JPH06193402A - Axial flow turbine stationary blade device - Google Patents

Axial flow turbine stationary blade device

Info

Publication number
JPH06193402A
JPH06193402A JP34429092A JP34429092A JPH06193402A JP H06193402 A JPH06193402 A JP H06193402A JP 34429092 A JP34429092 A JP 34429092A JP 34429092 A JP34429092 A JP 34429092A JP H06193402 A JPH06193402 A JP H06193402A
Authority
JP
Japan
Prior art keywords
turbine
wall
inclination angle
stationary blade
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34429092A
Other languages
Japanese (ja)
Other versions
JP3005839B2 (en
Inventor
Takeshi Sato
武 佐藤
Yoshiaki Yamazaki
義昭 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4344290A priority Critical patent/JP3005839B2/en
Publication of JPH06193402A publication Critical patent/JPH06193402A/en
Application granted granted Critical
Publication of JP3005839B2 publication Critical patent/JP3005839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To normalize a flowing state in a turbine stage by specifying the relation between an inclination angle of inner and outer walls and an inclination angle of a stationary blade in the peripheral direction in a turbine flow passage. CONSTITUTION:This is an axial flow turbine stationary blade device consisting of an inner wall 3a and an outer wall 3 forming a flow passage of an elastic fluid with their respective wall surfaces and a plural number of stationary blades 1 respective end parts of which are fixed on respective wall surfaces off the inner wall 3a and the outer wall 3 and which are arranged curved in the circumferential direction on a sectional surface orthogonal with a turbine shaft X, and it is formed by changing an inclination-gammato in the peripheral direction of outlet ends 4 of the respective stationary blades 1 at an intersection of the respective wall surfaces and the curved outlet ends 4. Consequently, it is possible to uniform flow in a turbine step, and to improve the turbine efficiency by way of reducing flowing loss for various kinds of flow passage shapes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静翼装置の改良に係
り、特に高圧部より低圧部へ配置される全段落の静翼の
流動損失を低減するのに好適な軸流タービン静翼装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved stator vane device, and more particularly to an axial turbine stator vane device suitable for reducing the flow loss of all the stator vanes arranged from a high pressure portion to a low pressure portion. Regarding

【0002】[0002]

【従来の技術】従来の軸流タービン静翼装置において
は、図13、図14及び図19に示すように、弾性流体
の流路Rをそれぞれの壁面で形成する内壁3a、3及び
外壁(内外壁)と、それぞれの壁面にそれぞれの端部を
固設されかつタービン軸Xと直交する断面に円周方向に
湾曲して配置された複数の静翼とよりなる構成である。
蒸気タービン等の軸流タービンは、上流側より下流側に
向けて圧力が低下し、この過程で圧力変化に対する流体
の容積変化割合が低圧になるほど顕著であるため、流路
を形成する静翼1と動翼2との翼長の増加割合が低圧部
に向かうほど大きくなり、流路形状が急激な拡大流路と
なる。また、図15及び図16には、一般的な高圧部及
び低圧部の実機蒸気タービン断面図を示したが、低圧部
ほど外壁面の広がり角(傾斜角)θtが大きくなってい
る。このようなタービン段落における蒸気流の状態を決
定する理論的な検討については多くの研究がなされてお
り、おおよそ次の(1)、(2)関係式で表わされるも
のとされている。なお、(1)、(2)関係式に用いた
記号は図13、図14、及び図17〜図19に図示され
ている。
2. Description of the Related Art In a conventional axial flow turbine vane device, as shown in FIGS. 13, 14 and 19, inner walls 3a, 3 and outer wall (inner Outer wall), and a plurality of stationary blades each end portion of which is fixedly mounted on each wall surface and is curved in the circumferential direction in a cross section orthogonal to the turbine axis X.
In an axial turbine such as a steam turbine, the pressure decreases from the upstream side toward the downstream side, and the volume change ratio of the fluid with respect to the pressure change becomes more remarkable as the pressure decreases in this process. The increasing rate of the blade length of the blade 2 and the blade 2 increases toward the low pressure portion, and the flow channel shape becomes a sharp expanded flow channel. Further, FIGS. 15 and 16 show cross-sectional views of a general steam turbine of a general high-pressure part and a low-pressure part, but the divergence angle (tilt angle) θt of the outer wall surface becomes larger at the low-pressure part. Many studies have been conducted on the theoretical examination for determining the state of the steam flow in such a turbine stage, and it is assumed that it is approximately expressed by the following relational expressions (1) and (2). The symbols used in the relational expressions (1) and (2) are illustrated in FIGS. 13, 14 and 17 to 19.

【0003】[0003]

【数1】 [Equation 1]

【0004】[0004]

【数2】 [Equation 2]

【0005】(1)式及び(2)式は、半径方向(r方
向)の圧力Pの平衡関係を示すものであり、図13に示
した子午面におけるパラメータだけではなく、蒸気ター
ビンの円周方向のパラメータである周方向速度成分Vθ
及び静翼の周方向傾斜角γにも影響されることが明らか
であり、蒸気タービンの流路が三次元流れであることを
示している。
The equations (1) and (2) show the equilibrium relation of the pressure P in the radial direction (r direction). Not only the parameters on the meridian plane shown in FIG. Circumferential velocity component Vθ, which is a direction parameter
Also, it is clear that it is also affected by the circumferential inclination angle γ of the stationary blade, which indicates that the flow path of the steam turbine is a three-dimensional flow.

【0006】タービン段落内の流れをコントロールし
て、タービン段落の性能を改善する従来技術は図17に
示すように、静翼1をタービン軸中心として半径方向に
一致させて配置した放射状に直立しているのに対し、図
18に示すように静翼1の周方向傾斜角が根元部Bでγ
R、先端部Aでγtとなるように直線状に傾斜させて配
置したもの、又は、図19に示すように、静翼1の傾斜
角を根元部から先端部に向かって順次変化させて、先端
部Aの傾斜角−γtが根元部Bの傾斜角γRに対して逆
方向になるように湾曲した形状の静翼を配置した技術で
ある。すなわち、根元部では静翼の腹側に傾斜し、先端
部では静翼の背側に傾斜する形状である。例えば、特開
昭62−170707号公報、特開平4−124406
号公報及び特願平4−52670号に認められる技術で
ある。
As shown in FIG. 17, a conventional technique for controlling the flow in the turbine stage to improve the performance of the turbine stage is to erect in a radial direction in which the stationary blades 1 are radially aligned with the turbine shaft center. On the other hand, as shown in FIG. 18, the circumferential tilt angle of the stationary blade 1 is γ at the root portion B.
R, those which are arranged so as to be linearly inclined so as to be γt at the tip portion A, or, as shown in FIG. 19, the inclination angle of the stationary blade 1 is sequentially changed from the root portion toward the tip portion, This is a technique in which a stationary vane having a curved shape is arranged such that the inclination angle −γt of the tip portion A is opposite to the inclination angle γR of the root portion B. That is, the shape is such that the root portion is inclined toward the ventral side of the vane and the tip portion is inclined toward the dorsal side of the vane. For example, JP-A-62-170707 and JP-A-4-124406.
This is a technique recognized in Japanese Patent Application Publication No. 4-52670 and Japanese Patent Application No. 4-52670.

【0007】以上のように静翼の形状、配置には種々の
考案がなされているが、図17〜図19に示す各静翼構
成を先端側の外壁面に傾斜角を有する場合を例として、
流路内の流動状況を流線Fで説明すると図20〜図22
に示すようになる。図20は、静翼1が周方向に傾斜し
ていないため弾性流体の半径方向の圧力勾配と遠心力と
の関係により、根元部付近の低流量領域A1で流量が少
なくなり先端部では流量が多くなる傾向となる。図21
は、静翼が周方向に直線的に傾斜した例であるが、図2
0の状態とは逆の傾向を示し、先端部付近で低流量領域
A2を発生する。前記の静翼配置における欠点を排除す
るため考案されたのが図19に示した湾曲した静翼形状
であり、この場合の流動状況は図22に示すようにな
り、図20及び図21に示す欠点を解消してほぼ良好な
流動状況が得られる。しかし、(1)式からも明らかな
ように、このような流動状況は拡大流路を形成すること
により、タービン軸に対して傾斜する外壁3と内壁3a
の傾斜角に対する周方向傾斜角γR及び−γtが適切で
あることが条件となるが、従来技術ではこの関係が明確
にされていない。
Although various ideas have been made for the shape and arrangement of the vanes as described above, the case where each vane structure shown in FIGS. 17 to 19 has an inclination angle on the outer wall surface on the tip side is taken as an example. ,
The flow condition in the flow path will be described with reference to the streamline F.
As shown in. In FIG. 20, since the stationary blade 1 is not inclined in the circumferential direction, the flow rate decreases in the low flow rate region A1 near the root portion due to the relationship between the radial pressure gradient of the elastic fluid and the centrifugal force, and the flow rate at the tip end portion becomes small. It tends to increase. Figure 21
Is an example in which the stationary blade is linearly inclined in the circumferential direction.
A tendency opposite to the state of 0 is shown, and a low flow rate region A2 is generated near the tip. The curved vane shape shown in FIG. 19 was devised in order to eliminate the above-mentioned drawbacks in the vane arrangement, and the flow condition in this case is as shown in FIG. 22 and shown in FIGS. 20 and 21. Disadvantages are eliminated and almost good flow conditions are obtained. However, as is clear from the equation (1), such a flow condition forms an enlarged flow path, so that the outer wall 3 and the inner wall 3a inclined with respect to the turbine shaft are formed.
The condition is that the circumferential tilt angles γR and −γt with respect to the tilt angle are appropriate, but this relationship has not been clarified in the prior art.

【0008】そして図15及び図16に示すように、タ
ービン流路を形成する内外壁の傾斜角は、内壁(根元
側)ではゼロで、外壁(先端側)では下流に向かってタ
ービン軸から離れるように形成されるものに限らず、さ
らに実機タービンの断面図を示すと、図23及び図24
に示す例のように、外壁では傾斜角が下流側に向けて流
路が拡大するように形成されるが、内壁では、タービン
軸より離れる傾斜角の場合と、タービン軸に向かうよう
な傾斜角の場合とがある。このようにタービン流路にお
ける内外壁の傾斜角は、全体構造の関係より非常に多く
の選択がなされており、その内外壁形状を示すと図25
〜図33のようになる。図25〜図27は外壁がタービ
ン軸と平行で傾斜角がなく、内壁の傾斜角が異なる例で
ある。図28〜図30は外壁が下流側に向かってタービ
ン軸より離れるように形成され、内壁の傾斜角が異なっ
ている例である。また、図31〜図33は外壁が下流側
に向けてタービン軸に接近する方向に形成され、内壁の
傾斜角が異なる例である。
As shown in FIGS. 15 and 16, the inner and outer walls forming the turbine passage have an inclination angle of zero on the inner wall (root side) and move away from the turbine shaft toward the downstream on the outer wall (tip side). 23 and 24 are cross-sectional views of the actual turbine, not limited to those formed as described above.
As shown in the example, the outer wall is formed so that the inclination angle expands toward the downstream side, but the inner wall has an inclination angle away from the turbine axis and an inclination angle toward the turbine axis. There are cases. As described above, the inclination angles of the inner and outer walls in the turbine flow path are selected in a very large number due to the relationship of the overall structure, and the inner and outer wall shapes are shown in FIG.
~ It becomes like FIG. 25 to 27 are examples in which the outer wall is parallel to the turbine axis and has no tilt angle, and the inner wall has different tilt angles. 28 to 30 are examples in which the outer wall is formed so as to be separated from the turbine shaft toward the downstream side, and the inclination angle of the inner wall is different. 31 to 33 are examples in which the outer wall is formed in a direction toward the turbine shaft toward the downstream side, and the inclination angle of the inner wall is different.

【0009】[0009]

【発明が解決しようとする課題】従来の軸流タービン静
翼装置にあっては、タービン流路形状が多岐にわたるた
め、単に静翼を周方向に湾曲させて形成した状態ではタ
ービン全段落にわたって効果的ではなく、内外壁の傾斜
角に応じて静翼の周方向傾斜角を規定することが必要で
ある。これは流路内における半径方向の圧力分布状態を
達成するため必要な条件である。
In the conventional axial flow turbine vane device, since the turbine flow passages have a wide variety of shapes, they are effective over the entire paragraph of the turbine when the vanes are simply curved in the circumferential direction. However, it is necessary to define the circumferential inclination angle of the vane according to the inclination angle of the inner and outer walls. This is a necessary condition for achieving the radial pressure distribution state in the flow path.

【0010】本発明の目的は、解析検討及び実験的検討
をもとにタービン流路の内外壁の傾斜角と静翼の周方向
傾斜角との関係を規定し、タービン段落内の流動状況を
正常化する軸流タービン静翼装置を提供することにあ
る。
The object of the present invention is to specify the relationship between the inclination angle of the inner and outer walls of the turbine flow path and the circumferential inclination angle of the stationary blade based on analytical and experimental studies, and to determine the flow condition in the turbine stage. An object is to provide a normalizing axial flow turbine vane device.

【0011】[0011]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る軸流タービン静翼装置は、弾性流体の
流路をそれぞれの壁面で形成する内壁及び外壁と、それ
ぞれの壁面にそれぞれの端部を固設されかつタービン軸
と直交する断面に円周方向に湾曲して配置された複数の
静翼とよりなる軸流タービン静翼装置において、それぞ
れの壁面とタービン軸とのなす傾斜角に対応し、それぞ
れの壁面と湾曲した出口端との交点におけるそれぞれの
静翼の出口端の周方向傾斜角を変化させて形成した構成
とする。
In order to achieve the above-mentioned object, an axial flow turbine stationary blade device according to the present invention has an inner wall and an outer wall which form a flow path of elastic fluid in respective wall surfaces, and an inner wall and an outer wall. In an axial-flow turbine stationary blade device including a plurality of stationary blades each end portion of which is fixed and curved in a circumferential direction in a cross section orthogonal to the turbine shaft, each wall surface and the turbine shaft are formed. Corresponding to the inclination angle, it is formed by changing the circumferential inclination angle of the outlet end of each stationary blade at the intersection of each wall surface and the curved outlet end.

【0012】そして弾性流体の流路をそれぞれの壁面で
形成する内壁及び外壁と、それぞれの壁面にそれぞれの
端部を固設されかつタービン軸と直交する断面に円周方
向に湾曲して配置された複数の静翼とよりなる軸流ター
ビン静翼装置において、それぞれの壁面の下流側に向け
てタービン軸より離間する傾斜角又は下流側に向けてタ
ービン軸に接近する傾斜角に対応し、内壁面と湾曲した
出口端との交点におけるそれぞれの静翼の出口端の周方
向傾斜角を腹側へ大きく形成するとともに、外壁面と湾
曲した出口端との交点におけるそれぞれの静翼の出口端
の周方向傾斜角を背側へ大きく形成した構成でもよい。
An inner wall and an outer wall that form a flow path for the elastic fluid, and end portions of the inner wall and the outer wall are fixed to the respective wall surfaces, and are curved in a circumferential direction in a cross section orthogonal to the turbine axis. In the axial turbine vane device composed of a plurality of stationary blades, each of the wall surfaces corresponds to an inclination angle that is separated from the turbine axis toward the downstream side of the wall surface or an inclination angle that approaches the turbine axis toward the downstream side. The circumferential inclination angle of the outlet end of each vane at the intersection of the wall surface and the curved outlet end is formed to be large on the ventral side, and the outlet end of each vane at the intersection of the outer wall surface and the curved outlet end is formed. A configuration in which the inclination angle in the circumferential direction is formed larger toward the back side may be used.

【0013】また軸流タービンにおいては、前記いずれ
か一つの軸流タービン静翼装置を備えてなる構成とす
る。
In addition, the axial flow turbine is configured to include any one of the above axial flow turbine vane devices.

【0014】[0014]

【作用】本発明によれば、タービン段落内の流動状況を
決定する影響パラメータは(2)式で示され、静翼の周
方向傾斜角を除く他のパラメータは、タービン設計にお
ける熱流体、強度及び構造上の制約条件があるため、す
でに明らかになっている静翼の周方向傾斜角の効果をも
とに、内外壁の傾斜角に応じて規定し、この規定に基づ
く静翼を備えることによってタービン段落内の内外壁で
発生する低流量領域が解消され流動損失が低減される。
According to the present invention, the influential parameters that determine the flow condition in the turbine stage are expressed by equation (2), and the other parameters except the circumferential inclination angle of the stationary blade are the thermal fluid and strength in the turbine design. Also, due to structural constraints, the effect of the circumferential inclination angle of the stationary blade has already been stipulated, and it is specified according to the inclination angle of the inner and outer walls, and a stationary blade based on this specification is provided. This eliminates the low flow rate region that occurs on the inner and outer walls in the turbine stage and reduces the flow loss.

【0015】[0015]

【実施例】本発明の一実施例を図1を参照しながら説明
する。図1は、タービン軸を中心として円周上に配置さ
れている静翼の一部分を斜視図で示してある。図1に示
すように、弾性流体の流路をそれぞれの壁面で形成する
内壁3a及び外壁3(内外壁)と、それぞれの壁面にそ
れぞれの端部を固設されかつタービン軸Xと直交する断
面に円周方向に湾曲して配置された複数の静翼1を備え
てなる軸流タービン静翼装置であって、それぞれの壁面
とタービン軸Xとのなす傾斜角に対応し、それぞれの壁
面と湾曲した出口端4との交点におけるそれぞれの静翼
1の出口端4の周方向傾斜角−γtoを変化させて形成
した構成とする。すなわち図29に示す例のように、外
壁3はタービン軸と平行なA軸に対して+θtの傾斜角
を有しており、内壁3aはタービン軸と平行なB軸に対
して−θRの傾斜角を有している。また、静翼1は出口
端4が外壁3と接合する交点Gにおいて、タービン軸X
と直角な半径方向線rtoに対して周方向傾斜角−γt
oで傾斜しており、内壁3aでは出口端4との交点Fに
おいて、タービン軸に直角な半径方向線rRoに対して
周方向傾斜角γRoで傾斜している。このように静翼1
は根元(内壁)から先端(外壁)にわたって湾曲する形
状となるが、この湾曲形状を円滑に形成するためには、
幾何学的に両端の接線角が与えられた場合の円弧を作図
する方法を用いることができる。例えば、「タービンの
熱計算」ゲ・ア・フィリポフ著、永島訳(文一総合出
版、1974)に示されているような方法を採用するこ
とが可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing a part of a vane arranged circumferentially around a turbine shaft. As shown in FIG. 1, an inner wall 3a and an outer wall 3 (inner and outer walls) that form a flow path of an elastic fluid with respective wall surfaces, and a cross section in which respective end portions are fixedly mounted on the respective wall surfaces and are orthogonal to the turbine axis X. An axial flow turbine stationary blade device comprising a plurality of stationary blades 1 arranged in a curved shape in the circumferential direction, corresponding to the inclination angle formed by each wall surface and the turbine axis X. The configuration is formed by changing the circumferential inclination angle −γto of the outlet end 4 of each stationary blade 1 at the intersection with the curved outlet end 4. That is, as in the example shown in FIG. 29, the outer wall 3 has an inclination angle of + θt with respect to the A axis parallel to the turbine axis, and the inner wall 3a has an inclination of −θR with respect to the B axis parallel to the turbine axis. Has horns. Further, the stator blade 1 has the turbine shaft X at the intersection G where the outlet end 4 joins the outer wall 3.
Circumferential inclination angle −γt with respect to a radial line rto perpendicular to
At the intersection F with the outlet end 4, the inner wall 3a is inclined at a circumferential inclination angle γRo with respect to a radial line rRo that is perpendicular to the turbine axis. In this way the stationary wing 1
Has a shape that curves from the root (inner wall) to the tip (outer wall). In order to form this curved shape smoothly,
A method of drawing a circular arc when the tangent angles at both ends are geometrically given can be used. For example, it is possible to adopt the method as shown in "Thermal Calculation of Turbines" by Ge a Filipov, translated by Nagashima (Bunichi Sogo Shuppan, 1974).

【0016】図1に示す静翼において、外壁の傾斜角+
θt、内壁の傾斜角−θRと、静翼の先端側の周方向傾
斜角−γto、根元側のγRoとの関係を規定してター
ビン段落内で発生する流動損失を低減するため、試験タ
ービンによる結果及び段落内の流れ解析に基づく検討結
果をまとめると、これらの4種類の角度の最も効果的な
関係は図2に示すようになる。図2に示すように、外壁
の傾斜角θtと静翼の先端側の周方向傾斜角−γtoと
の関係は、θtがプラス側からマイナス側に向かうにつ
れて静翼の先端側の周方向傾斜角−γtoは、マイナス
側に大きくする必要がある。また、内壁の傾斜角θRと
静翼の根元側の周方向傾斜角γRoとの関係は、内壁の
傾斜角θRがプラスからマイナスに向かうにつれて静翼
の根元側の周方向傾斜角γRoは、プラス側に大きくす
る必要があることを示している。
In the vane shown in FIG. 1, the inclination angle of the outer wall +
In order to reduce the flow loss that occurs in the turbine stage by defining the relationship between θt, the inclination angle of the inner wall −θR, the circumferential inclination angle of the tip side of the stationary blade −γto, and the root side γRo, the test turbine Summarizing the results and the examination results based on the flow analysis in the paragraph, the most effective relationship of these four kinds of angles is as shown in FIG. As shown in FIG. 2, the relationship between the inclination angle θt of the outer wall and the circumferential inclination angle −γto on the tip side of the vane is that the inclination angle θt on the tip side of the vane increases as θt goes from the plus side to the minus side. It is necessary to increase −γto on the negative side. Further, the relationship between the inclination angle θR of the inner wall and the circumferential inclination angle γRo on the root side of the vane is that the inclination angle γRo on the root side of the vane becomes positive as the inclination angle θR of the inner wall goes from positive to negative. Shows that it needs to be larger on the side.

【0017】次に、前記の静翼構造に関して、タービン
段落への影響を翼長方向の効率分布で示すと図3のよう
になる。図3に示すように、曲線10は図17の静翼構
造における効率分布であり、曲線40と曲線50との組
み合わせによる分布は、静翼形状が湾曲してはいるが本
実施例のように内外壁の傾斜角との関係を考慮していな
い図19に相当するものである。また、曲線20と曲線
30との組み合わせによる分布は本実施例の構成による
ものであり、内外壁の傾斜角と静翼の周方向傾斜角との
関係の適正化を図った結果、内外壁のごく近傍の効率向
上を含めて高効率が達成できる。図3の効率分布になる
状況を流線で示すと図4〜図12のようになり、それぞ
れ図25〜図33に示した実機タービンの流路形状に対
応するものである。図4〜図12に示すように、実線で
示す流線は本実施例の構成によるものであり、鎖線で示
す流線は従来技術によるものである。さらに、領域aは
従来技術において内外壁から流れが剥離して渦流の発生
する流域であり、本実施例では、内外壁の傾斜角に対応
した静翼の周方向傾斜角によって内外壁側に押し付ける
動翼からの作用力を調整することができるため、タービ
ン段落内の流れを正常化し、従来技術に認められる剥離
流れによる渦流を消滅させることが可能となり、タービ
ン段落の高効率化に大きな効果が発揮される。このよう
な効果を翼長方向の効率分布を平均化した段落効果で比
較すると、本実施例による効率向上量は、2〜4%に達
することが確認されている。
Next, regarding the above-mentioned vane structure, the influence on the turbine stage is shown by the efficiency distribution in the blade length direction as shown in FIG. As shown in FIG. 3, the curve 10 is the efficiency distribution in the stationary blade structure of FIG. 17, and the distribution obtained by combining the curves 40 and 50 is similar to that of the present embodiment although the stationary blade shape is curved. It corresponds to FIG. 19 in which the relationship with the inclination angles of the inner and outer walls is not considered. The distribution of the combination of the curves 20 and 30 is due to the configuration of the present embodiment, and as a result of optimizing the relationship between the inclination angle of the inner and outer walls and the circumferential inclination angle of the stationary blade, High efficiency can be achieved including efficiency improvement in the very vicinity. 4 to 12 show the situation of the efficiency distribution of FIG. 3 by streamlines, which correspond to the flow passage shapes of the actual turbine shown in FIGS. 25 to 33, respectively. As shown in FIGS. 4 to 12, the streamline shown by the solid line is based on the configuration of this embodiment, and the streamline shown by the chain line is based on the conventional technique. Further, the region a is a flow region in which the flow separates from the inner and outer walls to generate a vortex in the conventional technique, and in the present embodiment, it is pressed against the inner and outer wall sides by the circumferential inclination angle of the vane corresponding to the inclination angle of the inner and outer walls. Since the acting force from the rotor blades can be adjusted, it is possible to normalize the flow in the turbine stage and eliminate the eddy current due to the separated flow that is recognized in the prior art, which is a great effect for improving the efficiency of the turbine stage. To be demonstrated. Comparing such effects with the paragraph effect obtained by averaging the efficiency distribution in the blade length direction, it has been confirmed that the efficiency improvement amount according to the present embodiment reaches 2 to 4%.

【0018】[0018]

【発明の効果】本発明によれば、タービン流路内に配置
される湾曲した静翼の内外壁の傾斜角に対応し、それぞ
れの壁面と湾曲した出口端との交点における静翼の周方
向傾斜角の関係を規定したため、タービン段落内の流れ
が均一化され、種々の流路形状に対して流動損失を低減
させてタービン効率を向上することできる効果がある。
According to the present invention, the circumferential direction of the vane corresponding to the inclination angle of the inner and outer walls of the curved vane arranged in the turbine flow path and at the intersection of each wall surface and the curved outlet end. Since the relationship of the inclination angle is defined, the flow in the turbine stage is made uniform, and there is an effect that the flow loss can be reduced and the turbine efficiency can be improved for various flow passage shapes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】本発明の内外壁の傾斜角と静翼の周方向傾斜角
との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the inclination angle of the inner and outer walls of the present invention and the circumferential inclination angle of the stationary blade.

【図3】本発明の効果を説明する翼長方向の効率分布を
示すグラフである。
FIG. 3 is a graph showing the efficiency distribution in the blade length direction for explaining the effect of the present invention.

【図4】本発明の効果を説明する流路内の流れを示す図
である。
FIG. 4 is a diagram showing a flow in a flow path for explaining the effect of the present invention.

【図5】本発明の効果を説明する流路内の流れを示す図
である。
FIG. 5 is a diagram showing a flow in a flow path for explaining the effect of the present invention.

【図6】本発明の効果を説明する流路内の流れを示す図
である。
FIG. 6 is a diagram showing a flow in a flow path for explaining the effect of the present invention.

【図7】本発明の効果を説明する流路内の流れを示す図
である。
FIG. 7 is a diagram showing a flow in a flow path for explaining the effect of the present invention.

【図8】本発明の効果を説明する流路内の流れを示す図
である。
FIG. 8 is a diagram showing a flow in a flow path for explaining the effect of the present invention.

【図9】本発明の効果を説明する流路内の流れを示す図
である。
FIG. 9 is a diagram showing a flow in a flow path for explaining the effect of the present invention.

【図10】本発明の効果を説明する流路内の流れを示す
図である。
FIG. 10 is a diagram showing a flow in a flow path for explaining the effect of the present invention.

【図11】本発明の効果を説明する流路内の流れを示す
図である。
FIG. 11 is a diagram showing a flow in a flow path for explaining the effect of the present invention.

【図12】本発明の効果を説明する流路内の流れを示す
図である。
FIG. 12 is a diagram showing a flow in a flow path for explaining the effect of the present invention.

【図13】タービン段落の縦断面図である。FIG. 13 is a vertical section view of a turbine stage.

【図14】拡大流路における流体の流線を示す斜視図で
ある。
FIG. 14 is a perspective view showing a streamline of a fluid in an enlarged channel.

【図15】実機タービンの翼列の例を示す断面図であ
る。
FIG. 15 is a cross-sectional view showing an example of a blade row of an actual turbine.

【図16】実機タービンの翼列の例を示す断面図であ
る。
FIG. 16 is a cross-sectional view showing an example of a blade row of an actual turbine.

【図17】従来の静翼形状を示す正面図である。FIG. 17 is a front view showing a conventional stationary blade shape.

【図18】従来の静翼形状を示す正面図である。FIG. 18 is a front view showing a conventional stationary blade shape.

【図19】従来の静翼形状を示す正面図である。FIG. 19 is a front view showing a conventional vane shape.

【図20】従来の静翼における流れの状況を示す縦断面
図である。
FIG. 20 is a vertical cross-sectional view showing a flow situation in a conventional vane.

【図21】従来の静翼における流れの状況を示す縦断面
図である。
FIG. 21 is a vertical cross-sectional view showing a flow situation in a conventional vane.

【図22】従来の静翼における流れの状況を示す縦断面
図である。
FIG. 22 is a vertical cross-sectional view showing a flow situation in a conventional vane.

【図23】実機タービンの翼列の例を示す断面図であ
る。
FIG. 23 is a cross-sectional view showing an example of a blade row of an actual turbine.

【図24】実機タービンの翼列の例を示す断面図であ
る。
FIG. 24 is a cross-sectional view showing an example of a blade row of an actual turbine.

【図25】実機タービン段落の内外壁の傾斜角の例を示
す断面図である。
FIG. 25 is a cross-sectional view showing an example of the inclination angles of the inner and outer walls of the actual turbine section.

【図26】実機タービン段落の内外壁の傾斜角の例を示
す断面図である。
FIG. 26 is a cross-sectional view showing an example of the inclination angles of the inner and outer walls of the actual turbine stage.

【図27】実機タービン段落の内外壁の傾斜角の例を示
す断面図である。
FIG. 27 is a cross-sectional view showing an example of the inclination angles of the inner and outer walls of the actual turbine section.

【図28】実機タービン段落の内外壁の傾斜角の例を示
す断面図である。
FIG. 28 is a cross-sectional view showing an example of the inclination angles of the inner and outer walls of the actual turbine section.

【図29】実機タービン段落の内外壁の傾斜角の例を示
す断面図である。
FIG. 29 is a cross-sectional view showing an example of the inclination angles of the inner and outer walls of the actual turbine section.

【図30】実機タービン段落の内外壁の傾斜角の例を示
す断面図である。
FIG. 30 is a cross-sectional view showing an example of the inclination angles of the inner and outer walls of the actual turbine section.

【図31】実機タービン段落の内外壁の傾斜角の例を示
す断面図である。
FIG. 31 is a cross-sectional view showing an example of the inclination angles of the inner and outer walls of the actual turbine section.

【図32】実機タービン段落の内外壁の傾斜角の例を示
す断面図である。
FIG. 32 is a cross-sectional view showing an example of the inclination angles of the inner and outer walls of the actual turbine stage.

【図33】実機タービン段落の内外壁の傾斜角の例を示
す断面図である。
FIG. 33 is a cross-sectional view showing an example of the inclination angles of the inner and outer walls of the actual turbine section.

【符号の説明】[Explanation of symbols]

1 静翼 2 動翼 3 外壁 3a 内壁 4 出口端 1 stationary blade 2 moving blade 3 outer wall 3a inner wall 4 outlet end

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 弾性流体の流路をそれぞれの壁面で形成
する内壁及び外壁と、それぞれの壁面にそれぞれの端部
を固設されかつタービン軸と直交する断面に円周方向に
湾曲して配置された複数の静翼とよりなる軸流タービン
静翼装置において、それぞれの壁面と前記タービン軸と
のなす傾斜角に対応し、それぞれの壁面と前記湾曲した
出口端との交点におけるそれぞれの静翼の該出口端の周
方向傾斜角を変化させて形成したことを特徴とする軸流
タービン。
1. An inner wall and an outer wall that form a flow path of an elastic fluid with respective wall surfaces, and respective end portions are fixedly provided on the respective wall surfaces and are arranged in a curved shape in a circumferential direction in a cross section orthogonal to the turbine axis. In the axial flow turbine stationary blade device composed of a plurality of stationary blades, each stationary blade corresponding to an inclination angle formed by each wall surface and the turbine shaft, at each intersection of each wall surface and the curved outlet end. An axial flow turbine characterized by being formed by changing the circumferential inclination angle of the outlet end.
【請求項2】 弾性流体の流路をそれぞれの壁面で形成
する内壁及び外壁と、それぞれの壁面にそれぞれの端部
を固設されかつタービン軸と直交する断面に円周方向に
湾曲して配置された複数の静翼とよりなる軸流タービン
静翼装置において、それぞれの壁面の下流側に向けて前
記タービン軸より離間する傾斜角又は下流側に向けて前
記タービン軸に接近する傾斜角に対応し、内壁面と前記
湾曲した出口端との交点におけるそれぞれの静翼の該出
口端の周方向傾斜角を腹側へ大きく形成するとともに、
外壁面と前記湾曲した出口端との交点におけるそれぞれ
の静翼の該出口端の周方向傾斜角を背側へ大きく形成し
たことを特徴とする軸流タービン静翼装置。
2. An inner wall and an outer wall that form a flow path of an elastic fluid by respective wall surfaces, and respective end portions are fixedly mounted on the respective wall surfaces and are arranged in a circumferentially curved shape in a cross section orthogonal to the turbine axis. In the axial flow turbine stationary blade device including a plurality of stationary blades, a tilt angle that is separated from the turbine shaft toward the downstream side of each wall surface or a tilt angle that approaches the turbine shaft toward the downstream side. Then, while forming the circumferential inclination angle of the outlet end of each stationary blade at the intersection of the inner wall surface and the curved outlet end to the ventral side,
An axial-flow turbine stationary blade apparatus, wherein a circumferential inclination angle of each stationary blade at an intersection of an outer wall surface and the curved outlet end is formed to be large toward the back side.
【請求項3】 請求項1又は2記載の軸流タービン静翼
装置を備えてなることを特徴とする軸流タービン。
3. An axial flow turbine comprising the axial flow turbine vane device according to claim 1 or 2.
JP4344290A 1992-12-24 1992-12-24 Axial turbine Expired - Lifetime JP3005839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4344290A JP3005839B2 (en) 1992-12-24 1992-12-24 Axial turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4344290A JP3005839B2 (en) 1992-12-24 1992-12-24 Axial turbine

Publications (2)

Publication Number Publication Date
JPH06193402A true JPH06193402A (en) 1994-07-12
JP3005839B2 JP3005839B2 (en) 2000-02-07

Family

ID=18368098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4344290A Expired - Lifetime JP3005839B2 (en) 1992-12-24 1992-12-24 Axial turbine

Country Status (1)

Country Link
JP (1) JP3005839B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074804A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Nozzle of steam turbine
JP2012092825A (en) * 2010-09-28 2012-05-17 Hitachi Ltd Steam turbine stator vane, and steam turbine using the same
KR101322554B1 (en) * 2012-03-27 2013-10-28 가부시키가이샤 히타치세이사쿠쇼 Stationary blade of steam turbine and steam turbine with the same
JP2017122406A (en) * 2016-01-07 2017-07-13 三菱重工業株式会社 Axial flow turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124406A (en) * 1990-09-17 1992-04-24 Hitachi Ltd Axial flow turbine stationary blade device and axial flow turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124406A (en) * 1990-09-17 1992-04-24 Hitachi Ltd Axial flow turbine stationary blade device and axial flow turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074804A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Nozzle of steam turbine
JP2012092825A (en) * 2010-09-28 2012-05-17 Hitachi Ltd Steam turbine stator vane, and steam turbine using the same
US9011084B2 (en) 2010-09-28 2015-04-21 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine stator vane and steam turbine using the same
KR101322554B1 (en) * 2012-03-27 2013-10-28 가부시키가이샤 히타치세이사쿠쇼 Stationary blade of steam turbine and steam turbine with the same
JP2017122406A (en) * 2016-01-07 2017-07-13 三菱重工業株式会社 Axial flow turbine

Also Published As

Publication number Publication date
JP3005839B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
RU2220329C2 (en) Curved blade of compressor
CA2333809C (en) Convex compressor casing
JP4771585B2 (en) Double curved compressor airfoil
EP1939399B1 (en) Axial flow turbine assembly
JP5059991B2 (en) Stator blade with narrow waist
JP3578769B2 (en) Flow orientation assembly for the compression region of rotating machinery
US6508630B2 (en) Twisted stator vane
EP0704602B1 (en) Turbine blade
JP5179161B2 (en) Gas turbine engine including multiple curved stator vanes and method of assembling the same
US6709233B2 (en) Aerofoil for an axial flow turbomachine
JP4876206B2 (en) Turbine stage with crescent shaped slope
US10519980B2 (en) Turbomachine component or collection of components and associated turbomachine
RU2354854C1 (en) Axial blower or compressor high-rpm impeller
US7484935B2 (en) Turbine rotor hub contour
EP1260674B1 (en) Turbine blade and turbine
JPH08165999A (en) Axial flow blower
CA2165863A1 (en) A supersonic distributor for the inlet stage of a turbomachine
JPH06193402A (en) Axial flow turbine stationary blade device
WO2000061918A2 (en) Airfoil leading edge vortex elimination device
CN113883093B (en) Low-reaction-force compressor blade design method, movable blade and compressor
JP2000204903A (en) Axial turbine
JP3570438B2 (en) Method of reducing secondary flow in cascade and its airfoil
JP3402176B2 (en) Blades for turbomachinery
JPH08114199A (en) Axial flow compressor
JPH1061405A (en) Stationary blade of axial flow turbo machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 14