in the body fluid,
The metabolic analysis method according to claim 1.
【請求項8】 前記濃度Cpの時間的変化を関数 Y=A[exp(-k1t) +b {1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t)] で近似的に表す、請求項7の代謝解析方法。
8. The time change of the concentration Cp is expressed by a function Y = A [exp (-k 1 t) + b {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
The method of metabolic analysis according to claim 7, which is approximately represented by [p (−k 3 t)].
【請求項9】 前記濃度Cpの時間的変化を前記関数 Yで
近似的に表すものとし、 投与後の時間t の真数をグラフの横軸に、前記濃度の実
測値Cpの対数を縦軸にプロットし、 このグラフ上の曲線の t=0 またはその付近における接
線の勾配からk1の近似値を、切片からA の近似値を求
め、 k1の近似値を求めた領域よりt が大きい領域において、
曲線の勾配が近似的に一定となる部分の接線の勾配から
k3の近似値を求め、 exp(-k1t) が1に比し無視できるような領域から選んだ
t について {Cp−A exp(-k1t)}/exp(-k3t) または Cp/exp(-k3
t) の値を求めてB の仮の値とするか、 {Cp/ A−exp(-k1t)}/exp(-k3t) または Cp/A exp
(-k3t) の値を求めてb の仮の値とし、 仮に k2=mk3 (m=1,2,3,・・・・) 又は k3=nk2
(n=1,2,3,・・・・)としたとき、m またはn のうち少
なくとも1つに対応するk2について {1−exp(-k2t)} exp(-k3t) が極大となるt またはその付近において、前記濃度の実
測値Cpが極大または変曲点を与えるように、k2を仮に選
び、 この仮のB またはb の値、前記A の近似値、前記k1の近
似値、前記k3の近似値、および前記k2の仮の値を用いて
関数 Y=A exp(-k1t) +B {1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t) 又は Y=A[exp(-k1t) +b {1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t)] の値を求め、 Yの値がCpに最も近い値を与えるようにk2を修正し、 必要に応じてB またはb の値を修正して、t の全領域に
わたって YとCpの差が小さくなるようにし、 前記k2の値、前記 A,k1,k3の近似値、および前記B ま
たはb の値、またはそれらをY とCpの差が小さくなるよ
うに修正した値を用いて、前記関数Y を体液中の前記濃
度Cpの時間的変化を表す関数とする、請求項1ないし6
の何れかの代謝解析方法。
9. The time change of the concentration Cp is approximately represented by the function Y, the true number of the time t after administration is on the horizontal axis of the graph, and the logarithm of the measured value Cp of the concentration is on the vertical axis. , And the approximate value of k 1 is calculated from the tangent slope of the curve on this graph at or near t = 0, and the approximate value of A is calculated from the intercept, and t is larger than the area where the approximate value of k 1 is calculated. In the area,
From the tangent slope where the slope of the curve is approximately constant
Approximate value of k 3 is obtained, and exp (-k 1 t) is selected from the region where it is negligible compared to 1.
For t {Cp−A exp (-k 1 t)} / exp (-k 3 t) or Cp / exp (-k 3 t
t) to obtain a temporary value for B, or {Cp / A−exp (-k 1 t)} / exp (-k 3 t) or Cp / A exp
Calculate the value of (-k 3 t) and use it as a temporary value of b, and temporarily assume that k 2 = mk 3 (m = 1,2,3, ...) Or k 3 = nk 2
When (n = 1,2,3, ...), for k 2 corresponding to at least one of m or n, {1−exp (-k 2 t)} exp (-k 3 t) At or near t, where k is a maximum, k 2 is tentatively selected so that the measured value Cp of the concentration gives a maximum or an inflection point, and the provisional value of B or b, the approximate value of A, and k Using the approximate value of 1, the approximate value of k 3 , and the temporary value of k 2 , the function Y = A exp (-k 1 t) + B {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
p (-k 3 t) or Y = A [exp (-k 1 t) + b {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
p (-k 3 t)], modify k 2 so that the value of Y gives the value closest to Cp, and modify the value of B or b as needed to find the total region of t as the difference between the Y and Cp decreases over, the k 2 values, the a, k 1, the approximate value of k 3, and the value of B or b, or they as the difference between the Y and Cp is reduced, 7. The function Y 1 is defined as a function representing the temporal change of the concentration Cp in the body fluid by using the value corrected to.
The metabolic analysis method according to any one of 1.
【請求項10】 前記濃度Cpの時間的変化を前記関数 Yで
近似的に表すものとし、 投与後の時間t の真数をグラフの横軸に、前記濃度の実
測値Cpの対数を縦軸にプロットし、 このグラフ上の曲線の t=0 またはその付近における接
線の勾配からk1の近似値を、切片からA の近似値を求
め、 k1の近似値を求めた領域よりt が大きい領域において、
曲線の勾配が近似的に一定となる部分の接線の勾配から
k3の近似値を求め、 仮に k3=mk2 (m=1,2,3,4,・・・・) または nk3=k2 (n=1,2,3,4,・・・・) としたとき、m またはn のうち少なくとも1つに対応す
るk2について {1−exp(-k2t)} exp(-k3t) の極大を与えるt が、前記濃度の実測値Cpの極大または
変曲点またはその付近に対応するように、k2を仮に選
び、 前記仮のk2に対し、 {1−exp(-k2t)} exp(-k3t) が極
大となるt 、または測定値を有するそれに近いt をtm
し、tmにおいて {Cp−A exp(-k1tm)} /{1−exp(-k2tm)}exp(-k3tm) の値を求めてB の仮の値とするか、 {Cp/A −exp(-k1tm)} /{1−exp(-k2tm)}exp(-k3tm) の値を求めてb の仮の値とし、 前記A の近似値、前記k1の近似値、前記k3の近似値、お
よび前記仮のB またはb の値を用いて、関数 Y=A exp(-k1t) + B{1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t) 又は Y=A[exp(-k1t) + b{1−exp(-k1t)}{1−exp(-k2t)} ex
p(-k3t)] の値を求め、 Yの値がCpに最も近い値を与えるようにk2を修正し、 必要に応じてB またはb の値を修正して、t の全領域に
わたってy とCpの差が小さくなるようにし、 前記k2の値、前記 A, k1, k3の近似値、および前記B ま
たはb の値、またはそれらをY とCpの差が小さくなるよ
うに修正した値を用いて、前記関数Y を血液中の標識体
の濃度Cpの時間的変化を表す関数とすることを特徴とす
る、請求項1ないし6の何れかの代謝解析方法。
10. The time change of the concentration Cp is approximately represented by the function Y, the true axis of the time t after administration is on the horizontal axis of the graph, and the logarithm of the measured value Cp of the concentration is on the vertical axis. , And the approximate value of k 1 is calculated from the tangent slope of the curve on this graph at or near t = 0, and the approximate value of A is calculated from the intercept, and t is larger than the area where the approximate value of k 1 is calculated. In the area,
From the tangent slope where the slope of the curve is approximately constant
obtains an approximate value of k 3, if k 3 = mk 2 (m = 1,2,3,4, ····) or nk 3 = k 2 (n = 1,2,3,4, ···・), The t that gives the maximum of {1−exp (-k 2 t)} exp (-k 3 t) for k 2 corresponding to at least one of m or n is the measured value of the concentration. Temporarily select k 2 so as to correspond to the maximum of Cp or the inflection point or its vicinity, and for the temporary k 2 , {1−exp (-k 2 t)} exp (-k 3 t) is the maximum. And t close to that having a measured value is defined as t m, and at t m , {Cp−A exp (-k 1 t m )} / {1−exp (-k 2 t m )} exp (-k 3 t m ), and use it as a temporary value for B, or {Cp / A −exp (-k 1 t m )} / {1−exp (-k 2 t m )} exp (-k 3 t m ) to obtain a temporary value of b, and using the approximate value of A, the approximate value of k 1 , the approximate value of k 3 , and the temporary value of B or b, the function Y = A exp (-k 1 t) + B {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
p (-k 3 t) or Y = A [exp (-k 1 t) + b {1−exp (-k 1 t)} {1−exp (-k 2 t)} ex
p (-k 3 t)], modify k 2 so that the value of Y gives the value closest to Cp, and modify the value of B or b as needed to find the total region of t as the difference between y and Cp decreases over, the k 2 values, the a, k 1, the approximate value of k 3, and the value of B or b, or they as the difference between the Y and Cp is reduced, 7. The method for metabolic analysis according to claim 1, wherein the function Y 1 is a function representing a temporal change in the concentration Cp of the labeled substance in blood, using the value corrected to.
【請求項11】 特定の物質を動物に投与し、その物質お
よびその代謝物又はその何れかの血液等の体液中での濃
度の時間的変化を測定することにより動物体内での代謝
を解析する方法において、 前記体液中での濃度Cpの時間的変化を関数 Y=A exp(-k1t) + B{1−exp(-k1t)}{1−exp(-k2t')} e
xp(-k3t) または Y=A[exp(-k1t) + b{1−exp
(-k1t)}{1−exp(-k2t')} exp(-k3t)] (t は投与後の時間、A ,B ,B ,k1,k2,k3は定数を
表し、t'は t−d に等しく、d は0又は正の実数を表す
が、t がd より大きくないときt'は0である)で近似的
に表すことを特徴とする代謝解析方法。
11. A metabolism of an animal body is analyzed by administering a specific substance to an animal and measuring the time-dependent change in the concentration of the substance and its metabolite or one of them in body fluid such as blood. In the method, the time change of the concentration Cp in the body fluid is calculated by a function Y = A exp (-k 1 t) + B {1−exp (-k 1 t)} {1−exp (-k 2 t ') } e
xp (-k 3 t) or Y = A [exp (-k 1 t) + b {1−exp
(-k 1 t)} {1−exp (-k 2 t ')} exp (-k 3 t)] (t is the time after administration, A, B, B, k 1 , k 2 , k 3 are Is a constant, t'is equal to t-d, d is 0 or a positive real number, but t'is 0 when t is not greater than d). Method.
JP5092596A 1992-10-30 1993-03-26 Metabolism analysis method Expired - Lifetime JPH0769328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5092596A JPH0769328B2 (en) 1992-10-30 1993-03-26 Metabolism analysis method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31648192 1992-10-30
JP4-316481 1992-10-30
JP5092596A JPH0769328B2 (en) 1992-10-30 1993-03-26 Metabolism analysis method

Publications (2)

Publication Number Publication Date
JPH06194362A true JPH06194362A (en) 1994-07-15
JPH0769328B2 JPH0769328B2 (en) 1995-07-26

Family

ID=26433992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5092596A Expired - Lifetime JPH0769328B2 (en) 1992-10-30 1993-03-26 Metabolism analysis method

Country Status (1)

Country Link
JP (1) JPH0769328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142734B2 (en) 2003-02-26 2015-09-22 Cree, Inc. Composite white light source and method for fabricating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342889A (en) * 1976-09-30 1978-04-18 Nippon Bunko Kogyo Kk Measuring method of methabolism function of organ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342889A (en) * 1976-09-30 1978-04-18 Nippon Bunko Kogyo Kk Measuring method of methabolism function of organ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142734B2 (en) 2003-02-26 2015-09-22 Cree, Inc. Composite white light source and method for fabricating

Also Published As

Publication number Publication date
JPH0769328B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
Schmidt et al. Kinetic modeling in positron emission tomography
Lassen Neuroreceptor quantitation in vivo by the steady-state principle using constant infusion or bolus injection of radioactive tracers
Kelleher et al. Model equations for condensation biosynthesis using stable isotopes and radioisotopes
Zettner Principles of competitive binding assays (saturation analyses). I. Equilibrium techniques
Cohen et al. Total serum cholesterol by isotope dilution/mass spectrometry: a candidate definitive method.
Marceau et al. Absorption of copper 64 from gastrointestinal tract of the rat
Austin Jr et al. Quantitating error in blood flow measurements with radioactive microspheres
Grasela et al. Pharmacostatistical modeling for observational data
Oddie et al. Thyroid function assay with radioiodine. I. Physical basis of study of early phase of iodine metabolism and iodine uptake
Bröchner-Mortensen et al. Optimum time of blood sampling for determination of glomerular filtration rate by single-injection [51Cr] EDTA plasma clearance
Hulanicki Absolute methods in analytical chemistry (Technical Report)
JPH06194362A (en) Metabolism analysis method
Graham Physiologic smoothing of blood time-activity curves for PET data analysis
Kristiansen et al. Traceability and uncertainty in analytical measurements
Vallner et al. Comparison of graphical and computerized methods for calculating binding parameters for two strongly bound drugs to human serum albumin
Herberg Statistical Aspects of Liquid Scintillation Counting by Internal Standard Technique. Single Isotope.
Sampson Determination of low concentrations of lithium in biological samples using electrothermal atomic absorption spectrometry
Barnard et al. An investigation into the determination of stability constants of metal complexes by convolution—deconvolution cyclic voltammetry
Buckley et al. Calculation of stable isotope enrichment for tracer kinetic procedures
STADALNIK et al. In Vivo Functional Imaging Using Receptor-Binding Radiopharmaceuticals: Technetium 99m–Galactosyl-Neoglycoalbumin as a Model
Liang et al. A new method for the evaluation of measurement uncertainty in strict accordance with measurement model: Determination of total thyroxine in human serum by triple isotope dilution mass spectrometry
Kudirka et al. Comparison of coulostatic data analysis techniques
Houston et al. A compartmental model for the distribution of 113mIn-DTPA and 99mTc-(Sn) DTPA in man following intravenous injection
JPH075163A (en) Metabolism analyzing method
Benet et al. Calculating Pharmacokinetic Areas