JPH06194310A - Method and equipment for automatically measuring substitutional carbon concentration in silicon single crystal - Google Patents

Method and equipment for automatically measuring substitutional carbon concentration in silicon single crystal

Info

Publication number
JPH06194310A
JPH06194310A JP26564893A JP26564893A JPH06194310A JP H06194310 A JPH06194310 A JP H06194310A JP 26564893 A JP26564893 A JP 26564893A JP 26564893 A JP26564893 A JP 26564893A JP H06194310 A JPH06194310 A JP H06194310A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
sample
infrared
substitutional carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26564893A
Other languages
Japanese (ja)
Other versions
JP2790020B2 (en
Inventor
Hiroshi Kubota
寛 窪田
Masarou Tamazuka
正郎 玉塚
Yutaka Kitagawara
豊 北川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26547079&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06194310(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP26564893A priority Critical patent/JP2790020B2/en
Publication of JPH06194310A publication Critical patent/JPH06194310A/en
Application granted granted Critical
Publication of JP2790020B2 publication Critical patent/JP2790020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3568Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor applied to semiconductors, e.g. Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a method and equipment for measuring the substitutional carbon concentration in a silicon single crystal accurately and automatically. CONSTITUTION:When the substitutional carbon concentration in a silicon single crystal is measured using FT-IR method (Fourier Transform Infrared spectrometry), a differential coefficient is calculated basing on the infrared absorbance spectrum obtained from a sample, i.e., a silicon single crystal, and that obtained from a non-carbon silicon single crystal (reference) having substantially identical free carrier absorbance produced by same method as the sample. The differential coefficient is employed in the determination of a differential absorbance spectrum from both infrared absorbance spectrums. Substitutional carbon concentration in the sample is then determined basing on the distance between a base line and a local oscillation absorption peak of the substitutional carbon in the differential absorbance spectrum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、FT−IR法による
炭素分析法、さらに詳しくは、リファレンスを用い、F
T−IR法によってシリコン単結晶中の置換型炭素濃度
を測定する方法等に関するものである。
FIELD OF THE INVENTION The present invention relates to a carbon analysis method by the FT-IR method, more specifically, using a reference,
The present invention relates to a method of measuring the substitutional carbon concentration in a silicon single crystal by the T-IR method, and the like.

【0002】[0002]

【従来の技術】[Prior art]

【0003】シリコン単結晶からなるウェーハ中の炭素
不純物は酸素不純物と共にウェーハの品質を支配する重
要な因子であり、このシリコンウェーハ中の炭素濃度を
測定するために、FT−IR法が広く採用されている。
Carbon impurities in a wafer made of a silicon single crystal are important factors that control the quality of the wafer together with oxygen impurities, and the FT-IR method is widely adopted to measure the carbon concentration in the silicon wafer. ing.

【0004】図9は、このFT−IR法に用いられるF
T−IR光学系を示している。このFT−IR光学系に
おいては、赤外連続光源1から出た発散光は、アパーチ
ャ2を通ってコリメータ鏡3で平行化され、マイケルソ
ン干渉計4に入射し、ビームスプリッタ5に入る。ビー
ムスプリッタ5に入った赤外光は反射光と透過光に分割
され、このうち反射光は固定鏡6で反射してビームスプ
リッタ5の方へ戻り、透過光は可動鏡7で反射してビー
ムスプリッタ5の方へ戻る。そして、このビームスプリ
ッタ5で両光は合わさり干渉し、この干渉光は凹面鏡8
で集光され、サンプル9を透過し、アパーチャ10を通
って検出器11に入る。この検出器11によって検出さ
れたインターフェログラムはデジタル変換された後フー
リエ変換され、サンプル9の赤外吸光度スペクトルが得
られる。同様な方法によってリファレンスの赤外吸光度
スペクトルを求める。このようにして得られたCZ法に
よるシリコン単結晶のサンプル(p型10Ωcm)、お
よびFZ法によるシリコン単結晶のリファレンス(p型
2000Ωcm)の赤外吸光度スペクトルの一例が図1
0および図11にそれぞれ示されている。
FIG. 9 shows the F used in this FT-IR method.
2 shows a T-IR optical system. In this FT-IR optical system, the divergent light emitted from the infrared continuous light source 1 is collimated by the collimator mirror 3 through the aperture 2, enters the Michelson interferometer 4, and enters the beam splitter 5. The infrared light that has entered the beam splitter 5 is split into reflected light and transmitted light. Of this, the reflected light is reflected by the fixed mirror 6 and returns to the beam splitter 5, and the transmitted light is reflected by the movable mirror 7 and beamed. Return to splitter 5. Then, the beams splitter 5 combines the two lights and interferes with each other, and the interference light is reflected by the concave mirror 8.
The light is collected at, passes through the sample 9, passes through the aperture 10, and enters the detector 11. The interferogram detected by the detector 11 is digitally converted and then Fourier-transformed to obtain an infrared absorption spectrum of the sample 9. The infrared absorption spectrum of the reference is obtained by the same method. An example of the infrared absorption spectrum of the silicon single crystal sample (p-type 10 Ωcm) obtained by the CZ method and the reference (p-type 2000 Ωcm) of the silicon single crystal obtained by the FZ method is shown in FIG.
0 and FIG. 11 respectively.

【0005】なお、このサンプルおよびリファレンスの
測定の順序は前記とは逆の場合が多く、通常は、リファ
レンスの測定を予め行っておき、その赤外吸光度スペク
トルデータを保存しておくことが行われている。
The order of measurement of the sample and the reference is often the reverse of the above. Usually, the reference measurement is performed in advance and the infrared absorption spectrum data thereof is stored. ing.

【0006】このようにしてシリコン単結晶ウェーハ中
の置換型炭素に関し、サンプルおよびリファレンスの両
赤外吸光度スペクトルが得られたならば、差吸光度スペ
クトルを求めるために差係数fを決定し、リファレンス
の赤外吸光度スペクトルに差係数fを乗じたものをサン
プルの赤外吸光度スペクトルから減じることによって、
差吸光度スペクトルを求める。図10および図11の両
赤外吸光度スペクトルから得られた差吸光度スペクトル
の一例が図12に示されている。
When the infrared absorption spectra of both the sample and the reference are obtained for the substitutional carbon in the silicon single crystal wafer in this way, the difference coefficient f is determined to obtain the difference absorption spectrum, and the difference coefficient f is determined. By subtracting the infrared absorption spectrum multiplied by the difference coefficient f from the infrared absorption spectrum of the sample,
Obtain the differential absorbance spectrum. An example of the difference absorbance spectrum obtained from the both infrared absorbance spectra of FIG. 10 and FIG. 11 is shown in FIG.

【0007】以上のようにして差吸光度スペクトルが得
られたなら、この差吸光度スペクトルにおいて、例えば
595cm-1から615cm-1の間に引いたベースライ
ンと、605cm-1に現れる置換型炭素Csの局在振動
吸収ピークとの距離つまりピーク高さから、置換型炭素
濃度の定量を行う。図12に示す差吸光度スペクトルか
ら置換型炭素Csとの濃度を定量すれば、その値は0.
5ppmaである。なお、この場合の置換型炭素濃度の
検出下限は、ASTM designation:F123-81の規格に
従った場合、0.05ppma程度である。
[0007] If the difference absorbance spectrum as described above is obtained, in the differential absorbance spectrum, for example from 595 cm -1 and baseline drawn between 615 cm -1, the substitutional carbon Cs appearing at 605 cm -1 The substitutional carbon concentration is quantified from the distance from the localized vibration absorption peak, that is, the peak height. When the concentration with the substitutional carbon Cs was quantified from the differential absorbance spectrum shown in FIG. 12, the value was 0.
It is 5 ppma. The lower limit of detection of the substitutional carbon concentration in this case is about 0.05 ppma according to the standard of ASTM designation: F123-81.

【0008】[0008]

【発明が解決しようとする課題】ところで、半導体デバ
イス作成の素材となるシリコン単結晶ウェーハの製造方
法には、大きく分けて2つの方法がある。1つは、石英
ルツボ内に原料ポリシリコンを入れ、このポリシリコン
をカーボンヒータで溶融し、この融液表面に単結晶シリ
コンである種結晶を浸し、この種結晶を回転させつつ引
き上げることにより、シリコン単結晶を成長させるCZ
法(チョクラルスキー法)であり、他は、原料ポリシリ
コン棒の一部を溶融コイルによって溶融し、このゾーン
を移動させることによって、シリコン単結晶を成長させ
るFZ法(フローティングゾーン法)である。
By the way, there are roughly two methods for producing a silicon single crystal wafer which is a material for producing a semiconductor device. One is to put raw material polysilicon in a quartz crucible, melt the polysilicon with a carbon heater, immerse a seed crystal that is single crystal silicon in the surface of the melt, and pull up while rotating the seed crystal. CZ for growing silicon single crystal
The other is the FZ method (floating zone method) in which a silicon single crystal is grown by melting a part of a raw material polysilicon rod with a melting coil and moving this zone. .

【0009】この両方法によって製造したシリコン単結
晶を比べると、CZ法シリコン単結晶は炭素不純物およ
び酸素不純物を比較的多く含有している。この炭素不純
物は、原料ポリシリコンの溶融のためのカーボンヒータ
等から、酸素不純物は、原料ポリシリコンの融液を保持
する石英ルツボから混入するものとみられる。これに対
して、FZ法シリコン単結晶は炭素不純物および酸素不
純物をほとんど含有していないとされていた。
Comparing the silicon single crystals produced by these two methods, the CZ method silicon single crystal contains a relatively large amount of carbon impurities and oxygen impurities. It is considered that the carbon impurities are mixed from a carbon heater or the like for melting the raw material polysilicon, and the oxygen impurities are mixed from a quartz crucible holding a melt of the raw material polysilicon. On the other hand, it was said that the FZ method silicon single crystal contained almost no carbon impurities and oxygen impurities.

【0010】したがって従来法では、CZ法シリコン単
結晶における炭素濃度や酸素濃度を測定するためのリフ
ァレンスとして、FZ法シリコン単結晶が有効であると
考えられてきた。
Therefore, in the conventional method, it has been considered that the FZ method silicon single crystal is effective as a reference for measuring the carbon concentration and the oxygen concentration in the CZ method silicon single crystal.

【0011】しかし、FZ法シリコン単結晶をリファレ
ンスとして用いる場合には、次のような問題点のあるこ
とが本発明者等の研究によって明らかになった。
However, when the FZ method silicon single crystal is used as a reference, the researches by the present inventors have revealed the following problems.

【0012】すなわち、シリコン単結晶中の置換型炭素
Csの局在振動吸収ピークは605cm-1に現れるの
で、図13に示すように、シリコンのフォノンの強い吸
収ピークと重なり合ってしまう。また、このシリコンの
フォノン吸収ピークの形状を見ると、図13のように抵
抗率が3Ωcmの場合と20Ωcmの場合では、ドーパ
ントによるフリーキャリア吸収の影響を受け、その形状
が変わってしまう。
That is, the localized vibration absorption peak of the substitutional carbon Cs in the silicon single crystal appears at 605 cm -1 , so that it overlaps with the strong absorption peak of phonon of silicon, as shown in FIG. Looking at the shape of the phonon absorption peak of this silicon, the shape changes depending on the free carrier absorption by the dopant when the resistivity is 3 Ωcm and when the resistivity is 20 Ωcm as shown in FIG.

【0013】したがって、サンプルおよびリファレンス
の両赤外吸光度スペクトルから、置換型炭素Csの局在
振動吸収ピークを差吸光度スペクトルとして正確に抽出
するためには、サンプルおよびリファレンス間の置換型
炭素Csの局在振動ピーク以外の違いによる影響、特に
シリコンの強いフォノンによる吸収の影響、およびフリ
ーキャリアによる吸収の影響を極力低減することが必要
である。そのためには、炭素の吸収ピークと重なり合
う、シリコンのフォノン吸収およびドーパントのフリー
キャリア吸収を、ほぼ同程度にしたリファレンスを用い
ることが必要となる。
Therefore, in order to accurately extract the localized vibration absorption peak of the substitutional carbon Cs as the difference absorption spectrum from both the infrared absorption spectra of the sample and the reference, the locality of the substitutional carbon Cs between the sample and the reference should be measured. It is necessary to minimize the effects of differences other than the local vibration peak, especially the effects of absorption by silicon's strong phonons and the effects of free carriers. For that purpose, it is necessary to use a reference in which the phonon absorption of silicon and the free carrier absorption of the dopant, which overlap with the absorption peak of carbon, are almost the same.

【0014】しかしながら、サンプルであるCZ法シリ
コン単結晶は、殆んどの場合、その抵抗率は20Ωcm
以下であるのに対して、リファレンス用のFZ法シリコ
ン単結晶は、通常ドーピング剤を入れずに製造するた
め、抵抗率は1000Ωcm以上である。したがって、
サンプルとリファレンスとでは、ドーパントのフリーキ
ャリア吸収に大きな違いが生じてしまう。
However, in almost all cases, the sample CZ method silicon single crystal has a resistivity of 20 Ωcm.
On the contrary, the FZ method silicon single crystal for reference has a resistivity of 1000 Ωcm or more because it is usually manufactured without adding a doping agent. Therefore,
A large difference occurs in free carrier absorption of the dopant between the sample and the reference.

【0015】その上、FZ法シリコン単結晶はCZ法シ
リコン単結晶に比べて、前述の説明のように、酸素不純
物の濃度が非常に小さい。そのためサンプルおよびリフ
ァレンス間で、シリコンのフォノン吸収ピークの形状が
さらに違ってしまうことになる。その結果として、0.
1ppma以下の低炭素濃度になると、求められた差吸
光度スペクトルの炭素吸収ピークが変形し、置換型炭素
濃度を正確に求めることが困難であった。
Moreover, the FZ method silicon single crystal has a much lower concentration of oxygen impurities than the CZ method silicon single crystal as described above. Therefore, the shapes of the phonon absorption peaks of silicon are further different between the sample and the reference. As a result, 0.
At a low carbon concentration of 1 ppma or less, the carbon absorption peak of the obtained differential absorption spectrum was deformed, and it was difficult to accurately obtain the substitutional carbon concentration.

【0016】また、測定精度に関係する、従来の差係数
の決定方法にも問題があった。
Further, there is a problem in the conventional method of determining the difference coefficient related to the measurement accuracy.

【0017】すなわち、従来市販されているFT−IR
法炭素濃度定量装置の場合、差係数fの算出は、ある特
定波数κにおいてサンプルの赤外吸光度(As(κ))
と、リファレンスの赤外吸光度(Ar(κ))の単純な
比を用いて行うか([数1])、ある連続した波数領域
において、その領域におけるサンプルの赤外吸光度(A
s(κ))、およびリファレンスの赤外吸光度(Ar
(κ))の積分値を比較して行っている([数2])。
但し、[数2]の場合、実用上は波数κはある分解能で
測定されるため、連続値ではなく、不連続値κn :n=
1,2,3,・・・)になるため[数3]のような式と
なる。
That is, the FT-IR commercially available in the past
In the case of the method carbon concentration quantification device, the difference coefficient f is calculated by measuring the infrared absorbance (As (κ)) of the sample at a specific wave number κ.
And a simple ratio of the reference infrared absorbance (Ar (κ)) ([Equation 1]), or in a continuous wave number region, the infrared absorbance (A
s (κ)), and the infrared absorbance of the reference (Ar
This is performed by comparing the integrated values of (κ)) ([Equation 2]).
However, in the case of [Equation 2], the wave number κ is practically measured with a certain resolution, so that it is not a continuous value but a discontinuous value κ n : n =
1, 2, 3, ...), the formula is as shown in [Equation 3].

【0018】[0018]

【数1】 [Equation 1]

【数2】 [Equation 2]

【数3】 [Equation 3]

【0019】しかし、上記[数1]、[数2]または
[数3]による方法で差係数fを求め、その差係数fに
よって差吸光度スペクトルを求めた場合、装置自体の経
時変化、サンプルとリファレンスの状態の違い(厚さや
抵抗率の違い等)の影響を最小限に抑えることができ
ず、その影響が残っていた。そのため、測定毎の繰り返
し精度が悪くなったり、機種間の差が大きくなるなどの
問題が生じていた。しかしながら、今日の高純度シリコ
ン単結晶ウェーハにおいては、デバイスの高集積化に伴
う品質要求の厳格化と、それに伴うデバイスプロセスの
高純度化によって、要求される炭素不純物の濃度は、
0.05ppma以下のレベルにまで達してきており、
測定に求められる精度も厳しくなってきている。
However, when the difference coefficient f is obtained by the method of [Equation 1], [Equation 2] or [Equation 3], and the difference absorbance spectrum is obtained by the difference coefficient f, the change over time of the apparatus itself, the sample The influence of the difference in the reference state (difference in thickness, resistivity, etc.) could not be minimized, and the influence remained. As a result, problems such as poor repeatability for each measurement and a large difference between models have occurred. However, in today's high-purity silicon single crystal wafers, due to stricter quality requirements associated with higher device integration and accompanying higher purification of device processes, the required concentration of carbon impurities is
It has reached the level of 0.05ppma or less,
The accuracy required for measurement is becoming severe.

【0020】本発明は、かかる点に鑑みなされたもの
で、シリコン単結晶中の置換型炭素濃度を正確に測るこ
とができる方法および自動測定装置を提供することを目
的としている。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method and an automatic measuring apparatus capable of accurately measuring the concentration of substitutional carbon in a silicon single crystal.

【0021】[0021]

【課題を解決するための手段】請求項1記載の測定方法
は、FT−IR法を用いて、シリコン単結晶サンプル中
の置換型炭素濃度を測定するにあたり、リファレンスと
して、サンプルと同一の製造法で製造され、フリーキャ
リア吸収が同程度で、かつ実質的に無炭素のシリコン単
結晶を用いるようにしたものである。
The measuring method according to claim 1 is the same manufacturing method as the sample as a reference in measuring the substitutional carbon concentration in a silicon single crystal sample by using the FT-IR method. A silicon single crystal that is manufactured by, and has substantially the same free carrier absorption and is substantially carbon-free.

【0022】つまり、請求項1記載の測定方法は、サン
プルの赤外吸光度スペクトルを測定し、さらに、このサ
ンプルと同一の製造法で製造され、フリーキャリア吸収
が同程度で、かつ実質的に無炭素のリファレンスの赤外
吸光度スペクトルを測定し、両赤外吸光度スペクトルか
ら前記算出式([数1]、[数2]または[数3])に
て得られる差吸光度スペクトルを求める。そして、この
差吸光度スペクトルにおける置換型炭素の局在振動吸収
ピークとベースラインとの距離から、サンプル中の置換
型炭素濃度を定量するようにしたものである。
That is, in the measuring method according to claim 1, the infrared absorption spectrum of the sample is measured, and the sample is manufactured by the same manufacturing method as that of the sample. An infrared absorption spectrum of a carbon reference is measured, and a differential absorption spectrum obtained from the above infrared absorption spectra by the above calculation formula ([Equation 1], [Equation 2] or [Equation 3]) is obtained. Then, the concentration of the substitutional carbon in the sample is quantified from the distance between the localized vibration absorption peak of the substitutional carbon and the baseline in this difference absorbance spectrum.

【0023】これを具体例で示すと、従来法では、抵抗
率10Ωcm、炭素濃度約0.05ppmaのp型CZ
法シリコン単結晶をサンプルとし、抵抗率2000Ωc
mのp型FZ法シリコン単結晶をリファレンスとして、
前記算出式([数1]、[数2]または[数3])を用
いて、差吸光度スペクトルを求めている。この従来法に
よって求めた差吸光度スペクトルの一例が図1に示され
ている。
As a concrete example, in the conventional method, p-type CZ having a resistivity of 10 Ωcm and a carbon concentration of about 0.05 ppma is used.
Method Silicon single crystal as a sample, resistivity 2000Ωc
Using the p-type FZ method silicon single crystal of m as a reference,
The differential absorbance spectrum is obtained by using the calculation formula ([Equation 1], [Equation 2] or [Equation 3]). An example of the differential absorbance spectrum obtained by this conventional method is shown in FIG.

【0024】これに対して、本発明の請求項1では、図
1におけるのと同一のサンプルについて、抵抗率20Ω
cmで実質的に無炭素のp型CZ法シリコン単結晶をリ
ファレンスとし、前記算出式([数1]、[数2]また
は[数3])を用いて、差吸光度スペクトルを求めてい
る。そして、この発明によって求めた差吸光度スペクト
ルの一例が図2に示されている。この図2によれば、置
換型炭素Csの局在振動吸収ピークが明瞭に観察できる
ことが判る。
On the other hand, in claim 1 of the present invention, the resistivity of the same sample as in FIG.
Using a p-type CZ method silicon single crystal having substantially no carbon in cm as a reference, the differential absorption spectrum is obtained by using the above calculation formula ([Equation 1], [Equation 2] or [Equation 3]). An example of the differential absorbance spectrum obtained by the present invention is shown in FIG. According to FIG. 2, it is understood that the localized vibration absorption peak of the substitutional carbon Cs can be clearly observed.

【0025】請求項2記載の測定方法は、請求項1記載
の差吸光度スペクトルを求めるにあたり、[数1]、
[数2]または[数3]の算出式を用いずに、サンプル
およびリファレンスの両赤外吸光度スペクトルから、置
換型炭素の局在振動吸収ピーク前後の波数領域で、差吸
光度スペクトルの波数と赤外吸光度との関係式が、1次
式あるいは2次式に最も近くなるように最小自乗法にて
差係数を算出し、その差係数を用いて差吸光度スペクト
ルを求めるようにしたものである。
According to the measuring method of claim 2, in obtaining the differential absorbance spectrum of claim 1, [Formula 1],
Without using the formula of [Equation 2] or [Equation 3], from the infrared absorption spectra of both the sample and the reference, in the wavenumber region before and after the localized vibration absorption peak of the substitutional carbon, the wavenumber of the difference absorbance spectrum and the red The differential absorption coefficient is calculated by the method of least squares so that the relational expression with the external absorbance is closest to the linear expression or the quadratic expression, and the differential absorption spectrum is obtained using the difference coefficient.

【0026】前述のように差吸光度スペクトルは、リフ
ァレンスの赤外吸光度スペクトルに差係数fを乗じたも
のをサンプルの赤外吸光度スペクトルから減じることに
より算出される。したがって、差係数fの選択の仕方に
よって差吸光度スペクトルの形状は大きく変化する。図
3には差係数fを変化させた場合の差吸光度スペクトル
の形状変化の一例が示されている。ここでは、サンプル
として抵抗率10Ωcm、炭素濃度約0.05ppma
のp型CZ法シリコン単結晶を、リファレンスとして抵
抗率20Ωcmで実質的に無炭素のp型CZ法シリコン
単結晶を用いている。そして、差係数fをf=0.97
5,f=0.985,f=0.995,f=1.00
5,f=1.015,f=1.025と変化させてい
る。この場合、炭素濃度を定量するのに最も適した差係
数fは、置換型炭素Csの局在振動吸収ピークの高波数
側、および低波数側の曲線が最もフラットになったf=
0.955の場合である。しかし、大量のサンプルを測
定する目的の市販のライン用測定器の場合、差係数fの
算出を前記算出式([数1]、[数2]または[数
3])によっているため、f=0.995のような最適
の差係数fを算出することができない。それでも、置換
型炭素濃度が0.1ppmaを超える場合には、局在振
動吸収ピークが大きいため定量値は比較的安定していた
が、0.1ppma以下の低炭素濃度サンプルの場合に
は大きな定量誤差が生じる原因となる。そこで、本発明
者は最適な差係数f=0.995を算出する方法とし
て、請求項2記載の方法を見い出した。
As described above, the difference absorbance spectrum is calculated by subtracting the difference obtained by multiplying the reference infrared absorbance spectrum by the difference coefficient f from the sample infrared absorbance spectrum. Therefore, the shape of the differential absorbance spectrum changes greatly depending on how the difference coefficient f is selected. FIG. 3 shows an example of the shape change of the difference absorbance spectrum when the difference coefficient f is changed. Here, the sample has a resistivity of 10 Ωcm and a carbon concentration of about 0.05 ppma.
The p-type CZ method silicon single crystal is used as a reference and a substantially carbon-free p-type CZ method silicon single crystal having a resistivity of 20 Ωcm is used. Then, the difference coefficient f is set to f = 0.97.
5, f = 0.985, f = 0.995, f = 1.00
5, f = 1.015, f = 1.025. In this case, the difference coefficient f most suitable for quantifying the carbon concentration is f = where the curves on the high wave number side and the low wave number side of the localized vibration absorption peak of the substitutional carbon Cs are the most flat.
This is the case of 0.955. However, in the case of a commercially available line measuring instrument for measuring a large amount of samples, since the difference coefficient f is calculated by the above calculation formula ([Equation 1], [Equation 2] or [Equation 3]), f = The optimum difference coefficient f such as 0.995 cannot be calculated. Nevertheless, when the substitutional carbon concentration exceeds 0.1 ppma, the quantified value was relatively stable due to the large localized vibration absorption peak, but in the case of the low carbon concentration sample of 0.1 ppma or less, a large quantified value was obtained. It causes an error. Therefore, the present inventor has found the method according to claim 2 as a method for calculating the optimum difference coefficient f = 0.995.

【0027】すなわち、従来は差係数fを[数1]、
[数2]または[数3]の算出式によって算出していた
が、請求項2記載の方法では[数4]の算出式によって
差係数fを算出するようにしている。その結果、差吸光
度スペクトルは置換型炭素Csの局在振動吸収ピーク前
後の波数領域でほぼフラットになる。但し、[数4]の
場合、実用上、波数κはある分解能で測定されるために
連続値ではなく、不連続値κn :n=1,2,3,・・
・)になるため[数5]のような式となる。
That is, conventionally, the difference coefficient f is given by [Equation 1],
The difference coefficient f is calculated by the calculation formula of [Formula 4], although the calculation is performed by the calculation formula of [Formula 2] or [Formula 3]. As a result, the differential absorption spectrum becomes almost flat in the wave number region before and after the localized vibration absorption peak of the substitutional carbon Cs. However, in the case of [Equation 4], since the wave number κ is practically measured at a certain resolution, it is not a continuous value, but a discontinuous value κ n : n = 1, 2, 3, ...
・), So the formula becomes [Equation 5].

【0028】[0028]

【数4】 [Equation 4]

【数5】 [Equation 5]

【0029】[数5]の算出式を用いて差係数fを算出
するには、置換型炭素Csの局在振動吸収ピークの低波
数側の領域としてκ=κl1からκ=κh1の波数領域を、
高波数側の領域としてκ=κl2からκ=κh2の波数領域
を設定し、この2つの領域において差吸光度スペクトル
が波数κに対して1次の直線式に最も近くなるように
[数5]の算出式で差係数fを算出する。具体的には、
低い波数領域として550〜595cm-1(つまりκl1
=550,κh1=595)、高い波数領域として615
〜660cm-1(つまりκl2=615,κh2=660)
を用いている。
To calculate the difference coefficient f using the formula of [Equation 5], the wavenumbers from κ = κ l1 to κ = κ h1 are set as the region on the low wavenumber side of the localized vibration absorption peak of the substitutional carbon Cs. Area
The wave number region from κ = κ l2 to κ = κ h2 is set as the region on the high wave number side, and in these two regions, the difference absorbance spectrum is closest to the linear equation of the first order with respect to the wave number κ ], The difference coefficient f is calculated. In particular,
550 to 595 cm -1 (that is, κ l1
= 550, κ h1 = 595), and 615 as a high wavenumber region
~ 660cm -1 (ie κ l2 = 615, κ h2 = 660)
Is used.

【0030】なお、図3では、サンプルと導電型が同じ
で、抵抗率もほぼ同程度のリファレンスを用いたが、サ
ンプルの抵抗率がさらに低くなってくると、差吸光度ス
ペクトルにおけるベースラインがある曲率をもった曲線
となる。
In FIG. 3, a reference whose conductivity type is the same as that of the sample and whose resistivity is almost the same is used, but when the resistivity of the sample becomes lower, there is a baseline in the differential absorption spectrum. It becomes a curve with curvature.

【0031】このような場合については、[数4]また
は[数5]のように1次式で近似する方法ではなく、
[数6]のように2次式で近似する方法を用いれば適切
な差係数fを計算することができる。但し、[数6]の
場合、実用上、波数κはある分解能で測定されるため、
連続値ではなく、不連続値κn :n=1,2,3,・・
・)になるため[数7]のような式となる。
In such a case, it is not a method of approximating with a linear expression like [Equation 4] or [Equation 5], but
An appropriate difference coefficient f can be calculated by using a method of approximating with a quadratic expression as in [Equation 6]. However, in the case of [Equation 6], since the wave number κ is practically measured with a certain resolution,
Not continuous value but discontinuous value κ n : n = 1, 2, 3, ...
・), So the formula becomes like [Equation 7].

【0032】[0032]

【数6】 [Equation 6]

【数7】 [Equation 7]

【0033】図3との比較のため、同一サンプルおよび
リファレンスについて[数1]および[数2]の方法に
よって求めた差吸光度スペクトルを図4に示した。この
図4において破線は[数1]によるもの、実線は[数
2]によるものを示している。この図4を見るに、どち
らによる場合も置換型炭素Csの局在振動吸収ピークが
現れていないことが判る。
For comparison with FIG. 3, FIG. 4 shows the differential absorbance spectra obtained by the methods of [Equation 1] and [Equation 2] for the same sample and reference. In FIG. 4, the broken line is based on [Equation 1] and the solid line is based on [Equation 2]. It can be seen from FIG. 4 that the localized vibration absorption peak of the substitutional carbon Cs does not appear in either case.

【0034】請求項3記載の測定装置は、FT−IR法
を用いて得られたサンプルおよびリファレンスの両赤外
吸光度スペクトルから、赤外吸光度の差吸光度スペクト
ルを求め、この差吸光度スペクトルから、シリコン単結
晶中の置換型炭素濃度の定量を行うように構成された測
定装置である。この測定装置は、赤外吸光度スペクトル
を記録保持可能な記憶部を備え、この記憶部に、フリー
キャリア吸収が異なる実質的に無炭素である複数のリフ
ァレンスの赤外吸光度スペクトルデータを記録保持させ
ておき、その中からサンプルとフリーキャリア吸収が同
程度のリファレンスの赤外吸光度スペクトルデータを選
択することができる。さらに選択したリファレンスの赤
外吸光度スペクトルデータとサンプルの赤外吸光度スペ
クトルデータとから、請求項1または請求項2の方法に
よって、置換型炭素濃度の定量を行うように構成されて
いる。さらに、本測定装置においては、FT−IR法を
用いて得られたCZ法シリコン単結晶(サンプル)およ
びリファレンスの両赤外吸光度スペクトルから差吸光度
スペクトルを求め、この差吸光度スペクトルから置換型
炭素濃度の定量を行うという一連の作業が自動化されて
いる。
The measuring apparatus according to claim 3 obtains a difference absorption spectrum of infrared absorption from both infrared absorption spectra of the sample and the reference obtained by using the FT-IR method, and from this difference absorption spectrum, silicon is obtained. The measuring device is configured to quantify the concentration of substitutional carbon in a single crystal. This measuring device is provided with a storage unit capable of recording and holding an infrared absorption spectrum, and this storage unit records and holds infrared absorption spectrum data of a plurality of substantially carbon-free reference infrared carriers having different free carrier absorptions. The infrared absorption spectrum data of the reference having the same free carrier absorption as that of the sample can be selected. Further, the substitutional carbon concentration is quantified by the method according to claim 1 or 2 from the infrared absorption spectrum data of the selected reference and the infrared absorption spectrum data of the sample. Further, in the present measuring apparatus, a differential absorption spectrum is obtained from both infrared absorption spectra of the CZ method silicon single crystal (sample) obtained by using the FT-IR method and the reference, and the substitutional carbon concentration is obtained from this differential absorption spectrum. A series of operations for quantifying is automated.

【0035】[0035]

【作用】上記した手段によれば、リファレンスとして、
サンプルと同一の製造法によって製造され、フリーキャ
リア吸収が同程度で、かつ無炭素のシリコン単結晶を用
いているので、置換型炭素Csの局在振動吸収ピークを
抽出するのにサンプルおよびリファレンス間の置換型炭
素Csの局在振動吸収ピーク以外をほぼ同じ程度にする
ことができる。
According to the above means, as a reference,
Since a silicon single crystal which is manufactured by the same manufacturing method as the sample and has the same free carrier absorption and no carbon is used, the localized vibration absorption peak of the substitutional carbon Cs is extracted between the sample and the reference. Other than the localized vibration absorption peak of the substitutional carbon Cs can be made approximately the same.

【0036】これを図1(FZ法シリコン単結晶をリフ
ァレンスとしたもの)と、図2(CZ法シリコン単結晶
をリファレンスとしたもの)とを用いて説明すれば、図
2では置換型炭素Csの局在振動吸収ピーク(斜線部)
が明瞭に現れているのに対し、図1では局在振動吸収ピ
ークが現れていないのが判る。その原因としては、請求
項1記載の方法では、リファレンスとしてサンプルと同
じp型シリコン単結晶を用い、しかも、抵抗率差は、F
Z法シリコン単結晶を用いる場合に比べて、差があまり
ないことから、フリーキャリア吸収が同程度となり、さ
らに、リファレンスは実質的に無炭素なので、サンプル
中の置換型炭素Csの局在振動吸収ピークが強調される
ことがあげられる。このようにリファレンスとしてフリ
ーキャリア吸収が同程度で、しかも実質的に無炭素のC
Z法シリコン単結晶を用いることによって、明瞭なピー
クが得られることが判る。
This will be described with reference to FIG. 1 (using a FZ method silicon single crystal as a reference) and FIG. 2 (using a CZ method silicon single crystal as a reference). In FIG. Localized vibration absorption peak (shaded area)
Clearly appears, whereas in FIG. 1, it is understood that the localized vibration absorption peak does not appear. The cause is that in the method according to claim 1, the same p-type silicon single crystal as the sample is used as a reference, and the resistivity difference is F
Compared with the case of using the Z method silicon single crystal, there is not much difference, so that the free carrier absorption is about the same, and furthermore, since the reference is substantially carbon-free, localized vibration absorption of substitutional carbon Cs in the sample is achieved. The peak is emphasized. Thus, as a reference, C with substantially the same free carrier absorption and substantially carbon-free
It can be seen that a clear peak can be obtained by using the Z method silicon single crystal.

【0037】また、請求項2記載の測定方法によれば、
炭素濃度が0.1ppma以下の低濃度であっても、サ
ンプルとリファレンスとの状態(厚さや抵抗率)の違い
による影響を低減化することができる。
According to the measuring method of claim 2,
Even if the carbon concentration is as low as 0.1 ppma or less, it is possible to reduce the influence of the difference in the state (thickness or resistivity) between the sample and the reference.

【0038】すなわち、[数1]または[数2]の方法
で市販のFT−IR法炭素濃度定量の定量ソフトにて差
吸光度スペクトルを算出した結果(図4)では、[数
1]による方法(破線データ)、[数2]による方法
(実線データ)ともシリコン吸収ピークの影響が残り、
それに置換型炭素Csの局在振動吸収ピークが埋没して
しまっている。これに対して、本発明者等が見い出した
差係数fの算出方法([数5]では、同一サンプルおよ
びリファレンスを用いて差吸光度スペクトルを求めた場
合に、置換型炭素Csの局在振動吸収ピークを正確に抽
出することができ、ひいては炭素濃度を正確に求めるこ
とが可能となることが判る(図5)。
That is, in the result (FIG. 4) of calculating the differential absorbance spectrum by the commercially available FT-IR method carbon concentration determination quantitative software by the method of [Equation 1] or [Equation 2], the method of [Equation 1] is shown. The influence of the silicon absorption peak remains in both (dashed line data) and the method (solid line data) according to [Equation 2],
The localized vibration absorption peak of the substitutional carbon Cs is buried in it. On the other hand, in the method of calculating the difference coefficient f found by the present inventors ([Equation 5], when the difference absorbance spectrum is obtained using the same sample and reference, the localized vibration absorption of the substitutional carbon Cs is It can be seen that the peak can be accurately extracted, and thus the carbon concentration can be accurately determined (FIG. 5).

【0039】また、請求項3記載の測定装置によれば、
フリーキャリア吸収の違う複数の無炭素シリコン単結晶
リファレンスの赤外吸光度スペクトルから、最適なリフ
ァレンス赤外吸光度スペクトルを選択し計算することが
できるため、一般的に使用されるラインの測定装置によ
っても、精度に高い測定方法を適用することができる。
According to the measuring device of the third aspect,
Since it is possible to select and calculate the optimum reference infrared absorption spectrum from the infrared absorption spectra of multiple carbon-free silicon single crystal references with different free carrier absorption, even with commonly used line measuring devices, A highly accurate measurement method can be applied.

【0040】[0040]

【実施例】以下、本発明に係るシリコン単結晶中の置換
型炭素濃度の測定方法および測定装置の実施例を説明す
る。
EXAMPLES Examples of the method and apparatus for measuring the substitutional carbon concentration in a silicon single crystal according to the present invention will be described below.

【0041】この実施例に使用される測定装置は、FT
−IR法を用いて得られたサンプルおよびリファレンス
の両赤外吸光度スペクトルから差吸光度スペクトルを求
め、この差吸光度スペクトルから置換型炭素濃度の定量
を行うように構成されたものであり、赤外吸光度スペク
トルを記録保持可能な記憶部を備え、この記憶部には、
各種リファレンスの赤外吸光度スペクトルデータが記録
保持されている。
The measuring device used in this embodiment is FT
The infrared absorption spectrum is obtained from the infrared absorption spectrum of both the sample and the reference obtained by using the IR method, and the substitutional carbon concentration is quantified from the difference absorption spectrum. It is equipped with a storage unit capable of recording and holding spectra.
Infrared absorption spectrum data of various references are recorded and held.

【0042】シリコン単結晶の製造方法としての主流を
なす、CZ法によるシリコン単結晶ウェーハがサンプル
である場合、リファレンスには炭素不純物が極めて少な
いCZ法シリコン単結晶が用いられる。CZ法シリコン
単結晶は石英るつぼ内で原料ポリシリコンをカーボンヒ
ータにて溶融し、そのシリコン融液に種結晶を浸漬し、
種結晶を引き上げることによって製造されるものである
ため、原料ポリシリコンおよびカーボンヒータ起因の炭
素が取り込まれることになる。この場合の炭素の取込み
量は偏析によってシリコン棒のテールに向けて徐々に多
くなってゆく。したがって、炭素濃度が微少な厳選され
た原料ポリシリコンを用いて引き上げたシリコン単結晶
棒の種結晶に近い部分をスライスして得られたシリコン
単結晶を用いれば、実質的に無炭素に近いCZ法シリコ
ン単結晶のリファレンスが得られる。前記記憶部には、
このようにして得られた無炭素CZ法シリコン単結晶で
あって、フリーキャリア吸収がそれぞれ異なるものの赤
外吸光度スペクトルデータが予め記録保持されている。
When a sample is a silicon single crystal wafer by the CZ method, which is a mainstream method for producing a silicon single crystal, a CZ method silicon single crystal with extremely few carbon impurities is used as a reference. In the CZ method silicon single crystal, raw material polysilicon is melted by a carbon heater in a quartz crucible, and a seed crystal is immersed in the silicon melt,
Since it is manufactured by pulling up the seed crystal, the raw material polysilicon and carbon derived from the carbon heater are taken in. The carbon uptake in this case gradually increases toward the tail of the silicon rod due to segregation. Therefore, if a silicon single crystal obtained by slicing a portion close to a seed crystal of a silicon single crystal rod pulled up using carefully selected raw material polysilicon having a minute carbon concentration is used, CZ that is substantially carbon-free is obtained. A silicon single crystal reference is obtained. In the storage unit,
The infrared absorption spectrum data of the carbon-free CZ method silicon single crystals thus obtained, which have different free carrier absorptions, are recorded and held in advance.

【0043】そして、このような準備の後に、各種サン
プルの赤外吸光度スペクトルを同法によって求め、前記
記憶部内のデータからサンプルとフリーキャリア吸収が
同程度のリファレンスのデータを選択し、そのデータと
サンプルの赤外吸光度スペクトルデータとから差吸光度
スペクトルを求める。
After such preparation, infrared absorption spectra of various samples are obtained by the same method, reference data having similar free carrier absorption to that of the sample is selected from the data in the storage section, and the obtained data A differential absorption spectrum is obtained from the infrared absorption spectrum data of the sample.

【0044】この差吸光度スペクトルを求めるにあたっ
ては、上記両データから、置換型炭素Csの局在振動吸
収ピーク前後の波数領域で、差吸光度スペクトルにおけ
る波数と吸光度との関係式が1次式あるいは2次式に最
も近くなるように最小自乗法にて差係数を算出し、その
差係数により差吸光度スペクトルを求める。
In obtaining this difference absorbance spectrum, from the above both data, the relational expression between the wave number and the absorbance in the difference absorbance spectrum in the wave number region before and after the localized vibration absorption peak of the substitutional carbon Cs is a linear expression or 2 The difference coefficient is calculated by the method of least squares so as to be closest to the following equation, and the difference absorbance spectrum is obtained from the difference coefficient.

【0045】具体的には、図6に示すように、置換型炭
素Csの局在振動吸収ピークは605cm-1に現れるの
で、Csピークの波数領域よりも低い領域として波数範
囲550〜595cm-1を、高い波数領域として615
〜660cm-1を設定する。例えば、[数4]において
κl1=550cm-1,κl1=595cm-1,κl2=61
5cm-1,κh2=660cm-1とする。次に、サンプル
として抵抗率10Ωcm、炭素濃度約0.05ppma
のp型CZ法シリコン単結晶を、リファレンスとして抵
抗率20Ωcmの無炭素のp型CZ法シリコン単結晶を
用い、その両シリコン単結晶の赤外吸光度スペクトルを
求める。このサンプルおよびリファレンスの赤外吸光度
スペクトルが図7に示されている。
Specifically, as shown in FIG. 6, the localized vibration absorption peak of the substitutional carbon Cs appears at 605 cm −1 , so that the wave number range is 550 to 595 cm −1 as a region lower than the wave number region of the Cs peak. 615 as the high wavenumber region
Set to ~ 660 cm -1 . For example, in [Equation 4], κ l1 = 550 cm −1 , κ l1 = 595 cm −1 , κ l2 = 61
5cm -1, and κ h2 = 660cm -1. Next, as a sample, the resistivity is 10 Ωcm and the carbon concentration is about 0.05 ppma.
The p-type CZ method silicon single crystal is used as a reference and a carbon-free p-type CZ method silicon single crystal having a resistivity of 20 Ωcm is used, and infrared absorption spectra of both silicon single crystals are obtained. The infrared absorbance spectra of this sample and reference are shown in FIG.

【0046】以上のデータから[数5]を用いて差係数
fを算出するとf=0.9764途なり、この差係数を
用いて差吸光度スペクトルを算出する。これによって得
られた差吸光度スペクトルが図8に示されている。図8
から595cm-1と615cm-1をベースラインとして
炭素濃度をASTM designation:F123-81 に基づいて
定量すると[Cs]=0.09ppmaとなった。
From the above data, when the difference coefficient f is calculated using [Equation 5], f = 0.9764 is lost, and the difference absorbance spectrum is calculated using this difference coefficient. The differential absorbance spectrum thus obtained is shown in FIG. Figure 8
From 595 cm −1 and 615 cm −1 as baselines, the carbon concentration was quantified based on ASTM designation: F123-81, [Cs] = 0.09 ppma.

【0047】以上、本発明の実施例の測定方法について
説明したが、本発明は、かかる実施例に限定されるもの
ではなく、その要旨を逸脱しない範囲で種々の変形が可
能である。
Although the measuring method of the embodiment of the present invention has been described above, the present invention is not limited to the embodiment and various modifications can be made without departing from the scope of the invention.

【0048】例えば、前記実施例では、p型のCZ法シ
リコン単結晶の炭素濃度の測定について述べたが、n型
のCZ法シリコン単結晶の炭素濃度の測定もできること
は勿論である。ただし、その場合には、リファレンスと
してサンプルと同程度のフリーキャリア吸収のCZ法シ
リコン単結晶を用いることが必要である。また、CZ法
シリコン単結晶のみならず、FZ法シリコン単結晶に対
しても適用できる。但し、その場合には、リファレンス
として実質的に無炭素なFZ法シリコン単結晶を用いれ
ば良い。
For example, in the above embodiment, the carbon concentration of the p-type CZ method silicon single crystal was described, but it is needless to say that the carbon concentration of the n-type CZ method silicon single crystal can also be measured. However, in that case, it is necessary to use, as a reference, a CZ method silicon single crystal that has almost the same free carrier absorption as the sample. Further, not only the CZ method silicon single crystal but also the FZ method silicon single crystal can be applied. However, in that case, a substantially carbon-free FZ method silicon single crystal may be used as a reference.

【0049】[0049]

【発明の効果】本発明によれば、FT−IR法を用い
て、シリコン単結晶中の置換型炭素濃度を測定するにあ
たり、シリコン単結晶サンプルから得られた赤外吸光度
スペクトルと、前記サンプルと同一の製造法で製造され
たフリーキャリア吸収が同程度で、かつ実質的に無炭素
のシリコン単結晶リファレンスから得られた赤外吸光度
スペクトルとから差係数を算出し、この差係数を用いて
前記両赤外吸光度スペクトルから差吸光度スペクトルを
求めて、この差吸光度スペクトルにおける置換型炭素の
局在振動吸収ピークとベースラインとの距離から、サン
プル中の置換型炭素濃度を定量するようにしたので、従
来法に比べて、置換型炭素の局在振動吸収ピークを正確
に抽出することができ、炭素濃度を正確に求めることが
可能となる。また、測定における繰返し精度ひいては装
置間の差を低減することができる。具体的には、本発明
者らが所有する装置数台を用いて行った試験によれば、
繰返し精度を3倍に、装置間差を1/3にすることがで
きた。
According to the present invention, in measuring the substitutional carbon concentration in a silicon single crystal by using the FT-IR method, an infrared absorption spectrum obtained from a silicon single crystal sample and the above-mentioned sample Free carrier absorption produced by the same production method is similar, and a difference coefficient is calculated from an infrared absorption spectrum obtained from a substantially carbon-free silicon single crystal reference, and the difference coefficient is used to calculate the difference. Obtaining the difference absorbance spectrum from both infrared absorbance spectra, from the distance between the localized vibration absorption peak of the substitutional carbon in this difference absorbance spectrum and the baseline, so that the concentration of the substitutional carbon in the sample was quantified, Compared with the conventional method, the localized vibration absorption peak of substitutional carbon can be extracted more accurately, and the carbon concentration can be obtained more accurately. Further, it is possible to reduce the repeatability in the measurement and thus the difference between the devices. Specifically, according to a test conducted using several devices owned by the present inventors,
The repeatability could be tripled and the difference between the devices could be reduced to 1/3.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来法のCZ法シリコン単結晶サンプルのFZ
法シリコン単結晶リファレンスによる差吸光度スペクト
ルを表す図である。
FIG. 1 is an FZ of a conventional CZ silicon single crystal sample.
It is a figure showing the difference light absorption spectrum by the method silicon single crystal reference.

【図2】本発明方法のCZ法シリコン単結晶サンプルの
CZ法シリコン単結晶リファレンスによる差吸光度スペ
クトルを表す図である。
FIG. 2 is a diagram showing a differential absorption spectrum of a CZ method silicon single crystal sample of the method of the present invention by a CZ method silicon single crystal reference.

【図3】差係数を変化させた場合の差吸光度スペクトル
の形状変化を表す図である。
FIG. 3 is a diagram showing a change in shape of a difference absorbance spectrum when a difference coefficient is changed.

【図4】市販のFT−IRソフトにより算出した場合の
差吸光度スペクトルを表す図である。
FIG. 4 is a diagram showing a differential absorbance spectrum calculated by commercially available FT-IR software.

【図5】本発明方法により算出した場合の差吸光度スペ
クトルを表す図である。
FIG. 5 is a diagram showing a differential absorbance spectrum calculated by the method of the present invention.

【図6】本発明方法による差吸光度スペクトルからの炭
素濃度の定量例を説明する図である。
FIG. 6 is a diagram illustrating an example of quantitative determination of carbon concentration from a differential absorption spectrum by the method of the present invention.

【図7】本発明方法の実施例における、サンプルおよび
リファレンスの赤外吸光度スペクトルを表す図である。
FIG. 7 is a diagram showing infrared absorption spectra of a sample and a reference in an example of the method of the present invention.

【図8】本発明の実施例における、差吸光度スペクトル
の算出例を示す図である。
FIG. 8 is a diagram showing an example of calculating a differential absorbance spectrum in the example of the present invention.

【図9】FT−IR光学系を表す図である。FIG. 9 is a diagram showing an FT-IR optical system.

【図10】CZ法シリコン単結晶の赤外吸光度スペクト
ルを表す図である。
FIG. 10 is a diagram showing an infrared absorption spectrum of a CZ method silicon single crystal.

【図11】FZ法シリコン単結晶の赤外吸光度スペクト
ルを表す図である。
FIG. 11 is a diagram showing an infrared absorption spectrum of an FZ method silicon single crystal.

【図12】従来法のCZ法シリコン単結晶サンプルおよ
びFZ法シリコン単結晶リファレンスから求めた差吸光
度スペクトルを表す図である。
FIG. 12 is a diagram showing a differential absorption spectrum obtained from a conventional CZ method silicon single crystal sample and an FZ method silicon single crystal reference.

【図13】従来法における、抵抗率の異なるCZ法シリ
コン単結晶サンプルの赤外吸光度スペクトルを表す図で
ある。
FIG. 13 is a diagram showing an infrared absorption spectrum of CZ method silicon single crystal samples having different resistivities in a conventional method.

【符号の説明】[Explanation of symbols]

4 マイケルソン干渉計 9 サンプル(またはリファレンス) 4 Michelson interferometer 9 samples (or reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フーリエ変換赤外分光測定法(以下、F
T−IR法と称す)を用いて、シリコン単結晶中の置換
型炭素濃度を測定するにあたり、被測定物(以下、サン
プルと称す)であるシリコン単結晶から得られた赤外吸
光度スペクトルと、前記サンプルと同一の製造法で製造
された、フリーキャリア吸収が同程度で、かつ実質的に
無炭素のシリコン単結晶(以下、リファレンスと称す)
から得られた赤外吸光度スペクトルとから差係数を算出
し、この差係数を用いて前記両赤外吸光度スペクトルか
ら差吸光度スペクトルを求めて、この差吸光度スペクト
ルにおける置換型炭素の局在振動吸収ピークとベースラ
インとの距離から、サンプル中の置換型炭素濃度を定量
するようにしたことを特徴とする、シリコン単結晶中の
置換型炭素濃度の測定方法。
1. Fourier transform infrared spectroscopy (hereinafter referred to as F
In measuring the substitutional carbon concentration in the silicon single crystal by using the T-IR method), an infrared absorption spectrum obtained from the silicon single crystal that is the object to be measured (hereinafter referred to as a sample), Substantially carbon-free silicon single crystal produced by the same production method as that of the sample and having substantially the same free carrier absorption (hereinafter referred to as a reference)
The difference coefficient is calculated from the infrared absorption spectrum obtained from, the difference absorption spectrum is obtained from the both infrared absorption spectra using this difference coefficient, and the localized vibration absorption peak of the substitutional carbon in the difference absorption spectrum is obtained. The method for measuring the concentration of substitutional carbon in a silicon single crystal, characterized in that the concentration of substitutional carbon in the sample is quantified from the distance from the baseline.
【請求項2】 前記差吸光度スペクトルを求めるにあた
り、サンプルおよびリファレンスの両赤外吸光度スペク
トルから、置換型炭素の局在振動吸収ピーク前後の波数
領域で、波数と赤外吸光度との関係式が1次式あるいは
2次式に最も近くなるように最小自乗法にて差係数を算
出し、その差係数により差吸光度スペクトルを求めるよ
うにしたことを特徴とする、請求項1記載のシリコン単
結晶中の置換型炭素濃度の測定方法。
2. In obtaining the difference absorbance spectrum, the relational expression between the wave number and the infrared absorbance is 1 in the wave number region before and after the localized vibration absorption peak of the substitutional carbon from both the infrared absorbance spectra of the sample and the reference. 2. The silicon single crystal according to claim 1, wherein a difference coefficient is calculated by a least square method so as to be closest to the following equation or a quadratic equation, and the difference absorbance spectrum is obtained from the difference coefficient. Method for measuring substitutional carbon concentration.
【請求項3】 FT−IR法を用いて得られたサンプル
およびリファレンスの両赤外吸光度スペクトルから、赤
外吸光度の差吸光度スペクトルを求め、この差吸光度ス
ペクトルから、シリコン単結晶中の置換型炭素濃度の定
量を行うように構成された測定装置において、赤外吸光
度スペクトルを記録保持可能な記憶部を備え、この記憶
部に、フリーキャリア吸収が異なる実質的に無炭素であ
る複数のリファレンスの赤外吸光度スペクトルデータを
記録保持させておき、その中からサンプルとフリーキャ
リア吸収が同程度のリファレンスの赤外吸光度スペクト
ルデータを選択し、そのデータとサンプルの赤外吸光度
スペクトルデータとから、請求項1または請求項2記載
の方法によって、置換型炭素濃度の定量を行うように構
成されていることを特徴とする、シリコン単結晶中の置
換型炭素濃度の自動測定装置。
3. A differential absorption spectrum of infrared absorption is obtained from both infrared absorption spectra of a sample and a reference obtained by the FT-IR method, and the substitutional carbon in the silicon single crystal is obtained from this differential absorption spectrum. In a measuring device configured to quantify the concentration, a storage unit capable of recording and holding an infrared absorption spectrum is provided, and in this storage unit, a plurality of substantially carbon-free reference reds having different free carrier absorptions are stored. The infrared absorbance spectrum data is recorded and retained, and reference infrared absorbance spectrum data having a similar free carrier absorption to that of the sample is selected from the data, and the data and the infrared absorbance spectrum data of the sample are selected. Alternatively, the method according to claim 2 is configured to quantify the substitutional carbon concentration. Characteristic automatic measuring device for substitutional carbon concentration in silicon single crystal.
JP26564893A 1992-09-30 1993-09-29 Method for measuring substitutional carbon concentration in silicon single crystal and automatic measuring device Expired - Fee Related JP2790020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26564893A JP2790020B2 (en) 1992-09-30 1993-09-29 Method for measuring substitutional carbon concentration in silicon single crystal and automatic measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28511392 1992-09-30
JP4-285113 1992-09-30
JP26564893A JP2790020B2 (en) 1992-09-30 1993-09-29 Method for measuring substitutional carbon concentration in silicon single crystal and automatic measuring device

Publications (2)

Publication Number Publication Date
JPH06194310A true JPH06194310A (en) 1994-07-15
JP2790020B2 JP2790020B2 (en) 1998-08-27

Family

ID=26547079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26564893A Expired - Fee Related JP2790020B2 (en) 1992-09-30 1993-09-29 Method for measuring substitutional carbon concentration in silicon single crystal and automatic measuring device

Country Status (1)

Country Link
JP (1) JP2790020B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162667A (en) * 2008-01-08 2009-07-23 Sumco Techxiv株式会社 Method and apparatus for measuring spectroscopic absorbance
WO2012137480A1 (en) * 2011-04-04 2012-10-11 信越化学工業株式会社 Method for measuring carbon concentration in polycrystalline silicon
JP2015101529A (en) * 2013-11-28 2015-06-04 信越半導体株式会社 Method of measuring carbon concentration of silicon single crystal
JP2016108159A (en) * 2014-12-02 2016-06-20 信越半導体株式会社 Carbon concentration measuring method of silicon crystal
KR20190076255A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Method of analyzing silicon reducer using fourier transform infrared spectroscopy
KR20190119035A (en) 2017-03-06 2019-10-21 신에쯔 한도타이 가부시키가이샤 Method of measuring carbon concentration in single crystal silicon
JP2020012772A (en) * 2018-07-20 2020-01-23 株式会社Sumco Method and device for measuring carbon concentration in silicon single crystal
JP2020067272A (en) * 2018-10-19 2020-04-30 株式会社Sumco Evaluation method of carbon concentration in silicon sample and evaluation apparatus used for this method, evaluation method of silicon wafer manufacturing process, manufacturing method of silicon wafer and manufacturing method of silicon single crystal ingot

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162667A (en) * 2008-01-08 2009-07-23 Sumco Techxiv株式会社 Method and apparatus for measuring spectroscopic absorbance
US7767969B2 (en) 2008-01-08 2010-08-03 Sumco Techxiv Corporation Method and apparatus for measuring spectroscopic absorbance
WO2012137480A1 (en) * 2011-04-04 2012-10-11 信越化学工業株式会社 Method for measuring carbon concentration in polycrystalline silicon
KR101470783B1 (en) * 2011-04-04 2014-12-09 신에쓰 가가꾸 고교 가부시끼가이샤 Method for measuring carbon concentration in polycrystalline silicon
US8963070B2 (en) 2011-04-04 2015-02-24 Shin-Etsu Chemical Co., Ltd. Method for measuring carbon concentration in polycrystalline silicon
JP2015101529A (en) * 2013-11-28 2015-06-04 信越半導体株式会社 Method of measuring carbon concentration of silicon single crystal
JP2016108159A (en) * 2014-12-02 2016-06-20 信越半導体株式会社 Carbon concentration measuring method of silicon crystal
KR20190119035A (en) 2017-03-06 2019-10-21 신에쯔 한도타이 가부시키가이샤 Method of measuring carbon concentration in single crystal silicon
KR20190076255A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Method of analyzing silicon reducer using fourier transform infrared spectroscopy
JP2020012772A (en) * 2018-07-20 2020-01-23 株式会社Sumco Method and device for measuring carbon concentration in silicon single crystal
WO2020017147A1 (en) * 2018-07-20 2020-01-23 株式会社Sumco Method and device for measuring carbon concentration in silicon single crystals
KR20210011994A (en) 2018-07-20 2021-02-02 가부시키가이샤 사무코 Method and apparatus for measuring carbon concentration in silicon single crystal
US11112354B2 (en) 2018-07-20 2021-09-07 Sumco Corporation Method and device for measuring carbon concentration in silicon single crystal
DE112019003657B4 (en) 2018-07-20 2023-01-26 Sumco Corporation Method and device for measuring the carbon concentration in a silicon monocrystal
JP2020067272A (en) * 2018-10-19 2020-04-30 株式会社Sumco Evaluation method of carbon concentration in silicon sample and evaluation apparatus used for this method, evaluation method of silicon wafer manufacturing process, manufacturing method of silicon wafer and manufacturing method of silicon single crystal ingot

Also Published As

Publication number Publication date
JP2790020B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
EP0250707B1 (en) Method and apparatus for measuring by infrared absorption the concentration of microcrystal defects in a silicon wafer used in the manufacture of a semiconductor element
JP2009162667A (en) Method and apparatus for measuring spectroscopic absorbance
US20050211901A1 (en) Method for determining the substitutional carbon content in monocrystalline or polycrystalline silicon
US5260772A (en) Method and apparatus for determining a material's characteristics by photoreflectance
US5066599A (en) Silicon crystal oxygen evaluation method using fourier transform infrared spectroscopy (ftir) and semiconductor device fabrication method using the same
JP2790020B2 (en) Method for measuring substitutional carbon concentration in silicon single crystal and automatic measuring device
Colley et al. Calibration of the photoluminescence technique for measuring B, P and Al concentrations in Si in the range 1012 to 1015 cm-3 using Fourier transform spectroscopy
CN113884462A (en) Method and system for measuring nitrogen element in nitrogen-doped monocrystalline silicon
EP0803725A1 (en) Method and apparatus for determination of interstitial oxygen concentration in silicon single crystal
US5444246A (en) Determining carbon concentration in silicon single crystal by FT-IR
US5598452A (en) Method of evaluating a silicon single crystal
US6744501B2 (en) Method of analyzing silicon-germanium alloys and apparatus for manufacturing semiconductor layer structures with silicon-germanium alloy layers
Vineis et al. In situ monitoring of GaSb, GaInAsSb, and AlGaAsSb
WO2020261859A1 (en) Method for measuring thickness of semiconductor wafer, and system for measuring thickness of semiconductor wafer
Miner Non-destructive, whole wafer assessment of optoelectronic epitaxial materials
US5099122A (en) Method for evaluation of transition region of silicon epitaxial wafer
Gaini et al. Large diameter germanium single crystals for infrared optics
US6605482B2 (en) Process for monitoring the thickness of layers in a microelectronic device
Krishnan et al. Characterization Of Semiconductor Silicon Using FT-IR Spectroscopy.
JP6950639B2 (en) Method and device for measuring carbon concentration of silicon single crystal
Stephenson Step‐Scanning WSR Section Topography for Indirect (Point Defect) Characterization of Dislocation‐Free Si Wafers
Savin et al. Measuring oxygen and bulk microdefects in silicon
Westphal et al. Application of advanced sensors to the liquid phase epitaxy (LPE) growth of MCT
Szofran et al. Highly automated transmission-edge mapping
DeLuisi Disparities in the determination of atmospheric ozone from solar ultraviolet transmission measurements 298.1‐319.5 nm

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees