JPH0619101Y2 - Transmission line fault section locator - Google Patents

Transmission line fault section locator

Info

Publication number
JPH0619101Y2
JPH0619101Y2 JP1986156313U JP15631386U JPH0619101Y2 JP H0619101 Y2 JPH0619101 Y2 JP H0619101Y2 JP 1986156313 U JP1986156313 U JP 1986156313U JP 15631386 U JP15631386 U JP 15631386U JP H0619101 Y2 JPH0619101 Y2 JP H0619101Y2
Authority
JP
Japan
Prior art keywords
transmission line
circuit
failure
electromagnetic induction
induction voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986156313U
Other languages
Japanese (ja)
Other versions
JPS6362783U (en
Inventor
貞夫 大井
道弘 峰村
昌克 荒金
信孝 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP1986156313U priority Critical patent/JPH0619101Y2/en
Publication of JPS6362783U publication Critical patent/JPS6362783U/ja
Application granted granted Critical
Publication of JPH0619101Y2 publication Critical patent/JPH0619101Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【考案の詳細な説明】 本考案は主として33kV級以下の架空送電線路のよう
に、工場等の需要側の電気所へ直接電気を供給する送電
線路で、電気故障が発生した時、その故障区間を標定す
るために、送電線下に取り付ける装置に関するものであ
る。
[Detailed Description of the Invention] The present invention is a power transmission line that directly supplies electricity to a demand side electric station such as a factory, such as an overhead power transmission line of 33 kV class or less. The present invention relates to a device to be installed under a power transmission line in order to orient.

現在、77kV級以上の送電線路では、発電所、変電所等
の電気所で故障時の電気的な現象から故障点の位置を標
定する方式が採用されている。一方、33kV級以下の送
電線路では第1図に示すように、変電所等の供給側の電
気所4からの送電線1は多くの工場等の需要側の電気所
6へ、送電するため分岐箇所2が多くなり、故障時の電
気的な現象が複雑になりすぎるため77kV級以上で使用
されているような電気所から故障点を標定するシステム
は適用が困難であり、そのような方式は採用されていな
い。
Currently, for transmission lines of 77 kV class or higher, a method of locating the position of a failure point is adopted from an electrical phenomenon at the time of a failure at an electric station such as a power station or a substation. On the other hand, as shown in Fig. 1, in the transmission line of 33 kV class or less, the transmission line 1 from the electric power station 4 on the supply side such as a substation is branched to transmit electric power to the electric power station 6 on the demand side such as many factories. It is difficult to apply the system which locates the failure point from the electric station which is used in 77kV class or more because the number of points 2 increases and the electric phenomenon at the time of failure becomes too complicated. Not adopted.

ところで、最近のように工場の自動化が進むなかで短時
間の停電をともなう電気故障についてもその影響が大き
くなり、33kV級以下の送電線でも、故障箇所の早期発
見と対策の強化が求められているが、33kV級以下の送
電線では、77kV級以上の送電線に設置されているよう
な避雷用の架空地線は設置されていないのが現状であ
る。そのため、次のような故障区間標定方式が提案され
ている。
By the way, as factory automation has progressed recently, the impact of electrical failures accompanied by short-term power outages has increased, and early detection of failure points and strengthening of countermeasures are required even for transmission lines of 33kV or less. However, for the transmission lines of 33kV class or less, the current situation is that the overhead ground line for lightning protection, which is installed in the transmission line of 77kV class or more, is not installed. Therefore, the following fault zone localization method has been proposed.

即ち、第1図に示す送電線1の故障箇所3において地絡
故障が発生したとすると、変電所等の供給側の電気所4
から故障箇所3までの区間についてのみ通常零相電流と
よばれている大地を帰路とする故障電流7が流れる。常
時の送電線の負荷電流が、三相でたがいに磁束を打ち消
しあっているのに比べ、この故障時の零相電流は三相不
平衡であるため、より大きな磁束を生じ送電線下におい
て、常時の負荷電流よりも大きな電磁誘導電圧を生じさ
せることができる。送電線下に電磁誘導検出装置5を適
当な箇所に設置しておくならば、故障時において、変電
所等の電気所4と故障箇所3までの区間では、故障時の
零相電流により電磁誘導電圧が増加するため、残りの区
間と区別することができ故障区間を標定することができ
る。
That is, if a ground fault occurs at the failure point 3 of the power transmission line 1 shown in FIG.
The fault current 7, which is usually called the zero-phase current, which returns to the earth, flows in the section from the fault location 3 to the fault location 3. The load current of the power transmission line at all times cancels the magnetic flux with each other in three phases, but the zero-phase current at the time of this failure is three-phase unbalanced, so a larger magnetic flux is generated and It is possible to generate an electromagnetic induction voltage that is larger than the normal load current. If the electromagnetic induction detection device 5 is installed in an appropriate place under the power transmission line, at the time of a failure, the electromagnetic induction due to the zero-phase current at the time of the failure occurs in the section up to the electric station 4 such as a substation and the failure point 3. Since the voltage increases, it can be distinguished from the rest of the section and the fault section can be located.

このような方式は理論上は可能であるが、実用上は、落
雷時の電磁誘導ノイズや周辺電気機器等の電磁誘導ノイ
ズを受けることにより、誤動作が多くなると考えるのが
通常であり、そのためこのような方式は実用上誤動作が
多く問題があった。
Such a method is theoretically possible, but in practice, it is usually thought that malfunctions will increase due to the electromagnetic induction noise at the time of lightning strike and the electromagnetic induction noise of peripheral electric devices, etc. Such a method has many problems in practical use and has a problem.

本考案はこれに対し、送電線の電気故障時には故障電流
が流れたあと必ず、変電所等の電気所4において保護継
電器が動作し電気の供給を停止するため、線路電圧が一
時的になくなるという点および故障時間の記憶による確
認という点に着目するとともに、上述のような社会的な
背景のもとに、従来の方式と異なり、直接、送電線下に
装置をとりつけて故障区間を誤動作なく標定可能な方式
について、その実用化を図ろうとしたものである。
On the other hand, the present invention, on the other hand, when a power failure occurs in a transmission line, a protective relay operates at an electric station 4 such as a substation to stop the supply of electricity, so that the line voltage temporarily disappears. In addition to paying attention to the points and the confirmation of failure time by memory, in the social background as described above, unlike the conventional method, a device is directly installed under the transmission line and the failure section is located without malfunction. This is an attempt to put the practical method into practical use.

本考案に係る送電線路故障区間標定器において故障区間
を標定する原理を第2図で説明する。
The principle of locating a failure section in the transmission line failure section locator according to the present invention will be described with reference to FIG.

33kV級以下の送電線では、77kV級以上の送電線に設
置されているような避雷用の架空地線は設置されていな
いのが現状である。そのため第2図は送電線下におい
て、常時負荷時の電磁誘導電圧8、故障時の電磁誘導電
圧9および静電誘導電圧10を検出した波形の一例であ
る。電磁誘導電圧は、電磁コイルを線下において線路方
向に直角に水平配列することにより検出されたものあ
る。静電誘導電圧10は通常電界強度計とよばれる方
式、すなわち送電線路と大地間におかれた二枚の極板に
生じた電位差を検出することによって得られたものであ
る。電磁誘導電圧は、その性質上外部からの電磁誘導ノ
イズの影響をたえず受けるが、静電誘導電圧は、その誘
導発生源が送電線の高電圧であるため相対的に他からの
影響を受けにくい。
The current situation is that the 33 kV class or lower transmission line does not have the overhead ground wire for lightning protection that is installed in the 77 kV class or higher transmission line. Therefore, FIG. 2 shows an example of waveforms of the electromagnetic induction voltage 8 under constant load, the electromagnetic induction voltage 9 during failure, and the electrostatic induction voltage 10 detected under the power transmission line. The electromagnetic induction voltage is detected by arranging electromagnetic coils horizontally under the wire at right angles to the line direction. The electrostatic induction voltage 10 is obtained by a method usually called an electric field intensity meter, that is, by detecting a potential difference generated between two electrode plates placed between the transmission line and the ground. The electromagnetic induction voltage is affected by electromagnetic induction noise from the outside due to its nature, but the electrostatic induction voltage is relatively less affected by others because the induction source is the high voltage of the transmission line. .

本考案は故障時の零相電流による電磁誘導電圧9を検出
するにあたり、電磁誘導電圧が規定レベル以上になった
あと一定時間後に静電誘導電圧が零または減少するかど
うかで電磁誘導ノイズによるものか、故障電流によるも
のかを判別し誤動作を防止するものであり、さらに故障
時間を記憶回路により記憶し必要時に故障区間の表示に
合わせて故障時間を呼び出すことにより変電所等の供給
側の電気所での記録と比較して正常動作の確認ができる
ようにし、もって送電線下における故障区間標定の実用
化を可能ならしめたものである。
In the present invention, when detecting the electromagnetic induction voltage 9 due to the zero-phase current at the time of failure, the electromagnetic induction noise depends on whether the electrostatic induction voltage becomes zero or decreases after a certain time after the electromagnetic induction voltage exceeds the specified level. To prevent malfunction by determining whether the failure time is due to a fault current.Furthermore, by storing the failure time in a memory circuit and calling the failure time according to the display of the failure section when necessary, the electricity on the supply side of the substation, etc. This enables the normal operation to be confirmed by comparing it with the records at the site, and thus enables the practical application of fault location under the transmission line.

以下、本考案の一実施例の回路図である第3図に基づい
て本考案を詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to FIG. 3, which is a circuit diagram of an embodiment of the present invention.

第3図は本考案に係る送電線路故障区間標定器の一実施
例を示す回路図で、本実施例の回路全体は一つの装置と
して送電線鉄塔の塔脚等、送電線下にとりつけたもので
ある。
FIG. 3 is a circuit diagram showing an embodiment of the transmission line fault section locator according to the present invention. The entire circuit of this embodiment is installed as a device under the transmission line, such as a tower of a transmission line tower. Is.

電磁誘導コイル11からの電圧が増加して一定レベルを
超えると、太陽電池により常時充電された電池の直流電
源回路12からのスイッチ13が投入される。電磁誘導
コイル11からの電圧をフィルター回路14を通して高
周波誘導ノイズを除去したあと一定時間、電圧が定レベ
ル値を超えていることを比較回路15により確認する。
絶縁された二枚の極板間の電位差を検出する静電誘導検
出回路18の電圧が零になるかまたは零にならないまで
も通常時の値から減少することを条件に、比較回路15
で判定された故障区間であるかどうかの結果を判定回路
16で判定し、表示回路17を動作させる。
When the voltage from the electromagnetic induction coil 11 increases and exceeds a certain level, the switch 13 from the DC power supply circuit 12 of the battery constantly charged by the solar battery is turned on. After the high-frequency induction noise is removed from the voltage from the electromagnetic induction coil 11 through the filter circuit 14, the comparison circuit 15 confirms that the voltage exceeds the constant level value for a certain period of time.
The comparison circuit 15 is provided on condition that the voltage of the electrostatic induction detection circuit 18 for detecting the potential difference between the two insulated electrode plates becomes zero or decreases from the normal value until it does not become zero.
The judgment circuit 16 judges the result of whether or not it is the failure section judged in step S6, and the display circuit 17 is operated.

他からの電磁誘導ノイズにより電磁誘導電圧が規定レベ
ル値以上に増加した場合でも、静電誘導電圧に変化がな
ければ誤動作と判断しスイッチ13を開放して、待機状
態に戻り、誤動作はさけられる。表示回路17は内部に
時計回路をもつものであって、故障発生のたびにその時
間を、記憶回路に記憶する。
Even if the electromagnetic induction voltage increases above the specified level value due to the electromagnetic induction noise from the other, if there is no change in the electrostatic induction voltage, it is judged as a malfunction and the switch 13 is opened to return to the standby state to avoid the malfunction. . The display circuit 17 has an internal clock circuit, and stores the time in the storage circuit each time a failure occurs.

故障表示が何回か重なる時には、この故障時間を表示回
路17から液晶のデジタル表示回路に呼び出し、変電所
等の電気所で記録された故障時間と比較して、正常動作
を確認できるようにしてある。
When the failure display overlaps several times, this failure time is called from the display circuit 17 to the liquid crystal digital display circuit and compared with the failure time recorded at the electric station such as a substation so that normal operation can be confirmed. is there.

本考案に係る送電線路故障区間標定器は以上説明してき
たようなものなので、誤動作なく架空地線の設置されて
いない架空送電線下における故障区間標定を実現できる
という効果がある。
Since the transmission line fault section locator according to the present invention is as described above, there is an effect that it is possible to realize a fault section locator under an overhead transmission line where an overhead ground wire is not installed without malfunction.

【図面の簡単な説明】[Brief description of drawings]

第1図は送電線路の一例を示す説明図、第2図は送電線
の電磁誘導電圧・静電誘導電圧の波形を示す説明図、第
3図は本考案の実施例を示す電気回路図である。 1……送電線、2……分岐点、3……故障箇所、4……
変電所等の供給側の電気所、5……電磁誘導検出装置、
6……工場等の需要側の電気所、7……故障電流、8…
…常時負荷時の電磁誘導電圧、9……故障時の電磁誘導
電圧、10……静電誘導電圧、11……電磁誘導コイ
ル、12……電源回路、13……スイッチ、14……フ
イルター回路、15……比較回路、16……判定回路、
17……表示回路、18……静電誘導電圧検出回路
FIG. 1 is an explanatory diagram showing an example of a power transmission line, FIG. 2 is an explanatory diagram showing waveforms of electromagnetic induction voltage / electrostatic induction voltage of a transmission line, and FIG. 3 is an electric circuit diagram showing an embodiment of the present invention. is there. 1 ... Transmission line, 2 ... Branch point, 3 ... Failure point, 4 ...
Supply side electric stations such as substations, 5 ... Electromagnetic induction detection device,
6 ... Demand side electric stations such as factories, 7 ... failure current, 8 ...
… Electromagnetic induction voltage under constant load, 9… Electromagnetic induction voltage during failure, 10 ... Electrostatic induction voltage, 11 ... Electromagnetic induction coil, 12 ... Power supply circuit, 13 ... Switch, 14 ... Filter circuit , 15 ... Comparison circuit, 16 ... Judgment circuit,
17 ... Display circuit, 18 ... Electrostatic induction voltage detection circuit

───────────────────────────────────────────────────── フロントページの続き (72)考案者 福井 信孝 石川県松任市福留町857の51 (56)参考文献 特開 昭47−43940(JP,A) 特開 昭59−214778(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Creator Nobutaka Fukui 51 857, 857, Fukudome-cho, Matsuto-shi, Ishikawa (56) References JP 47-43940 (JP, A) JP 59-214778 (JP, A)

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】架空地線の設置されていない架空送電線下
に設置する送電線路故障区間標定器であって、送電線を
流れる線路電流による電磁誘導電圧を検出する回路と、
該線路電圧による静電誘導電圧を検出する回路と、前記
電磁誘導電圧検出回路の検出電圧を規定レベルと比較
し、検出した電磁誘導電圧が該規定レベルを超えたとき
に故障検出出力を生じさせる比較回路と、前記静電誘導
電圧検出回路の検出電圧が通常時の値より減少しており
かつ前記電磁誘導電圧検出回路の検出出力が生じている
ときに線路故障を示す判定出力を生じさせる判定回路
と、該判定回路の判定出力に基づいて故障区間であるこ
と表示する表示器とからなる送電線路故障区間標定器。
Claim: What is claimed is: 1. A transmission line fault section locator installed below an overhead power transmission line in which an overhead ground wire is not installed, which circuit detects an electromagnetic induction voltage due to a line current flowing through the transmission line.
A circuit that detects an electrostatic induction voltage due to the line voltage and a detection voltage of the electromagnetic induction voltage detection circuit are compared with a specified level, and a failure detection output is generated when the detected electromagnetic induction voltage exceeds the specified level. Judgment that produces a judgment output indicating a line failure when the detection voltage of the comparison circuit and the electrostatic induction voltage detection circuit is lower than the normal value and the detection output of the electromagnetic induction voltage detection circuit is generated A transmission line fault section locator comprising a circuit and a display for indicating that the section is a fault section based on the judgment output of the judgment circuit.
【請求項2】前記表示器が、故障発生時間を計時する時
計回路と、該故障発生時間を記憶して、該故障時間を呼
び出して表示するデジタル表示器を含むことを特徴とす
る実用新案登録請求の範囲第1項記載の送電線路故障区
間標定器。
2. The utility model registration, wherein the display device includes a clock circuit for measuring a failure occurrence time and a digital display for storing the failure occurrence time and calling the failure time for display. The transmission line fault section locator according to claim 1.
JP1986156313U 1986-10-13 1986-10-13 Transmission line fault section locator Expired - Lifetime JPH0619101Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986156313U JPH0619101Y2 (en) 1986-10-13 1986-10-13 Transmission line fault section locator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986156313U JPH0619101Y2 (en) 1986-10-13 1986-10-13 Transmission line fault section locator

Publications (2)

Publication Number Publication Date
JPS6362783U JPS6362783U (en) 1988-04-25
JPH0619101Y2 true JPH0619101Y2 (en) 1994-05-18

Family

ID=31077811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986156313U Expired - Lifetime JPH0619101Y2 (en) 1986-10-13 1986-10-13 Transmission line fault section locator

Country Status (1)

Country Link
JP (1) JPH0619101Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214778A (en) * 1983-05-20 1984-12-04 Mitsubishi Rayon Co Ltd Detection of disconnected point for printed circuit board

Also Published As

Publication number Publication date
JPS6362783U (en) 1988-04-25

Similar Documents

Publication Publication Date Title
US9784781B2 (en) Islanding detection reliability in electricity distribution network
CN104076243A (en) Method for detection and indication of single-phase ground faults of small current grounding power distribution network and device
CN103606909A (en) Protecting system and method for power distribution network circuit
WO2015055211A1 (en) Converters for wind turbine generators
Shahzad et al. A comprehensive review of protection schemes for distributed generation
KR20160132944A (en) Brushless permanent magnet generator plus auxiliary voltage source constant potential exciter
EP3054304A1 (en) Device for detecting open phase of connection line of standby transformer in nuclear power plant by using rogowski coil
CN102998582A (en) Detection method of distributing line phase short circuit fault and single phase grounding fault
RU2550751C2 (en) Method and device for detection of ground short-circuit
Qiu et al. Geomagnetic disturbance: A comprehensive approach by American electric power to address the impacts
Wang et al. Improved voltage‐based protection scheme for an LVDC distribution network interfaced by a solid state smart transformer
Horowitz et al. Blackouts and relaying considerations-relaying philosophies and the future of relay systems
Nengling et al. Differential protection based on zero-sequence voltages for generator stator ground fault
JPH0619101Y2 (en) Transmission line fault section locator
Owen The historical development of neutral grounding practices
CN203587736U (en) Overhead distributing line ground fault indicating device based on zero-sequence component method
Dixit et al. Electrical power quality
Khan et al. Analysis of faults and protection schemes for magnetically controlled shunt reactor
Goyal et al. Faulty feeder identification technology utilizing grid-connected converters for reduced outage zone in smart grids
JPH0227272A (en) Apparatus for detecting earth of transmission/ distribution line
JPH07298476A (en) Lightening response relay device
CN103346539B (en) A kind of bus bar protecting method based on insulation measurement
Blume High voltage protection for telecommunications
KR20100034828A (en) Ground fault protection system
CN217305336U (en) Intelligent leakage detector for meter box