JPH06194339A - Sample injection method for capillary electrophoresis system - Google Patents

Sample injection method for capillary electrophoresis system

Info

Publication number
JPH06194339A
JPH06194339A JP4344086A JP34408692A JPH06194339A JP H06194339 A JPH06194339 A JP H06194339A JP 4344086 A JP4344086 A JP 4344086A JP 34408692 A JP34408692 A JP 34408692A JP H06194339 A JPH06194339 A JP H06194339A
Authority
JP
Japan
Prior art keywords
capillary
sample
solution
injection
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4344086A
Other languages
Japanese (ja)
Other versions
JP3186282B2 (en
Inventor
Shoichi Kobayashi
章一 小林
Akihiro Arai
昭博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP34408692A priority Critical patent/JP3186282B2/en
Publication of JPH06194339A publication Critical patent/JPH06194339A/en
Application granted granted Critical
Publication of JP3186282B2 publication Critical patent/JP3186282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To allow an accurate injection quantity to be specified with an absolute injection quantity of sample by injecting a marker solution into a capillary and migrating the marker solution through the capillary until a detector detects the marker solution using a buffer solution under a predetermined pressure. CONSTITUTION:A capillary electrophoresis system comprises a capilarry 4 and a detector 6 disposed at a part thereof, a reservoir 16 containing an electrophresis buffer and to which the sample injection end of the capilary 4 is inserted, a reservoir 18 for containing the electrophoresis buffer and to which the other end of the capillary 4 is inserted, a high voltage power supply 12, and an automatic sampler 2. A detection signal is fed from the detector 6 to a data processing section 20 where the signal is subjected to waveform processing and upper peak position thereof is detected. The time required for the marker solution to arrive at the detector 6 is detected along with the holding time to be elapsed for each separated component before arriving at the detector 6. Output signal from the data processing section 20 is fed to a controller 22, e.g. a microcomputer, which controls injection of sample into the capillary and the analysis operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アミノ酸、タンパク
質、核酸など電荷をもつ物質あるいは中性物質を分離分
析するキャピラリー電気泳動装置、特に同装置において
試料溶液をキャピラリーに注入する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capillary electrophoresis apparatus for separating and analyzing charged substances or neutral substances such as amino acids, proteins and nucleic acids, and more particularly to a method for injecting a sample solution into the capillaries.

【0002】[0002]

【従来の技術】従来のキャピラリー電気泳動装置におけ
る試料注入方法においては、マーカ溶液をバッファ溶液
で試料注入と同じ条件にてキャピラリー中を検出器まで
移動させ、その移動に要した時間を求めて、キャピラリ
ーの内径及び注入端から検出器までの長さから単位時間
当りの注入量を算出して、設定された試料注入量に対応
する注入時間を決定し、キャピラリーへ所望量の試料を
注入するようにしている(例えば、特開平4−9756
号公報参照)。
2. Description of the Related Art In a conventional method for injecting a sample in a capillary electrophoresis apparatus, a marker solution is moved to a detector in a buffer solution under the same conditions as the sample injection, and the time required for the movement is calculated. Calculate the injection amount per unit time from the inner diameter of the capillary and the length from the injection end to the detector, determine the injection time corresponding to the set sample injection amount, and inject the desired amount of sample into the capillary. (For example, Japanese Patent Laid-Open No. 4-9756)
(See Japanese Patent Publication).

【0003】[0003]

【発明が解決しようとする課題】従来の試料注入方法に
あっては、バッファ溶液と実際の試料との粘性が同程度
であれば、正確な試料注入量を絶対量で規定することが
できるが、両者の粘性が大幅に異なる場合には、キャピ
ラリー内の試料が占める体積が変わる(試料量が変わ
る)につれて注入される速度も変わり、注入量に誤差が
出てくるという問題点があった。
In the conventional sample injection method, if the viscosity of the buffer solution and the actual sample are about the same, an accurate sample injection amount can be specified by an absolute amount. When the viscosities of the two are significantly different, there is a problem that the injection rate changes as the volume occupied by the sample in the capillary changes (the sample amount changes), resulting in an error in the injection amount.

【0004】本発明は、バッファ溶液と実際の試料との
粘性が大きく異なる場合であっても正確な試料注入量を
絶対量で規定することができるキャピラリー電気泳動装
置における試料注入方法を提供することを目的としてい
る。
The present invention provides a sample injection method in a capillary electrophoresis apparatus capable of defining an accurate sample injection amount by an absolute amount even when the viscosity of a buffer solution and an actual sample greatly differ. It is an object.

【0005】[0005]

【課題を解決するための手段】キャピラリー、キャピラ
リーの一部に設けられた検出器、キャピラリーの両端が
夫々挿入され、泳動用バッファを収容しているリザーバ
及び試料注入側リザーバに泳動電圧を印加する高圧電源
とから成るキャピラリー電気泳動装置で、上記目的を達
成するために、本発明の試料注入方法においては、マー
カ溶液をキャピラリーに注入し、所定の圧力下にてバッ
ファ溶液でマーカ溶液が検出器で検出されるまでキャピ
ラリー中を移動させ、そのマーカ溶液のキャピラリー注
入端から検出器までの移動に要した時間tmを計測し、
注入圧力P、マーカ溶液移動時間tm及びキャピラリー
内径半径a、全長l、注入端から検出器までの長さlD
の各パラメータから次式によりバッファ溶液の粘性η1
を求め、 η1 =P・tm × a2 /8l・lD 再びマーカ溶液をバッファ溶液で所定圧力下にて一定時
間tm' キャピラリー中を移動させ、しかる後、試料溶
液を注入してマーカ溶液が検出器で検出されるまでキャ
ピラリー中を移動させ、試料注入後のマーカ溶液移動時
間tm''を計測し、試料注入後のマーカ溶液の移動計測
時間tm''と注入圧力P、キャピラリーの内径a2 、全
長l、キャピラリー内に試料が注入された長さl''及び
バッファ溶液の粘性η1 の各パラメータから次式により
試料溶液の粘性η2 を求め、 (η2 −η1 )l''2 +2l・η1 ・l''=a2 ・P・
tm''/4 なお、l''=(tm−tm' ) × a2 ・P/8l・
η1 である。
Means for Solving the Problems A capillary, a detector provided in a part of the capillary, both ends of the capillary are respectively inserted, and a migration voltage is applied to a reservoir containing a migration buffer and a sample injection side reservoir. In order to achieve the above object, in a capillary electrophoresis apparatus comprising a high-voltage power supply, in the sample injection method of the present invention, a marker solution is injected into a capillary, and the marker solution is a buffer solution under a predetermined pressure, and the marker solution is a detector. Is moved in the capillary until it is detected by, and the time tm required for moving the marker solution from the capillary injection end to the detector is measured,
Injection pressure P, marker solution movement time tm, capillary inner radius a, total length l, length from injection end to detector l D
The viscosity of the buffer solution η 1
Η 1 = P · tm × a 2 / 8l·l D Again, the marker solution is moved in the tm ′ capillary for a certain time under a predetermined pressure with the buffer solution, and then the sample solution is injected to make the marker solution. Is moved in the capillary until the detector is detected, the marker solution movement time tm ″ after sample injection is measured, the marker solution movement measurement time tm ″ after sample injection, the injection pressure P, and the inner diameter of the capillary are measured. a 2 , the total length l, the length l ″ of the sample injected into the capillary, and the viscosity η 1 of the buffer solution, the viscosity η 2 of the sample solution is calculated by the following equation, and (η 2 −η 1 ) l ” 2 + 2l · η 1 · l” = a 2 · P ·
tm ″ / 4, l ″ = (tm−tm ′) × a 2 · P / 8l ·
η 1 .

【0006】試料溶液の粘性η2 及びバッファ溶液の粘
性η1 、キャピラリーの内径a2 、全長l、注入圧力P
から、設定された試料注入量に対応する注入時間を決定
し、これに基づいて試料溶液を注入する。
Viscosity η 2 of sample solution and viscosity η 1 of buffer solution, inner diameter a 2 of capillary, total length l, injection pressure P
Then, the injection time corresponding to the set sample injection amount is determined, and the sample solution is injected based on this.

【0007】[0007]

【実施例】以下、本発明のキャピラリー電気泳動装置に
おける試料注入方法について図面を参照して説明する
と、図1は本発明方法を実施するキャピラリー電気泳動
装置の概略図で、キャピラリー電気泳動装置はキャピラ
リー4、キャピラリー4の一部に設けられた検出器6、
泳動用バッファを収容し、試料が注入されたキャピラリ
ー4の試料注入端が挿入されるリザーバ16、同じく泳
動用バッファを収容しキャピラリー4の他端が挿入され
るリザーバ18、試料注入側のリザーバ16に泳動電圧
を印加する高圧電源12、及びキャピラリー4に試料を
注入するオートサンプラー2などを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A sample injection method in a capillary electrophoresis apparatus of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of a capillary electrophoresis apparatus for carrying out the method of the present invention, and the capillary electrophoresis apparatus is a capillary. 4, a detector 6 provided on a part of the capillary 4,
A reservoir 16 for accommodating the migration buffer, into which the sample injection end of the capillary 4 into which the sample has been inserted is inserted, a reservoir 18 also containing the migration buffer and into which the other end of the capillary 4 is inserted, and a sample injection side reservoir 16 A high-voltage power supply 12 for applying an electrophoretic voltage, an autosampler 2 for injecting a sample into the capillary 4, and the like are provided.

【0008】オートサンプラー2はインジェクタ14に
よりキャピラリー4に試料を自動的に注入したり、注入
量を較正するためのマーカ溶液を注入したり、更には泳
動用バッファ、マーカ溶液、試料を収容している夫々の
容器30、34、38及びリザーバ16(図3参照)の
間を、キャピラリー4を移動させる。試料などの注入は
密閉状態の容器を窒素ガスなどで加圧して行う。
The autosampler 2 automatically injects a sample into the capillary 4 by the injector 14, injects a marker solution for calibrating the injection amount, and further contains a migration buffer, a marker solution and a sample. The capillary 4 is moved between the respective containers 30, 34, 38 and the reservoir 16 (see FIG. 3). The sample and the like are injected by pressurizing a closed container with nitrogen gas or the like.

【0009】キャピラリー電気泳動装置は温度を一定に
保つために恒温槽に入れられて温度制御されている。図
1中一点鎖線は温度制御される範囲を示している。
The capillary electrophoresis apparatus is placed in a constant temperature bath and its temperature is controlled in order to keep the temperature constant. In FIG. 1, the alternate long and short dash line indicates the temperature controlled range.

【0010】検出器6からの検出信号はデータ処理部2
0に入力され、波形処理の上ピーク位置検出が行われ
る。また、後述するようにマーカ溶液が検出器6に到達
するまでの時間や、分析にあたっては分離された各成分
が検出器6に到達する保持時間が検出される。このデー
タ処理部20からの信号は、例えばマイクロコンピュー
タなどのコントローラ22へ入力され、キャピラリー4
への試料注入動作や分析動作を制御する。また、コント
ローラ22には、後述するキャピラリー4の寸法設定
値、すなわち内径、全長、注入端から検出器までの長さ
などの情報があらかじめ入力されている。
The detection signal from the detector 6 is the data processing unit 2
0 is input, and peak position detection is performed on waveform processing. Further, as will be described later, the time required for the marker solution to reach the detector 6 and the holding time for each separated component to reach the detector 6 in the analysis are detected. The signal from the data processing unit 20 is input to a controller 22 such as a microcomputer, and the capillary 4
Controls sample injection operation and analysis operation. Further, the controller 22 is preliminarily input with dimension setting values of the capillaries 4 to be described later, that is, information such as the inner diameter, the total length, the length from the injection end to the detector, and the like.

【0011】図2には検出器6の一例を示す。キャピラ
リー4の一方側から測定光24を照射し、他方側に配置
したフォトセル28によりその透過光を検出する。26
はフォトセル28の前面に配置されたスリットである。
FIG. 2 shows an example of the detector 6. The measurement light 24 is emitted from one side of the capillary 4, and the transmitted light is detected by the photocell 28 arranged on the other side. 26
Is a slit arranged on the front surface of the photocell 28.

【0012】以下、図3及び図4を参照して本発明の試
料注入方法を説明する。図3(A)のようにマーカ溶液
32の入った容器30にキャピラリー4の注入端を挿入
し、密閉されたその容器に一定圧力の窒素ガスを所定時
間供給し加圧して、マーカ溶液32をキャピラリー4に
注入する。このマーカ溶液32としては、検出器6に応
答し、キャピラリー4への吸着などが起らないものであ
れば何でもよく、例えば、メタノール、アセトンなどを
用いることができる。また、その粘度はバッファ溶液と
同程度のものが望ましい。
Hereinafter, the sample injection method of the present invention will be described with reference to FIGS. 3 and 4. As shown in FIG. 3A, the injection end of the capillary 4 is inserted into the container 30 containing the marker solution 32, and the sealed container is supplied with nitrogen gas at a constant pressure for a predetermined time to pressurize the marker solution 32. Inject into the capillary 4. The marker solution 32 may be anything as long as it responds to the detector 6 and is not adsorbed to the capillaries 4. For example, methanol, acetone or the like can be used. Further, it is desirable that the viscosity thereof is similar to that of the buffer solution.

【0013】次いで、図3(B)に示すように、マーカ
溶液32が注入されたキャピラリー端を泳動用バッファ
溶液36の入った容器34に移し、注入時と同一圧力で
容器34内を加圧して、マーカ溶液32を押し出しキャ
ピラリー中を移動させ、そのマーカ溶液ゾーン32aが
検出器6で検出される。データ処理部20では検出器6
からの信号に基づきマーカ溶液ゾーン32aがキャピラ
リー注入端から検出器6までの移動に要した時間tmが
計測され、コントローラ22に取り込まれる。コントロ
ーラ22には、注入時の圧力Pやキャピラリー4の寸法
設定値、すなわちキャピラリー内径a2 、全長l、注入
端から検出器までの長さlD などの情報がパラメータと
して入力されており、さらに計測したマーカ溶液移動時
間tmの各パラメータからバッファ溶液の粘性η1 を次
のようにして求める。
Next, as shown in FIG. 3 (B), the capillary end into which the marker solution 32 has been injected is transferred to a container 34 containing an electrophoretic buffer solution 36, and the inside of the container 34 is pressurized with the same pressure as at the time of injection. Then, the marker solution 32 is extruded and moved in the capillary, and the marker solution zone 32 a is detected by the detector 6. In the data processing unit 20, the detector 6
The time tm required for the marker solution zone 32a to move from the capillary injection end to the detector 6 is measured on the basis of the signal from, and is taken into the controller 22. Information such as the pressure P at the time of injection and the dimension setting value of the capillary 4, that is, the inner diameter a 2 of the capillary, the total length l, the length l D from the injection end to the detector, etc. are input to the controller 22 as parameters. The viscosity η 1 of the buffer solution is obtained from each parameter of the measured marker solution movement time tm as follows.

【0014】内径a2 の長さlのキャピラリーが粘性η
1 の溶液で満たされており、所定の圧力を与えた時の流
量VはPoisevilleの式により次のとおり与えられる。
A capillary of length l having an inner diameter a 2 has a viscosity η
The flow rate V when filled with the solution of No. 1 and given a predetermined pressure is given by the Poiseville equation as follows.

【0015】V=πa4 P/8lη1 ……(1) 従って、平均速度vは v=a2 P/8lη1 ……(2) となり、注入端から検出器までの長さをlD とし、これ
に要する時間をtmとすれば、 lD =vtm ……(3) となり、式(2)(3)より η1 =P・tm × a2 /8l・lD ……(4) となり、上記各パラメータを式(4)代入してバッファ
溶液の粘性η1 を計算することができる。
V = πa 4 P / 8lη 1 (1) Therefore, the average velocity v is v = a 2 P / 8lη 1 (2), and the length from the injection end to the detector is l D. if the time required for this and tm, l D = vtm ...... ( 3) , and the formula (2) (3) from η 1 = P · tm × a 2 / 8l · l D ...... (4) next The viscosity η 1 of the buffer solution can be calculated by substituting the above parameters into the equation (4).

【0016】ここで、図4(A)に示すように、キャピ
ラリー4の全長lのうちある部分xを粘性η2 の溶液が
占める場合を考える。上記と同じ圧力で加圧したときの
平均速度Vx は上記式(2)を変形すると Vx =a2 P/8 × 1/(η2 −η1 )x+lη1 ……(5) となり、この式(5)のx=0における値が上記式
(2)となる。
Here, as shown in FIG. 4 (A), consider a case where a portion x of the entire length 1 of the capillary 4 is occupied by a solution of viscosity η 2 . The average velocity Vx when pressurized with the same pressure as above is Vx = a 2 P / 8 × 1 / (η 2 −η 1 ) x + lη 1 (5) when this equation (2) is transformed, and this equation The value of (5) at x = 0 is given by the above equation (2).

【0017】次に、図4(B)に示すように、再び同様
にしてマーカ溶液32が注入されたキャピラリー端を泳
動用バッファ溶液36の入った容器34に移し、注入時
と同一圧力で容器34内を加圧して、マーカ溶液ゾーン
32aを押し出してキャピラリー中を移動させ、前記時
間tmよりも短い時間tm' で注入動作を中断する。こ
の時の移動距離l' は式(2)によりl' =vtm' で
与えられ、マーカ溶液ゾーン32aと検出器6までの距
離l''はl''=v(tm−tm' )となる。
Then, as shown in FIG. 4 (B), the end of the capillary into which the marker solution 32 has been injected is transferred to the container 34 containing the buffer solution 36 for migration in the same manner as described above, and the container has the same pressure as that at the time of injection. The inside of 34 is pressurized, the marker solution zone 32a is pushed out to move in the capillary, and the injection operation is interrupted at a time tm 'shorter than the time tm. The moving distance l'at this time is given by l '= vtm' by the equation (2), and the distance l "between the marker solution zone 32a and the detector 6 is l" = v (tm-tm '). .

【0018】しかる後、図3(D)に示すように、キャ
ピラリー端を試料40の入った容器38に移し、再度注
入時と同一圧力で容器38内を加圧して、マーカ溶液3
2及びバッファ溶液36を押し出し、マーカ溶液ゾーン
32aが検出器6で検出されるまでキャピラリー中を移
動させる。このとき、タイマーがリセットされ、試料を
注入している時間、すなわち試料注入後のマーカ溶液移
動時間tm''が計測される。
Thereafter, as shown in FIG. 3 (D), the capillary end is transferred to the container 38 containing the sample 40, and the inside of the container 38 is pressurized again at the same pressure as that at the time of the injection, and the marker solution 3 is added.
2 and the buffer solution 36 are pushed out and moved in the capillary until the marker solution zone 32a is detected by the detector 6. At this time, the timer is reset and the time during which the sample is injected, that is, the marker solution movement time tm ″ after the sample injection is measured.

【0019】従って、図4(C)に示すように、時間t
m''の間に距離l''の長さだけ試料40が注入されたこ
とになる。
Therefore, as shown in FIG. 4C, time t
This means that the sample 40 is injected by the length of the distance l ″ during m ″.

【0020】ここで上記式(5)を解くと、 (η2 −η1 )x2 +2l・η1 x=a2 ・t/4 ……(6) となり、t=tm''、x=l''を代入し、注入圧力P、
キャピラリー内径a2 、全長l及びバッファ溶液の粘性
η1 の各パラメータは既知であるから、これより試料溶
液の粘性η2 が求まる。
When the above equation (5) is solved, (η 2 −η 1 ) x 2 + 2l · η 1 x = a 2 · t / 4 (6), and t = tm ″, x = l ″ is substituted, the injection pressure P,
Since the parameters of the inner diameter a 2 of the capillary, the total length 1 and the viscosity η 1 of the buffer solution are known, the viscosity η 2 of the sample solution can be obtained from this.

【0021】その結果、コントローラ22は、試料溶液
の粘性η2 及びバッファ溶液の粘性η1 、キャピラリー
の内径a2 、全長l、注入圧力Pの各パラメータから、
上記式(6)を用いて任意のx(0<x<l)すなわち
設定された試料注入量に対応する注入時間tを決定し、
これに基づいてインジェクタ14は決定された注入時間
だけ試料溶液の注入を実行する。
As a result, the controller 22 determines from the parameters of the viscosity η 2 of the sample solution and the viscosity η 1 of the buffer solution, the inner diameter a 2 of the capillary, the total length l, and the injection pressure P,
Using the above equation (6), an arbitrary x (0 <x <l), that is, the injection time t corresponding to the set sample injection amount is determined,
Based on this, the injector 14 performs the injection of the sample solution for the determined injection time.

【0022】試料溶液の注入後、キャピラリー端は図3
(C)に示すように、リザーバ16に移され、コントロ
ーラ22の指示により泳動電圧が印加されて、分析が開
始される。
After injecting the sample solution, the end of the capillary is shown in FIG.
As shown in (C), it is transferred to the reservoir 16 and a migration voltage is applied according to an instruction from the controller 22 to start the analysis.

【0023】[0023]

【発明の効果】本発明は、以上説明したように構成され
ているので、バッファ溶液と実際の試料の粘性が大きく
異なることにより、注入時間と注入量との関係がリニア
にならない場合であっても、設定された任意の試料注入
量を正確な絶対量で規定することができる。
Since the present invention is configured as described above, there is a case where the relationship between the injection time and the injection amount is not linear because the viscosity of the buffer solution and the actual sample are significantly different. Also, the set arbitrary sample injection amount can be defined by an accurate absolute amount.

【0024】また、試料の粘性がバッファ溶液と大きく
異なるということは、それが注入量に影響するのみなら
ず、全体の粘性が変わることになるので分析時の泳動時
間にも影響を与えることになるが、試料注入時にバッフ
ァ溶液と実際の試料の粘性を把握していることから、こ
れにより分析時における泳動時間の補正をすることもで
きる。
Further, the fact that the viscosity of the sample is greatly different from that of the buffer solution not only affects the injection amount, but also changes the overall viscosity, which affects the migration time at the time of analysis. However, since the viscosities of the buffer solution and the actual sample are known at the time of sample injection, it is possible to correct the migration time at the time of analysis by this.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する一実施例装置を示す概
略図である。
FIG. 1 is a schematic view showing an embodiment of an apparatus for carrying out the method of the present invention.

【図2】本発明の方法を実施する一実施例装置の検出器
の一例を示す図である。
FIG. 2 is a diagram showing an example of a detector of an embodiment apparatus for carrying out the method of the present invention.

【図3】本発明の方法を説明する図である。FIG. 3 is a diagram illustrating a method of the present invention.

【図4】本発明の方法を説明する図である。FIG. 4 is a diagram illustrating a method of the present invention.

【符号の説明】[Explanation of symbols]

2…オートサンプラ 4…キャピラリー 6…検出器 12…高圧電源 16、18…リザーバ 20…データ処理部 22…コントローラ 30、34,38…
容器 32…マーカ溶液 36…バッファ溶液 40…試料
2 ... Autosampler 4 ... Capillary 6 ... Detector 12 ... High-voltage power supply 16, 18 ... Reservoir 20 ... Data processing unit 22 ... Controller 30, 34, 38 ...
Container 32 ... Marker solution 36 ... Buffer solution 40 ... Sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 キャピラリー、キャピラリーの一部に設
けられた検出器、キャピラリーの両端が夫々挿入され、
泳動用バッファを収容しているリザーバ及び試料注入側
リザーバに泳動電圧を印加する高圧電源とから成るキャ
ピラリー電気泳動装置において、 マーカ溶液をキャピラリーに注入し、所定の圧力下にて
バッファ溶液でマーカ溶液が検出器で検出されるまでキ
ャピラリー中を移動させ、そのマーカ溶液のキャピラリ
ー注入端から検出器までの移動に要した時間を計測し、 注入圧力、マーカ溶液移動時間及びキャピラリーの内
径、全長、注入端から検出器までの長さからバッファ溶
液の粘性を求め、 再びマーカ溶液をキャピラリーに注入し、所定圧力下に
てバッファ溶液で一定時間キャピラリー中を移動させ、
しかる後、試料溶液を注入してマーカ溶液が検出器で検
出されるまでキャピラリー中を移動させ、試料注入後の
マーカ溶液移動時間を計測し、 試料注入後のマーカ溶液移動時間、注入圧力、キャピラ
リーの内径、全長、キャピラリー内に試料が注入された
長さ及びバッファ溶液の粘性から試料溶液の粘性を求
め、 試料溶液及びバッファ溶液の粘性、注入圧力、キャピラ
リーの内径、全長から設定された試料注入量に対応する
注入時間を決定し、これに基づいて試料溶液を注入す
る、 ことを特徴とするキャピラリー電気泳動装置の試料注入
方法。
1. A capillary, a detector provided on a part of the capillary, and both ends of the capillary are respectively inserted,
In a capillary electrophoresis apparatus consisting of a reservoir containing a migration buffer and a high-voltage power supply that applies a migration voltage to the sample injection side reservoir, inject the marker solution into the capillary and use the buffer solution under the prescribed pressure to prepare the marker solution. Is moved through the capillary until it is detected by the detector, and the time required for the marker solution to move from the capillary injection end to the detector is measured, and the injection pressure, marker solution transfer time, and capillary inner diameter, total length, injection Obtain the viscosity of the buffer solution from the length from the end to the detector, inject the marker solution into the capillary again, and move the buffer solution in the capillary for a certain time under a predetermined pressure,
Then, inject the sample solution and move it through the capillary until the marker solution is detected by the detector, measure the marker solution transfer time after sample injection, and then move the marker solution transfer time after sample injection, injection pressure, and capillary. The inner diameter, total length of the sample, the length of the sample injected into the capillary, and the viscosity of the buffer solution determine the viscosity of the sample solution.The sample injection is set from the viscosity of the sample solution and the buffer solution, the injection pressure, the inner diameter of the capillary, and the total length A sample injection method for a capillary electrophoresis apparatus, comprising determining an injection time corresponding to an amount and injecting a sample solution based on the injection time.
JP34408692A 1992-12-24 1992-12-24 Sample injection method for capillary electrophoresis device Expired - Fee Related JP3186282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34408692A JP3186282B2 (en) 1992-12-24 1992-12-24 Sample injection method for capillary electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34408692A JP3186282B2 (en) 1992-12-24 1992-12-24 Sample injection method for capillary electrophoresis device

Publications (2)

Publication Number Publication Date
JPH06194339A true JPH06194339A (en) 1994-07-15
JP3186282B2 JP3186282B2 (en) 2001-07-11

Family

ID=18366547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34408692A Expired - Fee Related JP3186282B2 (en) 1992-12-24 1992-12-24 Sample injection method for capillary electrophoresis device

Country Status (1)

Country Link
JP (1) JP3186282B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2301284A1 (en) * 2005-07-15 2008-06-16 Consejo Superior Inveti. Cientificas Quantitative analysis method for use in capillary electrophoresis, involves utilizing information provided by electron volt profile of electric current supplied by commercial equipment during analysis
CN112710719A (en) * 2020-12-16 2021-04-27 中国科学院化学研究所 High-flux capillary electrophoresis method for continuous sample injection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2301284A1 (en) * 2005-07-15 2008-06-16 Consejo Superior Inveti. Cientificas Quantitative analysis method for use in capillary electrophoresis, involves utilizing information provided by electron volt profile of electric current supplied by commercial equipment during analysis
CN112710719A (en) * 2020-12-16 2021-04-27 中国科学院化学研究所 High-flux capillary electrophoresis method for continuous sample injection

Also Published As

Publication number Publication date
JP3186282B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
EP0457748A1 (en) Pulsed field capillary electrophoresis
Zhu et al. Thermally-initiated free radical polymerization for reproducible production of stable linear polyacrylamide coated capillaries, and their application to proteomic analysis using capillary zone electrophoresis–mass spectrometry
US5593559A (en) On line ion contaminant removal apparatus and method for capillary electrophoresis
US5302264A (en) Capillary eletrophoresis method and apparatus
US5240576A (en) Capillary electrophoresis
JP3023793B2 (en) Capillary electrophoresis method and apparatus
GB2259980A (en) Multi-point detection method for electrophoresis and chromatography in capillaries
JPH02302660A (en) Electrophoresis of capillary tube
US6383356B1 (en) Capillary electrophoretic apparatus
US5286356A (en) Method for sample analysis using capillary electrophoresis
JP3190678B2 (en) Chromatographic analysis
Bergmann et al. Potential of on-line isotachophoresis-capillary zone electrophoresis with hydrodynamic counterflow in the analysis of various basic proteins and recombinant human interleukin-3
JPH06194339A (en) Sample injection method for capillary electrophoresis system
US6258238B1 (en) Method of producing a capillary, a capillary for an electrophoresis device and an electrophoresis device including such a capillary
US8298393B2 (en) Method of electrophoretic analysis of multicomponent solutions and device for performing the same
Opekar et al. Characterization of various geometric arrangements of “air‐assisted” flow gating interfaces for capillary electrophoresis
US3493485A (en) Apparatus for determining dissolved oxygen concentration of biological fluids
JPH0711507B2 (en) Sample injection device for capillary electrophoresis
JP2964615B2 (en) Sample injection device for capillary electrophoresis device
JPH04175655A (en) Capillary electrophoresis device
JP3887963B2 (en) Isoelectric focusing device
JP2793841B2 (en) Determination method of measurement end point in moisture measurement device
US20220187242A1 (en) Improvements in or relating to a method of separating and analysing a component
US5466351A (en) Capillary electrophoretic system for separation of samples containing both positively and negatively charged components
JP6361358B2 (en) Electrophoresis device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees