JPH06192837A - Hard cabon film applied amorphous magnetic alloy thin strip - Google Patents

Hard cabon film applied amorphous magnetic alloy thin strip

Info

Publication number
JPH06192837A
JPH06192837A JP3117735A JP11773591A JPH06192837A JP H06192837 A JPH06192837 A JP H06192837A JP 3117735 A JP3117735 A JP 3117735A JP 11773591 A JP11773591 A JP 11773591A JP H06192837 A JPH06192837 A JP H06192837A
Authority
JP
Japan
Prior art keywords
hard carbon
carbon film
magnetic alloy
amorphous magnetic
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3117735A
Other languages
Japanese (ja)
Inventor
Morihiro Okada
守弘 岡田
Kiyoshi Yoshikawa
潔 吉川
Yasushi Yamamoto
靖 山本
Toshiyuki Toku
壽之 督
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3117735A priority Critical patent/JPH06192837A/en
Priority to US08/197,018 priority patent/US5455081A/en
Publication of JPH06192837A publication Critical patent/JPH06192837A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a hard carbon film applied amorphous magnetic alloy thin strip excellent in insulating properties and heat radiation by coating the surface of an amorphous magnetic alloy with a hard carbon film having specified hardness. CONSTITUTION:The molten metal of transition metals such as iron, cobalt and nickel and a magnetic alloy contg. semimetals such as silicon, boron, carbon and phosphorus is rapidly solidified to obtain an amorphous magnetic alloy thin strip excellent in magnetic properties. The surface of this alloy is coated with a hard carbon film having 10 to 100mum thickness. This hard carbon film is formed preferably by an ion beam method using a Hall-type ion source, by which film forming can be executed with tight adhesion. Moreover, as for this hard carbon film, its heat radiability is high in about 1.0cm/S thermal diffusion constant, and its specific resistance is about 10<11> to 10<13>OMEGA.cm to reduce the loss of eddy current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁性、放熱性を付与
した硬質炭素膜被覆非晶質磁性合金薄帯に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard carbon film-coated amorphous magnetic alloy ribbon having insulation and heat dissipation properties.

【0002】[0002]

【従来の技術】非晶質磁性合金薄帯は、保磁力が小さ
い、磁歪が小さい、高周波下においても透磁率が大き
い、飽和磁束密度が高い等のように磁気特性が優れてい
る。非晶質磁性合金薄帯は、米国特許第3,862,6
58号明細書、特開昭52−133826号公報、特開
昭53−53525号公報等に開示されているような、
メルトスピン法による急冷凝固にて製造される。そして
コイル、積層板などの各形状に成型加工されて熱処理が
加えられた後に、高周波トランス、弾性波フィルター、
チョークコイル、磁気スイッチなどの用途に使用されて
いる。
2. Description of the Related Art Amorphous magnetic alloy ribbons have excellent magnetic properties such as a small coercive force, a small magnetostriction, a large magnetic permeability even under a high frequency, and a high saturated magnetic flux density. Amorphous magnetic alloy ribbons are described in U.S. Pat. No. 3,862,6.
58, Japanese Patent Laid-Open No. 52-133826, Japanese Patent Laid-Open No. 53-53525, and the like.
It is manufactured by rapid solidification by the melt spin method. Then, after being processed into each shape such as a coil and a laminated plate and subjected to heat treatment, a high frequency transformer, an elastic wave filter,
It is used in applications such as choke coils and magnetic switches.

【0003】非晶質磁性合金薄帯は、使用に際してコイ
ル状にしても、板状にしても積層して使用されており、
同形状のまま、さらに磁気特性を向上させるためには、
積層された非晶質磁性合金薄帯の各層間を電気的に絶縁
し、かつ放熱性を向上させることが必要である。そのた
めに絶縁層として樹脂膜や金属酸化物が用いられている
が、焼鈍時に絶縁層が劣化したり、金属薄帯に余分な内
部応力を与えて磁気特性を悪化させたり、放熱性を低下
させるという問題点があった。
Amorphous magnetic alloy ribbons are used in the form of a coil or a plate when they are laminated.
In order to further improve the magnetic characteristics with the same shape,
It is necessary to electrically insulate each layer of the laminated amorphous magnetic alloy ribbons and to improve heat dissipation. Therefore, a resin film or a metal oxide is used as an insulating layer, but the insulating layer is deteriorated during annealing, the magnetic properties are deteriorated by giving extra internal stress to the metal ribbon, and the heat dissipation is deteriorated. There was a problem.

【0004】硬質炭素膜は、特開昭61−272363
号公報,特開昭63−123802号公報,特開平1−
167211号公報,特開平2−196095号公報な
どに開示されている方法等によって成膜が可能である
が、これらの方法では鉄を主成分とする金属に、通常の
取扱いで剥離しない程度の付着力で硬質炭素膜を被覆す
ることは困難であり、さらに300〜560℃の非晶質
磁性合金薄帯の焼鈍温度で膜質、付着力共に劣化しない
硬質炭素膜を成膜することは難しかった。
A hard carbon film is disclosed in JP-A-61-273263.
JP, JP-A-63-123802, JP-A-1-
Films can be formed by methods such as those disclosed in Japanese Patent No. 167211 and Japanese Patent Application Laid-Open No. 2-196095. In these methods, a metal containing iron as a main component is attached to the extent that peeling does not occur in normal handling. It is difficult to coat the hard carbon film by adhesion, and it is also difficult to form a hard carbon film that does not deteriorate in film quality and adhesion at the annealing temperature of the amorphous magnetic alloy ribbon of 300 to 560 ° C.

【0005】[0005]

【発明が解決しようとする課題】本発明は、絶縁性、放
熱性に優れた硬質炭素膜被覆非晶質磁性合金薄帯を提供
するものである。
SUMMARY OF THE INVENTION The present invention provides a hard carbon film-coated amorphous magnetic alloy ribbon which is excellent in insulation and heat dissipation.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、非晶質磁性合金の表面に厚さ10nm以上100
μm以下の硬質炭素膜を被覆したことを特徴とする硬質
炭素膜被覆非晶質磁性合金薄帯にある。本発明でいう非
晶質磁性合金薄帯とは次のようなものである。米国特許
第3,862,658号明細書、特開昭52−1338
26号公報、特開昭53−53525号公報等に開示さ
れている方法によって、溶融された合金を急冷凝固させ
ることで非晶質の合金を得ることができる。この非晶質
合金は、エックス線回折や電子線回折で回折線を示さ
ず、長距離規則性を持たない原子配列を有するものであ
る。
The gist of the present invention is that the thickness of the amorphous magnetic alloy is 10 nm or more and 100 nm or more.
A hard carbon film-coated amorphous magnetic alloy ribbon characterized by being coated with a hard carbon film having a thickness of μm or less. The amorphous magnetic alloy ribbon referred to in the present invention is as follows. U.S. Pat. No. 3,862,658, Japanese Patent Laid-Open No. 52-1338.
An amorphous alloy can be obtained by quenching and solidifying a melted alloy by the method disclosed in Japanese Patent Laid-Open No. 26, JP-A-53-53525, or the like. This amorphous alloy does not show diffraction lines by X-ray diffraction or electron beam diffraction, and has an atomic arrangement without long-range regularity.

【0007】以上のような非晶質合金からなる磁性合金
は、通常の結晶質金属とは異なり、磁気異方性がない。
特に、遷移金属と半金属との非晶質磁性合金は保磁力が
小さく、軟磁性に優れ、磁気損失が少なく、薄板加工な
どの加工性が良く、製造方法が容易であるなどの、軟磁
性材料としての優れた特性と使用上の便利さとを併せ持
っている。このような非晶質磁性合金には遷移金属成分
として鉄、コバルト、ニッケル、半金属成分としてシリ
コン、硼素、炭素、燐等を含むものが知られており用途
に応じてその組成を変えて使用されている。
The magnetic alloy composed of the above amorphous alloy has no magnetic anisotropy, unlike ordinary crystalline metals.
In particular, amorphous magnetic alloys of transition metals and semimetals have low coercive force, excellent soft magnetism, low magnetic loss, good workability such as thin plate processing, and easy manufacturing method. It has both excellent properties as a material and convenience in use. It is known that such amorphous magnetic alloys contain iron, cobalt, nickel as a transition metal component, and silicon, boron, carbon, phosphorus, etc. as a semi-metal component, and the composition is changed according to the use. Has been done.

【0008】本発明では特に、パルス状の交流電流によ
り、大きい磁束変化幅で高速に磁化反転をさせて、パル
ス状に変化する電磁場を発生させるための磁心として非
晶質磁性合金薄帯を用いる用途において、積層された薄
帯同士を絶縁するために硬質炭素膜を用いると、非晶質
磁性合金自身の磁気特性を劣化させることなく、磁心の
性能を向上させることができることを見出して完成した
ものである。例えば、熱拡散定数を比較すると非晶質磁
性合金は約0.03cm2/s 、耐熱性樹脂は約0.005
cm2/s 、硬質炭素は約1.0cm2/s であるので、硬質炭
素膜が被覆された非晶質磁性合金薄帯を磁心に用いる
と、放熱性が良くなるため磁心の温度上昇を抑制でき
る。さらに、硬質炭素膜は、比抵抗が1011〜1013Ω
・cm程度であるので、硬質炭素膜が被覆された非晶質磁
性合金薄帯を磁心に用いると、渦電流損失を少なくする
ことができる。
In the present invention, in particular, an amorphous magnetic alloy ribbon is used as a magnetic core for generating a pulse-like electromagnetic field by rapidly reversing the magnetization with a large magnetic flux change width by a pulse-like alternating current. In applications, it was found that the use of a hard carbon film to insulate the laminated ribbons can improve the performance of the magnetic core without degrading the magnetic properties of the amorphous magnetic alloy itself. It is a thing. For example, comparing the thermal diffusion constants, about 0.03 cm 2 / s for amorphous magnetic alloy and about 0.005 for heat resistant resin.
cm 2 / s, and hard carbon is about 1.0 cm 2 / s, so if an amorphous magnetic alloy ribbon coated with a hard carbon film is used for the magnetic core, the heat dissipation will be improved and the temperature rise of the magnetic core will occur. Can be suppressed. Further, the hard carbon film has a specific resistance of 10 11 to 10 13 Ω.
Since it is about cm, eddy current loss can be reduced by using an amorphous magnetic alloy ribbon coated with a hard carbon film for the magnetic core.

【0009】さらに、本発明は、以上のような用途に使
用される鉄を主成分とする非晶質磁性合金薄帯の形状変
化や焼鈍によっても、被覆されている硬質炭素膜が劣化
しないという優れた特性を示す。本発明でいう硬質炭素
膜あるいはダイヤモンド状炭素膜と別称されているもの
は、次のようなものである。元素の構成の主体は炭素で
あり、天然ダイヤモンドに準ずる硬度を持ち、非晶質で
電子線回折像はハローパターンを示す。ラマンスペクト
ルでは1100cm-1から1700cm-1にかけて非晶質特
有の広いピークを示す。硬質炭素膜を走査型電子顕微鏡
で、10,000倍程度に拡大して観察しても、結晶粒
が認められない一様で平滑な膜である。硬質炭素膜は一
般に炭化水素化合物を原料とした気相合成法によって生
成され、アルゴンイオンを用いたラザフォード散乱分析
法によると40atom%以下の水素を含有しており、
水素が炭素原子のダングリングボンドの部分に入ること
により非晶質状態が安定化され、かつ高硬度の構造にな
ると考えられている。適量の水素が存在することで、硬
質炭素膜は天然ダイヤモンドに準ずる高い硬度と熱拡散
特性を示すものと推測され、硬質炭素膜中の水素が多過
ぎると軟らかく熱拡散率の低い有機質の膜になる。その
ため水素の割合は、アルゴンイオンを用いたラザフォー
ド散乱分析法で測定した場合で、膜中に35atom%
以下、好ましくは20〜30atom%とすることが好
ましい。
Further, according to the present invention, even if the amorphous magnetic alloy ribbon mainly composed of iron used for the above-mentioned applications is changed in shape or annealed, the coated hard carbon film is not deteriorated. It exhibits excellent properties. What is referred to as a hard carbon film or a diamond-like carbon film in the present invention is as follows. The main constituent of the element is carbon, which has a hardness similar to that of natural diamond, is amorphous, and the electron beam diffraction pattern shows a halo pattern. The Raman spectrum shows a broad peak over the 1700 cm -1 of amorphous unique from 1100 cm -1. It is a uniform and smooth film in which no crystal grains are observed even when the hard carbon film is observed under a scanning electron microscope at a magnification of about 10,000 times. The hard carbon film is generally produced by a gas phase synthesis method using a hydrocarbon compound as a raw material, and contains 40 atom% or less of hydrogen according to Rutherford scattering analysis method using argon ions.
It is believed that hydrogen enters the dangling bond part of the carbon atom to stabilize the amorphous state and to provide a high hardness structure. It is speculated that the presence of an appropriate amount of hydrogen causes the hard carbon film to exhibit high hardness and thermal diffusion characteristics similar to those of natural diamond.If too much hydrogen is present in the hard carbon film, it becomes soft and becomes an organic film with a low thermal diffusivity. Become. Therefore, the hydrogen content was 35 atom% in the film when measured by Rutherford scattering analysis using argon ions.
Hereafter, it is preferably 20 to 30 atom%.

【0010】非晶質磁性合金に被覆する硬質炭素膜の厚
みを10nm未満にするとピンホールが生じやすくな
り、非晶質磁性合金の主な用途である積層磁心に用いた
場合、各層間の絶縁が保てなくなり不適当である。厚み
が100μm超になると内部応力が顕著になり、非晶質
磁性合金の磁気特性が劣化するために不適当である。従
って硬質炭素膜の厚みは10nm以上100μm以下と
する。
When the thickness of the hard carbon film coated on the amorphous magnetic alloy is less than 10 nm, pinholes are likely to occur, and when it is used for a laminated magnetic core which is the main application of the amorphous magnetic alloy, insulation between layers Can not be maintained and is inappropriate. If the thickness exceeds 100 μm, the internal stress becomes remarkable, and the magnetic characteristics of the amorphous magnetic alloy deteriorate, which is not suitable. Therefore, the thickness of the hard carbon film is set to 10 nm or more and 100 μm or less.

【0011】硬質炭素膜の成膜方法にはプラズマCVD
法、スパッタリング法、燃焼炎法、イオンプレーティン
グ法などがあるが、本発明で対象とする非晶質磁性合金
薄帯にはホール型イオン源を用いたイオンビーム法が、
付着力の強い実用的な硬質炭素膜を成膜できるという点
で適している。なぜ膜の付着力が他の方法による成膜よ
りも強くなるのかは明らかになっていないが、前記のイ
オンビーム方法に従うと適正なエネルギー分布を持った
イオンビームで硬質炭素膜が成膜されるために非晶質合
金基板との界面に強固な結合ができ、その結果付着力の
強い硬質炭素膜が成膜されるものと考えられる。
Plasma CVD is used as a method for forming a hard carbon film.
Method, sputtering method, combustion flame method, ion plating method, etc., the ion beam method using a Hall ion source for the amorphous magnetic alloy ribbon targeted by the present invention,
It is suitable because a practical hard carbon film with strong adhesion can be formed. It is not clear why the adhesion of the film becomes stronger than other methods, but according to the above ion beam method, a hard carbon film is formed by an ion beam with an appropriate energy distribution. Therefore, it is considered that a strong bond can be formed at the interface with the amorphous alloy substrate, and as a result, a hard carbon film having a strong adhesive force is formed.

【0012】硬質炭素膜は、従来非晶質材料であるため
に化学エネルギー的には不安定で、成膜温度よりも高い
温度に加熱すると、水素の脱離と黒鉛への変態が進行
し、付着力、絶縁性共に劣化するといわれてきた。しか
し、イオンビーム法によって成膜された硬質炭素膜は、
360〜560℃の非晶質合金薄帯の焼鈍温度で、膜
質、付着力共に劣化することがない。また、非晶質合金
薄帯を焼鈍した後に硬質炭素膜を被覆する作成方法を採
用してもよい。その場合、被覆する硬質炭素膜には耐熱
性よりも透明性、絶縁性、硬度など他の性質を最大限に
付与することができる。
Since a hard carbon film is conventionally an amorphous material, it is unstable in chemical energy, and when it is heated to a temperature higher than the film formation temperature, desorption of hydrogen and transformation into graphite proceed, It has been said that both the adhesive strength and insulating properties deteriorate. However, the hard carbon film formed by the ion beam method is
At the annealing temperature of the amorphous alloy ribbon of 360 to 560 ° C., neither the film quality nor the adhesive strength is deteriorated. Alternatively, a method of forming a hard carbon film after annealing the amorphous alloy ribbon may be adopted. In that case, other properties such as transparency, insulation, and hardness can be maximally imparted to the hard carbon film to be coated, rather than heat resistance.

【0013】次に本発明で炭素イオン源として用いるホ
ールアクセラレータの構造について説明する。図1に定
常ホールアクセラレータイオン源の概略図を示す。図中
の1は陽極、2は中間電極、3は陰極であり、加速領域
軸方向に相当する電極間に電位差0〜2000V程度を
印加することによりガスの電離、加速を行う。加速領域
径方向は同軸円筒状絶縁体4で囲まれた部分である。加
速領域には、電磁石5と鉄の磁気回路6により半径方向
に磁場が印加される。電磁石に1A程度の電流を流した
時に、上記磁気回路の半径方向に約10-2Tの磁場が印
加できることが望ましい。従って電磁石の巻数はこの条
件を満たす範囲で任意に選択する。これらの磁気回路及
び円筒状絶縁体は長時間プラズマにさらされるので強制
冷却されている。7は真空チャンバーでコンダクタンス
バルブ8を通じて排気系9に接続され、系内を10-6
orr台の真空にすることができる。10は基板で、1
1は基板支持台である。基板は水冷管12またはヒータ
ー13によって所定の温度に保持することができる。1
4はガス導入管でイオンビームをつくるための原料ガス
が供給される。このようなホールアクセラレータイオン
源は以下に示すような動作特性を有しており、本発明は
この特性を有効に活用したものである。
Next, the structure of the hole accelerator used as the carbon ion source in the present invention will be described. FIG. 1 shows a schematic diagram of a stationary Hall accelerator ion source. In the figure, 1 is an anode, 2 is an intermediate electrode, and 3 is a cathode. By applying a potential difference of about 0 to 2000 V between electrodes corresponding to the axial direction of the acceleration region, gas is ionized and accelerated. The radial direction of the acceleration region is a portion surrounded by the coaxial cylindrical insulator 4. A magnetic field is applied to the acceleration region in the radial direction by the electromagnet 5 and the iron magnetic circuit 6. It is desirable that a magnetic field of about 10 -2 T can be applied in the radial direction of the magnetic circuit when a current of about 1 A is applied to the electromagnet. Therefore, the number of turns of the electromagnet is arbitrarily selected within the range that satisfies this condition. These magnetic circuits and cylindrical insulators are exposed to the plasma for a long time and are therefore forcedly cooled. A vacuum chamber 7 is connected to an exhaust system 9 through a conductance valve 8 and the inside of the system is 10 −6 T.
A vacuum of the orr level can be used. 10 is a substrate, 1
1 is a substrate support. The substrate can be maintained at a predetermined temperature by the water cooling tube 12 or the heater 13. 1
Reference numeral 4 is a gas introduction tube to which a raw material gas for producing an ion beam is supplied. Such a hole accelerator ion source has the following operating characteristics, and the present invention effectively utilizes this characteristic.

【0014】イオン発生にフィラメントを使用しない
ので、反応性イオンビームの引出しが可能である。従っ
てコーティング前処理としてケミカルエッチングが可能
な酸素,塩素,弗素等のガスをイオン化して照射するこ
とができ、基板の清澄化の効果をより高めることができ
る。 イオンの生成、加速が同一の空間で行われる。
Since no filament is used for ion generation, the reactive ion beam can be extracted. Therefore, as a pretreatment for coating, a gas capable of chemical etching, such as oxygen, chlorine, or fluorine, can be ionized and irradiated, and the effect of clarifying the substrate can be further enhanced. Ions are generated and accelerated in the same space.

【0015】通常のイオン源におけるような空間電荷
の制限なしに大電流のイオン電流を引き出せる。 イオンは加速領域中の発生点での電位に対応するエネ
ルギーを持って引き出されるので、引き出しイオンビー
ムはエネルギー分布を持つ。 加速領域の磁場の強度と形状、印加電圧及びガス圧力
を変化させることにより、捕捉電子の状態が変化し、放
電及びイオンビームの特性を制御できる。
It is possible to extract a high-current ion current without the limitation of space charge as in a conventional ion source. Since the ions are extracted with energy corresponding to the potential at the generation point in the acceleration region, the extracted ion beam has an energy distribution. By changing the strength and shape of the magnetic field in the acceleration region, the applied voltage and the gas pressure, the state of trapped electrons changes, and the characteristics of the discharge and the ion beam can be controlled.

【0016】図面をもとに、装置の運転方法を詳しく説
明する。まず、真空チャンバー7とイオン源とを10-6
Torr台の真空にする。磁気回路の電磁石に、電流を
流す。ガス導入管14よりメタンガスを流してイオン源
内圧力を10-1Torr以上にし中間電極への印加を徐
々に上げて行くと、600V程度で加速領域内にプラズ
マが発生する。その後、メタンガス流量を少なくし、コ
ンダクタンスバルブを調整してイオン源内の圧力を3.
5×10-3Torrに設定する。この時イオン源電極間
の放電電流を1A程度に保つと、中間電極と陰極との電
位差、つまり放電電圧は900〜1100Vになる。こ
の時、条件に応じて基板は接地されるか、または100
0V以下の負の電圧が印加される。以上の条件下でイオ
ン源−基板距離200mmのときの成膜速度は1μm/h
程度なので、イオン源−基板距離と所望の膜厚に応じて
任意の時間運転すればよい。
A method of operating the apparatus will be described in detail with reference to the drawings. First, the vacuum chamber 7 and the ion source are set to 10 −6.
Use a Torr vacuum. An electric current is applied to the electromagnet of the magnetic circuit. When methane gas is caused to flow from the gas introduction pipe 14 to make the internal pressure of the ion source 10 -1 Torr or more and the application to the intermediate electrode is gradually increased, plasma is generated in the acceleration region at about 600V. After that, reduce the flow rate of methane gas and adjust the conductance valve to adjust the pressure in the ion source to 3.
Set to 5 × 10 −3 Torr. At this time, if the discharge current between the ion source electrodes is maintained at about 1 A, the potential difference between the intermediate electrode and the cathode, that is, the discharge voltage becomes 900 to 1100V. At this time, the substrate may be grounded or 100 depending on the conditions.
A negative voltage of 0 V or less is applied. Under the above conditions, the deposition rate is 1 μm / h when the ion source-substrate distance is 200 mm.
Therefore, the operation may be performed for an arbitrary time depending on the ion source-substrate distance and the desired film thickness.

【0017】以上、具体的な運転方法について述べた
が、イオンビームを引き出すためのイオン源内圧力は1
-5Torr台から10-1Torr台の範囲にわたって
任意に選ぶことができる。また各種ガス流量は、得たい
真空チャンバー圧力とコンダクタンスバルブの開け具合
いに応じて変化する。電磁石電流も、得たいイオンビー
ムの性質に応じて選択できる。具体的には、定常ホール
アクセラレータイオン源では放電特性、加速領域内の物
理量分布に従って、グロー放電による方向性のないイオ
ン及びマグネトロン放電による指向性の高いイオンビー
ムを形成することができる。例えば磁場が弱い場合はグ
ロー放電による方向性のないイオンが主となり、磁場が
強い場合はマグネトロン放電による指向性の高いイオン
ビームが主となる。マグネトロン放電によるイオンビー
ムエネルギーは放電電圧で制御でき、グロー放電による
イオンのエネルギーは基板に印加する電圧で制御できる
ので、高い付着力の膜、高硬度の膜など、得たい膜質に
応じて適宜制御することが望ましい。
The specific operating method has been described above. The pressure inside the ion source for extracting the ion beam is 1
It can be arbitrarily selected in the range of 0 -5 Torr to 10 -1 Torr. Further, the flow rates of various gases change depending on the desired vacuum chamber pressure and the degree of opening of the conductance valve. The electromagnet current can also be selected according to the desired properties of the ion beam. Specifically, a stationary Hall accelerator ion source can form non-directional ions due to glow discharge and highly directional ion beam due to magnetron discharge according to the discharge characteristics and the physical quantity distribution in the acceleration region. For example, when the magnetic field is weak, non-directional ions due to glow discharge are mainly, and when the magnetic field is strong, ion beams with high directivity due to magnetron discharge are mainly. Ion beam energy due to magnetron discharge can be controlled by the discharge voltage, and ion energy due to glow discharge can be controlled by the voltage applied to the substrate. It is desirable to do.

【0018】硬質炭素膜のコーティングの際、イオンが
基板に衝突するエネルギーが約800eVとなるように
基板電位を設定することが望ましい。例えば、電磁石電
流が1.0A、イオン源内圧力が3.5×10-3Tor
r、放電電流が1.0Aのときイオン源の放電電圧は9
00〜1100Vの範囲にある。この時基板に到達する
イオンのエネルギーは500eVを中心とした分布を持
つので、基板に衝突するイオンのエネルギーを約800
eVにするには、基板に−300Vを印加すればよい。
During the coating of the hard carbon film, it is desirable to set the substrate potential so that the energy with which the ions collide with the substrate is about 800 eV. For example, the electromagnet current is 1.0 A, the ion source internal pressure is 3.5 × 10 −3 Tor.
r, the discharge voltage of the ion source is 9 A when the discharge current is 1.0 A
It is in the range of 0 to 1100V. At this time, the energy of the ions that reach the substrate has a distribution centered on 500 eV, so the energy of the ions that strike the substrate is approximately 800
To obtain eV, -300V may be applied to the substrate.

【0019】硬質炭素膜成膜方法の比較として、平行平
板型直流プラズマCVD装置を用いて、非晶質磁性合金
薄帯を負極側に置いて、圧力3Torr,ガス比CH4
/H 2 =0.02,放電電圧350V,基板温度300
℃の条件で1μmの硬質炭素膜を作成したが、成膜後2
4時間以内に膜の自然剥離が生じ、良好なコーティング
試料とはならなかった。
As a comparison of hard carbon film forming methods,
Amorphous magnetic alloy using plate type DC plasma CVD equipment
Place the ribbon on the negative electrode side, pressure 3 Torr, gas ratio CHFour
/ H 2= 0.02, discharge voltage 350V, substrate temperature 300
A hard carbon film of 1 μm was prepared under the condition of ℃,
Good coating due to spontaneous peeling of the film within 4 hours
It did not become a sample.

【0020】硬質炭素膜を得るための原料として、さき
にメタンを例示したが、以下に示す各種の炭素原子を含
む化合物が使用できる。 含水素化合物 飽和炭化水素:メタン,エタン,プロパン,ブタン,シ
クロヘキサン等 不飽和炭化水素:エチレン,プロピレン,ブチレン,ア
セチレン,シクロヘキセン等 芳香属炭化水素:ベンゼン,トルエン,キシレン等 アルコール類:メタノール,エタノール,プロパノー
ル,ブタノール等 エーテル類:ジメチルエーテル,メチルエチルエーテル
等 ケトン基を含むもの:アセトン,メチルエチルケトン,
ジエチルケトン,アセトフェノン等 ケテン基を含むもの:ジメチルケテン,フェニルケテン アセチル基を含むもの:酢酸,無水酢酸,アセトフェノ
ン エステル系:酢酸メチル,酢酸エチル,酢酸イソアミル アルデヒド基を含むもの:ホルムアルデヒド,アセトア
ルデヒド,プロピオンアルデヒド 窒素含有化合物 アミン類:メチルアミン,エチルアミン,イソプロピル
アミン,ジメチルアミン,トリメチルアミン ニトリル基を含むもの:アセトニトリル,ベンゾニトリ
ル,アクリロニトリル アミド基を含むもの:アセトアミド ニトロ基化合物:ニトロエタン,ニトロメタン,ニトロ
ベンゼン,ニトロプロパン 含酸素化合物:一酸化炭素,二酸化炭素 過酸化物:過酢酸,t−ブチルパーオキサイド 以上の化合物は一種または二種以上を混合して用いるこ
とができる。
As the raw material for obtaining the hard carbon film, methane has been exemplified above, but compounds containing various carbon atoms shown below can be used. Hydrogen-containing compounds Saturated hydrocarbons: methane, ethane, propane, butane, cyclohexane, etc. Unsaturated hydrocarbons: ethylene, propylene, butylene, acetylene, cyclohexene, etc. Aromatic hydrocarbons: benzene, toluene, xylene, etc. Alcohols: methanol, ethanol, Propanol, butanol, etc. Ethers: Dimethyl ether, methyl ethyl ether, etc. Containing ketone groups: Acetone, methyl ethyl ketone,
Diethyl ketone, acetophenone, etc. containing ketene groups: dimethyl ketene, phenyl ketene containing acetyl groups: acetic acid, acetic anhydride, acetophenone ester system: methyl acetate, ethyl acetate, isoamyl acetate containing aldehyde groups: formaldehyde, acetaldehyde, propione Aldehydes Nitrogen-containing compounds Amines: Methylamine, ethylamine, isopropylamine, dimethylamine, trimethylamine nitrile group-containing: acetonitrile, benzonitrile, acrylonitrile amide group-containing: acetamide nitro group compounds: nitroethane, nitromethane, nitrobenzene, nitropropane Oxygen-containing compound: carbon monoxide, carbon dioxide Peroxide: peracetic acid, t-butyl peroxide The above compounds are one kind or a mixture of two or more kinds. It can be used in.

【0021】[0021]

【実施例】表1に示す組成比で各原料をそれぞれ秤量
し、アルゴンガス雰囲気中で溶解した後、急冷して3種
類の母合金を調整した。次に各母合金をメルトスピン法
にて106 ℃/sの冷却速度で1300℃から急冷し、
厚さ20μm、幅50mmの薄帯を作成した。
EXAMPLES Each raw material was weighed in the composition ratio shown in Table 1, melted in an argon gas atmosphere, and then rapidly cooled to prepare three types of mother alloys. Next, each mother alloy was rapidly cooled from 1300 ° C. at a cooling rate of 10 6 ° C./s by a melt spin method,
A thin strip having a thickness of 20 μm and a width of 50 mm was prepared.

【0022】次に図1に示す定常ホールアクセラレータ
イオン源を用いてイオン源−基板距離200mmにて表2
に示す条件で3種類の非晶質磁性合金薄帯に硬質炭素膜
を被覆した。その結果、幅50mmの薄帯部分のみなら
ず、幅約20μmの薄帯側縁部分にも硬質炭素膜が被覆
された。被覆された硬質炭素膜の物性と構造は以下のよ
うになった。
Next, using the stationary Hall accelerator ion source shown in FIG. 1, the distance between the ion source and the substrate is 200 mm.
Under the conditions shown in (3), three kinds of amorphous magnetic alloy ribbons were coated with a hard carbon film. As a result, the hard carbon film was coated not only on the ribbon portion having a width of 50 mm but also on the side edge portion of the ribbon having a width of about 20 μm. The physical properties and structure of the coated hard carbon film are as follows.

【0023】膜厚:1.2μm 10gf加重Vic
kers硬度:5000kgf/mm2 セロハンテープによる付着力試験では各試料とも欠損が
生じなかった。 引掻き試験法による膜の付着力:20×107 N/m2 ラマンスペクトル:1100cm-1から1700cm-1にか
けて幅の広いピークを示す。
Film thickness: 1.2 μm 10 gf weighted Vic
kers hardness: 5000 kgf / mm 2 In the adhesion test using cellophane tape, no defect was found in each sample. Film adhesion by the test method scratching: 20 × 10 7 N / m 2 Raman spectrum: shows a broad peak from 1100 cm -1 over the 1700 cm -1.

【0024】水素含有量:30atom% 比抵抗:1×1011Ωcm 電子線回折像:明確な回折線の見られないハローパター
ン 硬質炭素膜被覆前後の非晶質磁性合金薄帯の磁気特性は
表1のようになった。
Hydrogen content: 30 atom% Specific resistance: 1 × 10 11 Ωcm Electron diffraction image: halo pattern with no clear diffraction line Magnetic properties of amorphous magnetic alloy ribbon before and after coating with hard carbon film It became like 1.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】次に、以上3種類の硬質炭素膜被覆非晶質
磁性合金薄帯をアルゴン雰囲気中で、それぞれ表3に示
す焼鈍条件で1時間焼鈍した。その結果硬質炭素膜の物
性と構造は以下のようであった。 膜厚:1.2μm 10gf加重Vickers硬
度:4500kgf/mm2 セロハンテープによる付着力試験では各試料とも欠損が
生じなかった。
Next, the above three kinds of amorphous carbon alloy thin ribbons coated with a hard carbon film were annealed in an argon atmosphere under the annealing conditions shown in Table 3 for 1 hour. As a result, the physical properties and structure of the hard carbon film were as follows. Film thickness: 1.2 μm 10 gf weighted Vickers hardness: 4500 kgf / mm 2 In the adhesion test using cellophane tape, no defect was found in each sample.

【0028】 引掻き試験法による膜の付着力:20×107 N/m2 ラマンスペクトル:1100cm-1から1700cm-1にか
けて幅の広いピークを示す。 水素含有量:28atom% 電子線回折像:明確な回折線の見られないハローパター
ン 定常ホールアクセラレータイオン源にて作成した硬質炭
素膜被覆非晶質磁性合金薄帯の各種磁気特性と熱特性を
測定し、硬質炭素膜がコーティングされていない非晶質
磁性合金薄帯の磁気特性と比較した結果を表3および表
4(表3のつづき)に示す。この結果により、硬質炭素
膜は非晶質磁性合金薄帯の角形比、透磁率、磁心損失な
どの磁気特性をほとんど変えることなく、焼鈍温度に耐
えられる熱良導性の絶縁層として用いることができるこ
とが明らかになった。
The scratch adhesion of the membrane according to Test Method: 20 × 10 7 N / m 2 Raman spectrum: shows a broad peak from 1100 cm -1 over the 1700 cm -1. Hydrogen content: 28 atom% Electron diffraction image: Halo pattern with no visible diffraction line Measurement of various magnetic and thermal properties of a hard carbon film-coated amorphous magnetic alloy ribbon produced by a stationary hole accelerator ion source Tables 3 and 4 (continued from Table 3) show the results of comparison with the magnetic characteristics of the amorphous magnetic alloy ribbons not coated with the hard carbon film. From this result, the hard carbon film can be used as a heat-conductive insulating layer that can withstand the annealing temperature without changing the magnetic properties such as the squareness ratio, magnetic permeability, and core loss of the amorphous magnetic alloy ribbon. It became clear that it could be done.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】本発明による硬質炭素膜被覆非晶質磁性
合金薄帯を用いると、放熱性、高周波磁気特性の優れた
磁心が製造でき、高周波特性の優れたトランス、弾性波
フィルター、チョークコイル、磁気スイッチが製造でき
る。
The hard carbon film-coated amorphous magnetic alloy ribbon according to the present invention can be used to manufacture a magnetic core having excellent heat dissipation and high-frequency magnetic characteristics, and a transformer, elastic wave filter, and choke coil having excellent high-frequency characteristics. , Magnetic switch can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる定常ホールアクセラレータイオ
ン源の概略図である。
FIG. 1 is a schematic diagram of a stationary Hall accelerator ion source used in the present invention.

【図2】図1の定常ホールアクセラレータイオン源の要
部拡大図である。
FIG. 2 is an enlarged view of a main part of the stationary Hall accelerator ion source of FIG.

【符号の説明】[Explanation of symbols]

1 陽極 2 中間電極 3 陰極 4 同軸円筒状絶縁体 5 電磁石 6 磁気回路 7 真空チャンバー 8 コンダクタンスバルブ 9 排気系 10 基板 11 基板支持台 12 水冷管 13 ヒーター 14 ガス導入管 1 Anode 2 Intermediate Electrode 3 Cathode 4 Coaxial Cylindrical Insulator 5 Electromagnet 6 Magnetic Circuit 7 Vacuum Chamber 8 Conductance Valve 9 Exhaust System 10 Substrate 11 Substrate Support 12 Water Cooling Pipe 13 Heater 14 Gas Inlet Pipe

───────────────────────────────────────────────────── フロントページの続き (71)出願人 591107090 督 壽之 京都府宇治市五ケ庄官有地 京大職員宿舎 554 (72)発明者 岡田 守弘 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第1技術研究所内 (72)発明者 吉川 潔 京都府京都市北区衣笠総門町25番地 (72)発明者 山本 靖 京都府宇治市五ケ庄官有地 京大職員宿舎 11棟408号 (72)発明者 督 壽之 京都府宇治市五ケ庄官有地 京大職員宿舎 554 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 591107090 Toshiyuki Governor, Gokasho official land in Uji City, Kyoto Prefecture 554 (72) Inventor Morihiro Okada 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel 1st Technical Research Institute Co., Ltd. (72) Inventor Kiyoshi Yoshikawa 25 Kinugasa Somon-cho, Kita-ku, Kyoto-shi, Kyoto (72) Inventor Yasushi Yamamoto Gokasho-Kenchi, Kyoto Prefecture ) Inventor, Toshiyuki, Gokasho official land, Uji City, Kyoto Prefecture Kyoto University Staff Housing 554

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非晶質磁性合金の表面に厚さ10nm以
上100μm以下の硬質炭素膜を被覆したことを特徴と
する硬質炭素膜被覆非晶質磁性合金薄帯。
1. A hard carbon film-coated amorphous magnetic alloy ribbon, characterized in that the surface of an amorphous magnetic alloy is coated with a hard carbon film having a thickness of 10 nm or more and 100 μm or less.
JP3117735A 1990-09-25 1991-05-22 Hard cabon film applied amorphous magnetic alloy thin strip Withdrawn JPH06192837A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3117735A JPH06192837A (en) 1991-05-22 1991-05-22 Hard cabon film applied amorphous magnetic alloy thin strip
US08/197,018 US5455081A (en) 1990-09-25 1994-02-15 Process for coating diamond-like carbon film and coated thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3117735A JPH06192837A (en) 1991-05-22 1991-05-22 Hard cabon film applied amorphous magnetic alloy thin strip

Publications (1)

Publication Number Publication Date
JPH06192837A true JPH06192837A (en) 1994-07-12

Family

ID=14718998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3117735A Withdrawn JPH06192837A (en) 1990-09-25 1991-05-22 Hard cabon film applied amorphous magnetic alloy thin strip

Country Status (1)

Country Link
JP (1) JPH06192837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173178A (en) * 2013-03-12 2014-09-22 Stanley Electric Co Ltd Production method of metal coating member, and vehicular lamp including metal coating member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173178A (en) * 2013-03-12 2014-09-22 Stanley Electric Co Ltd Production method of metal coating member, and vehicular lamp including metal coating member

Similar Documents

Publication Publication Date Title
US5455081A (en) Process for coating diamond-like carbon film and coated thin strip
JP4814986B2 (en) Carbon nanotube growth method
US5827613A (en) Articles having diamond-like protective film and method of manufacturing the same
US5707717A (en) Articles having diamond-like protective film
TW200407450A (en) Fabrication of nanocomposite thin films for high density magnetic recording media
US5662877A (en) Process for forming diamond-like thin film
JPH06192837A (en) Hard cabon film applied amorphous magnetic alloy thin strip
Roy et al. A review of plasma-assisted deposition methods for amorphous carbon thin and ultrathin films with a focus on the cathodic vacuum arc technique
JPS61150201A (en) Permanent magnet with excellent anticorrosion property
JP2005209669A (en) Rare-earth magnet and magnetic circuit using it
JP3034241B1 (en) Method of forming high hardness and high adhesion DLC film
JP2819431B2 (en) Hard carbon film coating method
JP3056827B2 (en) Article having a diamond-like carbon protective film and method for producing the same
US5631050A (en) Process of depositing thin film coatings
JP3205363B2 (en) Mold with diamond-like protective film
JP3130094B2 (en) Mold with diamond-like protective film
JPH06325312A (en) Ferhgasi soft magnetic material for induction magnetic head
KR102430700B1 (en) Preparation method of ferromagnetic film and apparatus for ferromagnetic film
CN112899629B (en) High-entropy oxide film and preparation method and application thereof
JPH0665744A (en) Production of diamond-like carbon thin film
JP2002012970A (en) Apparatus and method for sputtering
Okimura et al. Growth of highly oriented CoCrTa films by inductively coupled plasma-assisted sputtering
Ghoranneviss et al. The effect of parameter of plasma of DC magnetron sputtering on properties of copper thin film deposited on glass
JPH035644B2 (en)
JP2502948B2 (en) Plasma deposition method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806