JPH06191850A - Lanthanum chromite based powder - Google Patents

Lanthanum chromite based powder

Info

Publication number
JPH06191850A
JPH06191850A JP4348581A JP34858192A JPH06191850A JP H06191850 A JPH06191850 A JP H06191850A JP 4348581 A JP4348581 A JP 4348581A JP 34858192 A JP34858192 A JP 34858192A JP H06191850 A JPH06191850 A JP H06191850A
Authority
JP
Japan
Prior art keywords
powder
lanthanum
component
vicinity
lanthanum chromite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4348581A
Other languages
Japanese (ja)
Inventor
Toichi Takagi
東一 高城
Hiroshi Inomata
浩 猪又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP4348581A priority Critical patent/JPH06191850A/en
Publication of JPH06191850A publication Critical patent/JPH06191850A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain a lanthanum chromite based powder exhibiting excellent sintering property and thereby capable of obtaining a sintered compact dense and excellent in characteristics by making the constitution mutually different in composition in the vicinity of the center of a particle and in the vicinity of the surface. CONSTITUTION:This lanthanum chromite based powder is constituted so that the larger quantity of chromium component exists in the vicinity of the center of the particle and the larger quantity of lanthanum component exists in the vicinity of the suface. The powder mainly contains La and Cr usually and contains alkaline earth metal element such as Sr, Ca and another addonal components such as Zn, Cu, Li, Fe, Ni, Co, Al, Mn or does not contain the addtional component and has oxide form, hydroxide form, carbonate form or organic acid salt form. The powder having (40/60) to (60/40) (mol ratio) composition ratio of La to Cr has excellent characteristics and practically used. The powder exhibits excellent sintering property, and thus the lanthanum chromite based sintered compact dense and excellent in characteristics is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は優れた焼結性を有するラ
ンタンクロマイト系粉末に関し、特に導電性を有し、か
つ、高温下においても酸化及び還元雰囲気下で化学的に
安定なランタンクロマイト系粉末に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lanthanum chromite powder having excellent sinterability, and in particular, a lanthanum chromite powder having conductivity and being chemically stable in an oxidizing and reducing atmosphere even at a high temperature. It relates to powder.

【0002】[0002]

【従来技術】ランタンクロマイト(LaCrO3)は、ペロブ
スカイト型の複合酸化物であり、Sr等の添加成分をドー
プしたランタンクロマイト系焼結体は導電性を有し、か
つ、高温下においても酸化及び還元雰囲気下で化学的に
安定であり、MHD発電用電極、発熱体、固体電解質燃
料電池電極のセパレータ(平板型)、或いはインタコネ
クタ(円筒型)用の材料などとして注目されている。
2. Description of the Related Art Lanthanum chromite (LaCrO 3 ) is a perovskite-type composite oxide, and a lanthanum chromite-based sintered body doped with an additive such as Sr has conductivity and is oxidized and oxidized even at high temperature. It is chemically stable in a reducing atmosphere, and is attracting attention as a material for electrodes for MHD power generation, heating elements, separators (plate type) of solid electrolyte fuel cell electrodes, or interconnectors (cylindrical type).

【0003】一般に、ランタンクロマイト系粉末、例え
ばSrを添加した組成粉末は難焼結性であり、緻密な焼結
体が得られないという問題点がある。これはランタンク
ロマイトの空気中の焼結では CrO3が蒸発し、表面拡散
又は蒸発−凝縮機構により焼結が進行するために緻密化
しないことによる。そこで、CrO3の蒸発を抑制し緻密化
するために低酸素分圧下の焼成が提案されている(L. G
roupp and H. U. Anderson, "Densification of La1-xS
rxCrO3", J. Am. Ceram. Soc., Vol. 59, p449(197
6).)。しかしながら、低酸素分圧下の焼成は実用的で
なく、空気中での焼成が望まれる。また、Ca成分、Zn,
Cu成分、Li成分、或いはFe, Ni, Co, Zn, Cu, Al, Mn,
V, Ir, Mo, W, Pd, Y, Pt, Rh, Mg, Ti, Si, B等の成分
(特開平 4-219364 、特開平 4-219365 、特開平 4-219
366 、特開平 4-219367 、特開平 4-219369 )などの添
加による緻密化の試みがなされている。
Generally, a lanthanum chromite powder, for example, a composition powder to which Sr is added has a problem that it is difficult to sinter and a dense sintered body cannot be obtained. This is because CrO 3 is evaporated in the sintering of lanthanum chromite in the air, and the sintering is promoted by the surface diffusion or evaporation-condensation mechanism, so that the lanthanum chromite is not densified. Therefore, firing under a low oxygen partial pressure has been proposed to suppress the evaporation of CrO 3 and densify it (L. G.
roupp and HU Anderson, "Densification of La1-xS
rxCrO3 ", J. Am. Ceram. Soc., Vol. 59, p449 (197
6).). However, firing under low oxygen partial pressure is not practical, and firing in air is desired. Also, Ca component, Zn,
Cu component, Li component, or Fe, Ni, Co, Zn, Cu, Al, Mn,
Components such as V, Ir, Mo, W, Pd, Y, Pt, Rh, Mg, Ti, Si, B (JP-A-4-219364, JP-A-4-219365, JP-A-4-219
366, Japanese Patent Laid-Open No. 4-219367, Japanese Patent Laid-Open No. 4-219369) and the like have been attempted for densification.

【0004】しかしながら、これらの添加成分は電気導
電性の低下など特性低下が問題であり、さらに燃料電池
の電極用途では高温作動温度下で(1000℃程度)電極を
構成する他の部品構成成分とこれらの添加物の反応が起
こり、長期的な特性安定性が劣化する原因となり問題で
ある。また、Laサイト過剰組成(Crサイト不足)とする
ことにより緻密化を達成する方法が提案されている(M.
Mori, N. Sakai, T.Kawada, H. Yokokawa and M. Doki
ya, "Low-Temperature Air-Sinterable Lanthanum Calc
ium Chromite with Chromium Deficit for SOFC Separa
tor", DENKI KAGAKU, Vol. 59, p314 (1990).)が、こ
のLa過剰組成では焼結体中に過剰のLa2O 3 が存在し、こ
のLa2O3 が空気中の水分と反応して水酸化物を形成し崩
壊したり、或いは特性が劣化するという問題点がある。
However, these additional components are electrically conductive.
Deterioration of characteristics such as deterioration of electrical properties is a problem.
For high-temperature operating temperature (about 1000 ℃)
Reactions of these additives with other constituent components of the component occur.
However, this may cause deterioration of long-term characteristic stability.
is there. Also, the composition of La site is excessive (Cr site is insufficient).
Therefore, a method of achieving densification by this is proposed (M.
 Mori, N. Sakai, T. Kawada, H. Yokokawa and M. Doki
ya, "Low-Temperature Air-Sinterable Lanthanum Calc
ium Chromite with Chromium Deficit for SOFC Separa
tor ", DENKI KAGAKU, Vol. 59, p314 (1990).)
With an excessive La composition of2O 3Exists and
La2O3 Reacts with the water in the air to form hydroxide and collapse.
There is a problem that it is broken or the characteristics are deteriorated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みてなされたものであって、ランタンクロマイト粉
末の焼結性向上のために、粒子の構造について鋭意検討
した結果、組成成分が粒子の中心近傍と表面近傍で異な
る構成とすることにより焼結性を向上することができる
ことを見い出し、本発明を完成した。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above problems, and as a result of extensive studies on the structure of particles for improving the sinterability of lanthanum chromite powder, the composition components were The present invention has been completed by finding that the sinterability can be improved by making different configurations in the vicinity of the center of the particle and the vicinity of the surface of the particle.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は粒子
の中心近傍にクロム成分が多く存在し、表面近傍にラン
タン成分が多く存在することを特徴とするランタンクロ
マイト系粉末である。
That is, the present invention is a lanthanum chromite powder characterized in that a large amount of chromium component is present near the center of the particle and a large amount of lanthanum component is present near the surface.

【0007】以下、本発明についてさらに詳細に説明す
る。本発明でいう粒子とは、単一の一次粒子または一次
粒子が凝集した二次粒子、を意味する。また、ここでい
う粉末とは、これら一次粒子の単なる集合した状態、ま
たは一次粒子が凝集した状態をいう。
The present invention will be described in more detail below. In the present invention, the particles mean single primary particles or secondary particles formed by aggregating primary particles. In addition, the powder here means a state in which these primary particles are simply aggregated or a state in which the primary particles are aggregated.

【0008】本発明のランタンクロマイト系粉末は、構
成成分として、通常La及びCrを主成分とし、Sr, Ca等の
アルカリ土類金属元素、その他にZn, Cu, Li, Fe, Ni,
Co,Zn, Cu, Al, Mn, V, Ir, Mo, W, Pd, Y, Pt, Rh, M
g, Ti, Si, B等の添加成分が含まれている粒子からなる
が、特に添加成分はこれらのものに限定されるものでは
ない。また、添加成分がなくてもよい。
The lanthanum chromite-based powder of the present invention generally contains La and Cr as main components, alkaline earth metal elements such as Sr and Ca, and Zn, Cu, Li, Fe, Ni, and
Co, Zn, Cu, Al, Mn, V, Ir, Mo, W, Pd, Y, Pt, Rh, M
The particles are composed of particles containing additive components such as g, Ti, Si and B, but the additive components are not particularly limited to these. Further, the additive component may be omitted.

【0009】また、この粒子を構成する物質の状態は特
に限定されず、粒子の中心近傍にクロム成分が多く存在
し、表面近傍にランタン成分が多く存在すればよく、酸
化物、水酸化物、炭酸塩、有機酸塩などの形態が挙げら
れる。ここで中心近傍にクロム成分が多く存在するとい
うことは、粒子の平均組成のクロム成分より中心近傍に
クロム成分が多く存在するということである。ランタン
成分についても同様である。表面近傍の領域は、粒子の
大きさによってかわるので一概には言えないが通常、数
ミリμm〜数μm程度であるがこれに限定されるもので
はない。LaとCrの組成比は添加成分の量などにより異な
るが、La/Cr のモル比は40/60 〜60/40のものが特性が
優れており実用的である。
The state of the substance constituting the particles is not particularly limited, and it is sufficient that a large amount of chromium component exists near the center of the particle and a large amount of lanthanum component exists near the surface of the particles, such as oxides, hydroxides, Examples include forms such as carbonates and organic acid salts. The fact that a large amount of chromium component is present in the vicinity of the center means that a large amount of chromium component is present in the vicinity of the center rather than the chromium component of the average composition of the particles. The same applies to the lanthanum component. The region in the vicinity of the surface varies depending on the size of the particles and therefore cannot be generally stated, but is usually about several millimeters μm to several μm, but is not limited to this. The composition ratio of La and Cr varies depending on the amount of the added components, etc., but the La / Cr molar ratio of 40/60 to 60/40 is excellent and the properties are practical.

【0010】表面近傍と中心近傍の組成の異なる粒子の
分析方法としては、深さ方向の組成分析が可能な各種表
面分析法などを適用することができるが、例えば、エッ
クス線光電子分光法、電子プローブマイクロアナリシ
ス、オージェ電子分光法、粒子線励起エックス線分光
法、イオン散乱分光法、角度分解エックス線分光法、ラ
ザフォード後方散乱分光法、原子プローブ電界イオン顕
微鏡、二次イオン質量分析法、イオンマイクロプローブ
質量分析法等が挙げられる。また、粒子を構成する結晶
相の分析には粉末エックス線回折法が適しており、粉末
全体の組成分析には化学分析法及び蛍光エックス線分析
法などの機器分析法が適用できる。
As a method for analyzing particles having different compositions in the vicinity of the surface and in the vicinity of the center, various surface analysis methods capable of composition analysis in the depth direction can be applied. For example, X-ray photoelectron spectroscopy and electron probe. Micro analysis, Auger electron spectroscopy, Particle beam excitation X-ray spectroscopy, Ion scattering spectroscopy, Angle-resolved X-ray spectroscopy, Rutherford backscattering spectroscopy, Atomic probe field ion microscopy, Secondary ion mass spectrometry, Ion microprobe mass spectrometry Law etc. are mentioned. Further, the powder X-ray diffraction method is suitable for the analysis of the crystal phase constituting the particles, and instrumental analysis methods such as the chemical analysis method and the fluorescence X-ray analysis method can be applied to the composition analysis of the entire powder.

【0011】本発明のランタンクロマイト系粉末の製造
方法としては、固相法、液相法、気相法或いはこれらを
組み合わせた方法などが適用できる。固相法では、クロ
ム成分を主体とする粉末、例えばCr2O3 を主成分とする
粉末をランタン成分を主体とする粉末スラリー、例えば
La2O3 を主成分とする粉末スラリー中で処理してクロム
成分を主体とする粒子の表面にランタン成分を主体とす
る粒子を被覆し、必要に応じて仮焼処理を行なって本発
明のランタンクロマイト系粉末の構造を形成する方法が
一例として挙げられる。この際、表面を被覆するLa2O3
を主成分とする粒子の粒径は中心部を構成するCr2O3
子の粒子径に比べ、かなり細かいものがよい。
As the method for producing the lanthanum chromite powder of the present invention, a solid phase method, a liquid phase method, a gas phase method, or a combination thereof can be applied. In the solid phase method, a powder containing a chromium component as a main component, for example, a powder containing Cr 2 O 3 as a main component, a powder slurry containing a lanthanum component as a main component, for example,
The surface of the particles mainly composed of the chromium component is coated with the powder slurry mainly composed of La 2 O 3 to coat the particles mainly composed of the lanthanum component, and a calcination treatment is carried out if necessary to obtain the particles of the present invention. An example is a method of forming the structure of the lanthanum chromite powder. At this time, La 2 O 3 coating the surface
The particle diameter of the particles containing as a main component should be considerably smaller than the particle diameter of the Cr 2 O 3 particles forming the central portion.

【0012】原料粉末としては、構成成分を含む物質、
例えば炭酸塩、酸化物、水酸化物、塩化物、硝酸塩、硫
酸塩及びシュウ酸塩、ギ酸塩、酢酸塩等の有機酸塩など
が挙げられるが、焼結体中に不純物を残留しないものが
好ましい。また、気相法を応用した方法ではクロム成分
を主体とする粒子の表面に化学蒸着法等公知の気相法に
よりランタン成分を主体とするコーティング層を形成す
る方法等が挙げられる。
As the raw material powder, a substance containing constituents,
Examples include carbonates, oxides, hydroxides, chlorides, nitrates, sulfates, and organic acid salts such as oxalates, formates, and acetates, but those that do not leave impurities in the sintered body preferable. Further, as a method applying the vapor phase method, there is a method of forming a coating layer mainly containing a lanthanum component on the surface of particles mainly containing a chromium component by a known vapor phase method such as a chemical vapor deposition method.

【0013】液相法は組成の制御性、粒子の粒径及び粉
末の粒径分布制御性、生産性などの点で本発明の粉末を
合成する方法として好適である。液相法では、ランタン
成分を主体とする溶液中にクロム成分を主体とする粒子
からなる粉末を分散したのち、ランタン成分を主体とす
る溶液から沈澱を形成してクロム成分を主体とする粒子
の表面にランタン成分を主体とする沈澱層を形成する方
法などが挙げられる。ランタン成分を主体とする溶液と
しては、各種無機塩類から調製した各種酸性水溶液、ア
ルコキシド等の有機金属化合物の有機溶媒溶液などが挙
げられる。
The liquid phase method is suitable as a method for synthesizing the powder of the present invention in view of controllability of composition, controllability of particle diameter and particle diameter distribution of powder, productivity and the like. In the liquid phase method, after a powder composed of particles mainly composed of a chromium component is dispersed in a solution mainly composed of a lanthanum component, a precipitate is formed from a solution mainly composed of the lanthanum component to form a particle mainly composed of the chromium component. Examples thereof include a method of forming a precipitation layer mainly containing a lanthanum component on the surface. Examples of the solution mainly containing a lanthanum component include various acidic aqueous solutions prepared from various inorganic salts and organic solvent solutions of organic metal compounds such as alkoxides.

【0014】また、ランタン成分を主体とする溶液中に
分散するクロム成分を主体とする粉末としては、ランタ
ン成分を主体とする溶液に溶解しない粒子からなるもの
が好ましく、粒度分布の狭い粉末が成形性等の粉末特性
を向上するので好ましい。沈澱を生成する方法として
は、ランタン成分を主体とする溶液の性質によって異な
り、一般に行なわれるように例えば、酸性水溶液には各
種アルカリを沈澱剤として用い、アルコキシド溶液では
水或いは水とアルコール或いはアルカリを含む溶液を沈
澱剤として用いることができる。また、水熱合成法を応
用することもできる。
Further, as the powder mainly composed of the chromium component dispersed in the solution mainly composed of the lanthanum component, those composed of particles which are not dissolved in the solution mainly composed of the lanthanum component are preferable, and a powder having a narrow particle size distribution is formed. It is preferable because it improves the powder properties such as properties. The method of forming the precipitate depends on the nature of the solution mainly composed of the lanthanum component, and as is generally done, for example, various alkalis are used as the precipitating agent in the acidic aqueous solution, and water or water and alcohol or alkali is used in the alkoxide solution. The containing solution can be used as a precipitating agent. Also, the hydrothermal synthesis method can be applied.

【0015】固相法、気相法、液相法或いはこれらを組
み合わせた方法、何れの方法によって調製した粉末も仮
焼が必要な場合の仮焼温度は、添加物組成によっても異
なるが 300℃〜1300℃が好ましく、さらに 400℃〜1000
℃が好ましい。仮焼温度が高すぎると、粉体の強固な凝
集が進行し粉体特性が悪化する。仮焼処理の方法は、具
体的には通常の電気炉等で仮焼することが挙げられる。
The calcination temperature when the powder prepared by the solid phase method, the gas phase method, the liquid phase method or a combination thereof, or any method, requires calcination, depends on the additive composition, but is 300 ° C. ~ 1300 ℃ is preferable, and 400 ℃ ~ 1000
C is preferred. If the calcination temperature is too high, strong agglomeration of powder progresses and the powder characteristics deteriorate. A specific example of the calcination method is calcination in an ordinary electric furnace or the like.

【0016】一般の焼結で言われるのと同様に、何れの
方法で調製された本発明のランタンクロマイト系粉末
も、粒径が小さく、粒度分布が狭く、均一な成形体が調
製可能な粉末であることが好ましい。このように、粉末
特性を向上させるためにボールミル、振動ミル、ジェッ
トミル、攪拌型ミル、遊星ミル、ダイノーミル等の解砕
機で粉砕し粉末特性を調製することも好ましい。また、
添加物成分の添加方法は特に限定されず、上記粉末製造
方法の途中工程で加えても、或いは最終的に得られた粉
末に添加してもよい。
As in general sintering, the lanthanum chromite powder of the present invention prepared by any method has a small particle size, a narrow particle size distribution, and a powder capable of preparing a uniform compact. Is preferred. Thus, in order to improve the powder characteristics, it is also preferable to pulverize with a crusher such as a ball mill, a vibration mill, a jet mill, a stirring mill, a planetary mill or a dyno mill to prepare the powder characteristics. Also,
The method of adding the additive component is not particularly limited, and it may be added in an intermediate step of the above-mentioned powder manufacturing method, or may be added to the finally obtained powder.

【0017】[0017]

【作用】本発明のランタンクロマイト系粉末の焼結性が
向上するのは、焼結過程でランタン成分を主体とする粉
末表面層が焼結の阻害要因である内部のクロム成分の蒸
発を抑制するため、或いはランタン成分の過剰な表面層
が焼結しやすい組成であり焼結を促進しているためなど
と考えられる。そして、粉末中に存在する粒子の中心近
傍と表面近傍の組成の不均一性は焼結が進むとともに均
一化が進み、最終的には組成均一性が高く、緻密で電気
特性などの特性の優れた、目的のランタンクロマイト系
組成を持ったランタンクロマイト系焼結体を得ることが
できる。
The sinterability of the lanthanum chromite-based powder of the present invention is improved because the powder surface layer mainly composed of the lanthanum component suppresses the evaporation of the internal chromium component which is a factor inhibiting the sintering during the sintering process. It is considered that this is because the surface layer having an excessive lanthanum component has a composition that facilitates sintering and promotes sintering. And, the non-uniformity of the composition near the center and near the surface of the particles present in the powder becomes more uniform as the sintering progresses, and finally the composition is highly uniform and dense and has excellent characteristics such as electrical characteristics. Further, it is possible to obtain a lanthanum chromite sintered body having a desired lanthanum chromite composition.

【0018】[0018]

【実施例】以下、本発明の実施例について具体的に説明
する。 [実施例]酸化クロム粉末(Cr2O3)を成形し1400℃で
焼結して得られた焼結体を粉砕し、平均粒径 1.2μm の
酸化クロム粉末を調製した。この酸化クロム粉末を硝酸
ランタン水溶液(La(NO3)3水溶液:濃度 1.1 mol/kg)
と硝酸ストロンチウム水溶液(Sr(NO3)2水溶液:濃度
1.8 mol/kg)の混合水溶液中に分散して分散液を調製
した。この際、分散液中の各成分のモル組成比が La
0.92Sr0.08CrO3 組成となるように配合した。このよう
に調製した分散液を pH9〜10に保持した沈澱生成反応容
器中で導入し沈澱を生成した。尚、pHの保持にはアンモ
ニア水(NH4OH 水溶液)及び炭酸アンモニウム水溶液
((NH4)2CO3 水溶液)を1:1 (モル比)に混合した溶液
を使用した。
EXAMPLES Examples of the present invention will be specifically described below. [Example] Chromium oxide powder (Cr 2 O 3 ) was molded and sintered at 1400 ° C., and the obtained sintered body was pulverized to prepare a chromium oxide powder having an average particle diameter of 1.2 μm. A solution of lanthanum nitrate in water (La (NO 3 ) 3 solution: concentration 1.1 mol / kg)
And strontium nitrate aqueous solution (Sr (NO 3 ) 2 aqueous solution: concentration
A dispersion was prepared by dispersing in a mixed aqueous solution (1.8 mol / kg). At this time, the molar composition ratio of each component in the dispersion is La
It was blended so as to have a composition of 0.92 Sr 0.08 CrO 3 . The thus-prepared dispersion was introduced into a precipitation-producing reaction vessel maintained at pH 9 to 10 to form a precipitate. A solution prepared by mixing ammonia water (NH 4 OH aqueous solution) and ammonium carbonate aqueous solution ((NH 4 ) 2 CO 3 aqueous solution) at a ratio of 1: 1 (molar ratio) was used to maintain the pH.

【0019】こうして得られたスラリーを希薄なアンモ
ニア水で充分水洗後、アセトン及びアルコールを用いて
水分を除去乾燥したのち 500℃で仮焼した。得られたラ
ンタンクロマイト系粉末をエネルギー分散型エックス線
分析装置(フィリップス社製:EDAX PV-9100)付きの走
査型電子顕微鏡(日本電子社製:JSM-820 )及びオージ
ェ電子分光法(日本電子社製:JAMP-30 )により分析し
た結果、一部にクロム成分を含まない粒子等が存在した
が、多くの粉末が粒子の中心近傍にクロム成分が多く存
在し、表面近傍にランタン成分が多く存在する特徴を有
する本発明の粉末であることが確認された。
The slurry thus obtained was thoroughly washed with a dilute aqueous ammonia solution, dried with acetone and alcohol to remove water, and then calcined at 500 ° C. The obtained lanthanum chromite powder was used as a scanning electron microscope (JEOL: JSM-820) with an energy dispersive X-ray analyzer (Phillips EDAX PV-9100) and Auger electron spectroscopy (JEOL Ltd.). : As a result of analysis by JAMP-30), some particles did not contain chromium component, but many powders have much chromium component near the center of the particle and many lanthanum components near the surface. It was confirmed to be the powder of the present invention having characteristics.

【0020】得られたランタンクロマイト系粉末の焼結
性を評価するために粉末を成形して1700℃で焼結した。
得られた焼結体の密度は、6.53 g/cm3(相対密度約97
%)と高く緻密な焼結体であった。また、粉末エックス
線回折により同定したところ、LaCrO3相に対応するピー
クのみが測定され副生相の存在は認められなかった。ま
た、焼結体の組成をガラスビード法による蛍光エックス
線分析法(理学電機社製:System 3370E)により測定し
た結果、誤差の範囲内で目的のLa0.92Sr0.08CrO3組成比
の粉末であることが判明した。
To evaluate the sinterability of the obtained lanthanum chromite powder, the powder was molded and sintered at 1700 ° C.
The density of the obtained sintered body was 6.53 g / cm 3 (relative density of about 97
%) And the sintered body was high and dense. Further, when identified by powder X-ray diffraction, only the peak corresponding to the LaCrO 3 phase was measured and the presence of a by-product phase was not recognized. In addition, the composition of the sintered body was measured by the fluorescent X-ray analysis method (System 3370E manufactured by Rigaku Denki KK) by the glass bead method, and as a result, the powder had the target La 0.92 Sr 0.08 CrO 3 composition ratio within the error range. There was found.

【0021】[比較例]実施例で用いた硝酸ランタン水
溶液及び硝酸ストロンチウム水溶液と硝酸クロム水溶液
(Cr(NO3)3水溶液:濃度 0.98 mol/kg)を実施例と同
一のLa0.92Sr0.0 8CrO3組成となるように混合した。この
混合溶液を実施例と同様に pH9〜10に保持した沈澱生成
反応容器中で導入し沈澱を生成した。尚、pHの保持には
アンモニア水(NH4OH 水溶液)及び炭酸アンモニウム水
溶液((NH4)2CO3 水溶液)を1:1(モル比)に混合した
溶液を使用した。得られた沈澱を希薄なアンモニア水で
充分水洗後、アセトン及びアルコールを用いて水分を除
去乾燥したのち 500℃で仮焼した。得られた仮焼粉末を
実施例と同様の方法で分析した結果、中心近傍にクロム
成分が多く存在し、表面近傍にランタン成分が多く存在
する粒子は見られなかった。
[0021] [Comparative Example] aqueous solution of lanthanum nitrate and strontium nitrate aqueous solution and a chromium nitrate aqueous solution used in Example (Cr (NO 3) 3 solution: Concentration 0.98 mol / kg) identical La 0.92 Sr 0.0 8 CrO and examples It was mixed so as to have three compositions. This mixed solution was introduced into a precipitation-generating reaction vessel maintained at pH 9 to 10 in the same manner as in Example to generate a precipitate. For maintaining the pH, a solution obtained by mixing ammonia water (NH 4 OH aqueous solution) and ammonium carbonate aqueous solution ((NH 4 ) 2 CO 3 aqueous solution) at a ratio of 1: 1 (molar ratio) was used. The obtained precipitate was thoroughly washed with dilute ammonia water, dried to remove water using acetone and alcohol, and then calcined at 500 ° C. As a result of analyzing the obtained calcined powder by the same method as in the example, no particles having a large amount of chromium component near the center and a large amount of lanthanum component near the surface were not seen.

【0022】以下実施例と同様の条件で焼結体を調製し
た。得られた焼結体の密度は、5.33g/cm3(相対密度約7
9%)であり、実施例に比較してかなり低く緻密化して
いないことが判明した。尚、粉末エックス線回折により
同定したところ、実施例と同様に結晶相についてはLaCr
O3相のみであり副生相の存在は認められなかった。ま
た、焼結体の組成を蛍光エックス線分析法(ガラスビー
ド法)により測定したところ、誤差の範囲内で目的のLa
0.92Sr0.08CrO3組成比の粉末であることが判明した。
Sintered bodies were prepared under the same conditions as in the following examples. The density of the obtained sintered body was 5.33 g / cm 3 (relative density of about 7
9%), which was considerably lower than that of the example and was not densified. In addition, when identified by powder X-ray diffraction, the crystal phase was LaCr as in the example.
Only O 3 phase was present and no by-product phase was found. Moreover, when the composition of the sintered body was measured by a fluorescent X-ray analysis method (glass bead method), the target La was within the error range.
It was found that the powder had a composition ratio of 0.92 Sr 0.08 CrO 3 .

【0023】[0023]

【発明の効果】本発明のランタンクロマイト系粉末は、
特殊な粒子構造を有し、優れた焼結性を示し、これによ
り緻密で特性の優れたランタンクロマイト系焼結体が得
られ、MHD発電用電極、発熱体、固体電解質燃料電池
電極のセパレータ(平板型)、或いはインタコネクタ
(円筒型)用の材料などに応用することができ、その工
業的価値は大きい。
The lanthanum chromite powder of the present invention is
A lanthanum chromite-based sintered body having a special particle structure and excellent sinterability, which is dense and excellent in characteristics, is obtained, and is used as a separator for MHD power generation electrodes, heating elements, and solid electrolyte fuel cell electrodes ( It can be applied to materials for flat plate type) or interconnector (cylindrical type), and its industrial value is great.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月4日[Submission date] June 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】 以下、本発明についてさらに詳細に説明
する。本発明でいう粒子とは、単一の一次粒子または一
次粒子が凝集した二次粒子、を意味する。また、ここで
いう粉末とは、これら粒子の単なる集合した状態、また
は粒子が凝集した状態をいう。
The present invention will be described in more detail below. In the present invention, the particles mean single primary particles or secondary particles formed by aggregating primary particles. In addition, the powder referred to here, the state was a mere collection of these particles child addition,
Refers to the state in which the grain child are aggregated.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒子の中心近傍にクロム成分が多く存在
し、表面近傍にランタン成分が多く存在することを特徴
とするランタンクロマイト系粉末。
1. A lanthanum chromite-based powder characterized in that a large amount of chromium component is present near the center of the particle and a large amount of lanthanum component is present near the surface.
JP4348581A 1992-12-28 1992-12-28 Lanthanum chromite based powder Pending JPH06191850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4348581A JPH06191850A (en) 1992-12-28 1992-12-28 Lanthanum chromite based powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4348581A JPH06191850A (en) 1992-12-28 1992-12-28 Lanthanum chromite based powder

Publications (1)

Publication Number Publication Date
JPH06191850A true JPH06191850A (en) 1994-07-12

Family

ID=18397980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4348581A Pending JPH06191850A (en) 1992-12-28 1992-12-28 Lanthanum chromite based powder

Country Status (1)

Country Link
JP (1) JPH06191850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044372A (en) * 2022-06-27 2022-09-13 散裂中子源科学中心 Luminescent material for particle beam excitation and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044372A (en) * 2022-06-27 2022-09-13 散裂中子源科学中心 Luminescent material for particle beam excitation and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3193294B2 (en) Composite ceramic powder, method for producing the same, electrode for solid oxide fuel cell, and method for producing the same
Bansal et al. Combustion synthesis of Sm0. 5Sr0. 5CoO3− x and La0. 6Sr0. 4CoO3− x nanopowders for solid oxide fuel cell cathodes
AU2006280812B2 (en) Nickel oxide powder material for solid oxide fuel cell, production process thereof, raw material composition for use in the same, and anode material using the nickel oxide powder material
US5185301A (en) Sinter reactive lanthanum chromite and process for making it
US5286686A (en) Air-sinterable lanthanum chromite and process for its preparation
JPH08503686A (en) Fluxed lanthanum chromite for low temperature air firing
US9412486B2 (en) Composite oxide powder for solid oxide fuel cell and its production method
EP1796191A1 (en) An improved process for the manufacture of strontium doped lanthanum manganite (LSM) ceramic powder suitable for solid oxide fuel cell (SOFC) applications
CN111919113B (en) Solid electrolyte assembly having intermediate layer
JPH11297333A (en) Fuel electrode and solid electrolyte fuel cell using the same
JP6255358B2 (en) Electrode materials for solid oxide fuel cells and their applications
US7968609B2 (en) Mixtures of nanoparticles
JP2015510232A (en) Method for synthesizing air electrode powder for medium- and low-temperature solid oxide fuel cells by sol-gel method
JP5283500B2 (en) Fuel cell cathode with large surface area
CN111902987B (en) Solid electrolyte junction body
Pandey et al. Modified polyol-mediated synthesis of Sr-and W-substituted La2Mo2O9 solid electrolyte for solid oxide fuel cells
Ghosh et al. Influence of B site Substituents on Lanthanum Calcium Chromite Nanocrystalline Materials for a Solid‐Oxide Fuel Cell
JP6673511B1 (en) Powder for solid oxide fuel cell air electrode and method for producing the same
KR100800289B1 (en) The processing method of co-synthesis nanosized LSM-YSZ composites with enhanced electrochanmical property for solid oxide fuel cell, and the nanosized LSM-YSZ composites synthesized by the above processing method
JPH06191850A (en) Lanthanum chromite based powder
JP3121993B2 (en) Method for producing conductive ceramics
JP2005139024A (en) Mixed conductive ceramic material and solid oxide type fuel cell using this material
JP2012049070A (en) Powder material for electrode, manufacturing method for the same and polymer fuel cell
Chaubey et al. Influence of synthesis route on physicochemical properties of nanostructured electrolyte material La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3− δ for IT-SOFCs
Garali et al. Synthesis, characterization, and electrochemical properties of Sm0. 5Sr0. 5Zr1− x Ni x O3. 25− x for solid oxide fuel cell applications