JPH06190226A - Method of classifying particles in air flow and method for measuring concentration and particle size distribution of particles in air flow using same - Google Patents

Method of classifying particles in air flow and method for measuring concentration and particle size distribution of particles in air flow using same

Info

Publication number
JPH06190226A
JPH06190226A JP35786892A JP35786892A JPH06190226A JP H06190226 A JPH06190226 A JP H06190226A JP 35786892 A JP35786892 A JP 35786892A JP 35786892 A JP35786892 A JP 35786892A JP H06190226 A JPH06190226 A JP H06190226A
Authority
JP
Japan
Prior art keywords
flow velocity
particle concentration
ratio
flow
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35786892A
Other languages
Japanese (ja)
Inventor
Hisao Makino
尚夫 牧野
Masayoshi Kimoto
政義 木本
Koichi Iitani
鋼一 井伊谷
Hideto Yoshida
英人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP35786892A priority Critical patent/JPH06190226A/en
Publication of JPH06190226A publication Critical patent/JPH06190226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

PURPOSE:To classify particles in air flow by simple equipment and a simple procedure and to measure the concentration and particle size distribution of particles in air flow. CONSTITUTION:The flow velocity ratio uo/ui of the flow velocity uo of a main flow in a main pipe where gas to be measured is transported to the flow velocity ui of a sucked flow taken in a measuring device is changed, allowing the particle diameter of particulate material collected from air flow to be variable. And the collection of particles in air flow is performed at the flow velocity ratios uo/ui for two or more different conditions. The true particle concentration Co in air flow at the flow velocity ratio=1 is obtained based on the correlation between the particle concentration Ci obtained from the quantity of the collected particulate material and the flow velocity ratios. Or the particle concentration ratio Ci/Co of the particle concentration Ci under each collection condition to the true particle concentration Co in the equal velocity suction is obtained an the particle size distribution in air flow is obtained from the slope of a straight line showing the proportional relationship of the particle concentration ratio Ci/Co to the flow velocity ratio uo/ui.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気流中の粒子の分級方
法及び濃度並びに粒径分布の測定方法に関する。更に詳
述すれば、本発明は例えば微粉炭や燃焼排気ガス、セラ
ミックス及び半導体工業分野などのように気流中に粒子
状物質を含有して輸送する系において輸送する気流中の
粒子状物質の分級方法及びこれを利用した粒子濃度並び
に粒径分布の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for classifying particles in an air stream and a method for measuring concentration and particle size distribution. More specifically, the present invention is a classification of the particulate matter in the air stream to be transported in a system for transporting the particulate matter in the air stream such as pulverized coal, combustion exhaust gas, ceramics and the semiconductor industry field. The present invention relates to a method and a method for measuring particle concentration and particle size distribution using the method.

【0002】[0002]

【従来の技術】従来、気流中の粒子状物質の濃度測定
は、主流の流速と計測のための採取ノズル部の吸引流速
とが等しい条件(以降、「等速吸引」と称する)をつく
り、採取された粒子状物質の重量Mと吸引したガスの流
量Vとを秤量し、その比率M/Vを計算することでなさ
れている。
2. Description of the Related Art Conventionally, in measuring the concentration of particulate matter in an air stream, a condition (hereinafter referred to as "constant velocity suction") in which the flow velocity of the main flow is equal to the suction flow velocity of a sampling nozzle portion for measurement, This is done by weighing the weight M of the collected particulate matter and the flow rate V of the sucked gas and calculating the ratio M / V.

【0003】また、粒子径分布の測定は、等速吸引によ
って採取した粒子をカスケード・インパクタやカスケー
ド・サイクロンなどの分級装置を用いて粒子径別に数段
に分級し、分級されたそれぞれの粒子量を秤量すること
により行われている。
Further, the particle size distribution is measured by classifying the particles collected by constant velocity suction into several stages according to the particle size using a classifying device such as a cascade impactor or a cascade cyclone, and the amount of each classified particle. Is carried out by weighing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来技術では、測定のための粒子状物質採取の際に、常
に主流流速と吸引流速とを同一にする等速吸引条件にし
なければならない。吸引流速が若干でも主流流速と異な
った場合には、正確な粒子濃度ひいては粒径分布が得ら
れないという問題がある。また、主流流速が絶えず変動
する場合には、吸引条件をその変動に応じて正確に追従
させることは実用上難しく、測定精度を低下させること
となる。
However, in the above-mentioned prior art, when collecting the particulate matter for measurement, it is necessary to always use the constant velocity suction condition in which the main flow velocity and the suction flow velocity are the same. If the suction flow velocity is slightly different from the main flow velocity, there is a problem that an accurate particle concentration and thus a particle size distribution cannot be obtained. Further, when the mainstream flow velocity constantly fluctuates, it is practically difficult to accurately follow the suction condition according to the fluctuation, and the measurement accuracy is reduced.

【0005】また、粒径分布においては複雑な分級装置
を必要とし、取扱いが困難であると共に分級採取された
粒子状物質ごとに秤量する必要があるなど迅速な測定が
行い難く、連続測定を行う上での障害ともなる。
Further, in the particle size distribution, a complicated classifying device is required, it is difficult to handle, and it is difficult to perform quick measurement because it is necessary to weigh each classified and sampled particulate matter, and continuous measurement is performed. It also hinders the above.

【0006】本発明は、簡単な方法で気流中の粒子を容
易に分級し得る分級方法を提供することを目的とする。
また、本発明は、簡単な方法で気流中粒子濃度および粒
径分布を求め得る測定方法の提供を目的とする。
It is an object of the present invention to provide a classification method which can easily classify particles in an air stream by a simple method.
Another object of the present invention is to provide a measuring method capable of obtaining the particle concentration and particle size distribution in an air stream by a simple method.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
め、本発明の分級方法は、主流流速uo と吸引流速ui
との流速比uo /ui を変化させ、気流中から採取する
粒子状物質の粒子径を可変にするようにしている。
To achieve the above object, the classification method of the present invention uses a main flow velocity u o and a suction flow velocity u i.
And the flow velocity ratio u o / u i is changed to make the particle diameter of the particulate matter collected from the air flow variable.

【0008】また、本発明の気流中粒子濃度の測定方法
は、主流流速uo と吸引流速ui との流速比uo /ui
を変化させ、気流中の粒子状物質を異なる2条件以上、
好ましくは3条件以上の流速比uo /ui で採取し、こ
の採取された粒子状物質の量から求まる粒子濃度Ci
流速比との相関関係に基づいて流速比が1における気流
中の真の粒子濃度Co を求めるようにしている。
[0008] The measuring method of the air flow in the concentration of particles present invention, the flow rate ratio of the main flow velocity u o and the suction flow rate u i u o / u i
To change the particulate matter in the air flow to two or more different conditions,
Preferably, the sample is collected at a flow velocity ratio u o / u i of 3 or more conditions, and based on the correlation between the particle concentration C i obtained from the amount of the collected particulate matter and the flow velocity ratio, The true particle concentration C o is determined.

【0009】更に、本発明の気流中粒子粒径分布の測定
方法は、主流流速uo と吸引流速ui との流速比uo
i を変化させ、気流中の粒子状物質を異なる2条件以
上、好ましくは3条件以上の流速比uo /ui で採取
し、この採取された粒子状物質の量から求まる粒子濃度
i と請求項2の測定方法で求まる気流中の真の粒子濃
度Co との粒子濃度比Ci /Co を求め、この粒子濃度
比Ci /Co と流速比uo /ui との比例関係を表す直
線の傾きから気流中の粒子径の分布を求めるようにして
いる。
Further, according to the method of measuring the particle size distribution of particles in the air flow of the present invention, the flow rate ratio u o of the main flow velocity u o and the suction flow velocity u i /
By changing u i , the particulate matter in the air flow is sampled at different flow rate ratios u o / u i of 2 or more conditions, preferably 3 or more conditions, and the particle concentration C i is obtained from the amount of the collected particulate matter. And the particle concentration ratio C i / C o with the true particle concentration C o in the air flow obtained by the measuring method of claim 2, the particle concentration ratio C i / C o and the flow velocity ratio u o / u i The distribution of particle size in the air stream is obtained from the slope of the straight line representing the proportional relationship.

【0010】[0010]

【作用】気流中の粒子状物質は吸引流速が主流流速と異
なると、即ち等速吸引でなくなると、吸引用ノズルに採
取される量に違いが生じて測定粒子濃度が真の値よりず
れる。つまり、粒径の大きさによって気流の流れから受
ける影響が異なり、粒径が比較的小さいものは採取量即
ち粒子濃度が流速の変化の影響を受け難いが、比較的大
きな場合には慣性力が大きくなり流速の変化の影響を受
ける。
When the suction flow velocity of the particulate matter in the air flow is different from the main flow velocity, that is, when the suction is not constant velocity suction, the amount collected by the suction nozzle is different, and the measured particle concentration deviates from the true value. In other words, the influence of the flow of the air flow varies depending on the size of the particle size, and those with a relatively small particle size are less likely to be affected by changes in the flow rate of the sampling amount, that is, particle concentration, but when the particle size is relatively large, the inertial force is It becomes large and is affected by changes in flow velocity.

【0011】そこで、主流流速と吸引流速との流速比を
変えると、流速の変化にほとんど影響を受け難い粒子と
受け易い粒子とでは吸引用ノズルに吸引される量に差が
生じる。このため、流速比によって吸引される粒子の大
きさが異なり、吸引時に分級されることとなる。
Therefore, if the flow velocity ratio between the main flow velocity and the suction flow velocity is changed, there is a difference in the amount sucked by the suction nozzle between particles that are hardly affected by changes in the flow velocity and particles that are easily affected. Therefore, the size of the particles to be sucked differs depending on the flow velocity ratio, and the particles are classified during the suction.

【0012】しかも、この主流流速と吸引流速との流速
比の変化と採取量との変化は相関関係があり、測定時の
流速比と測定粒子濃度との関係をプロットすると、図2
に示すようなほぼ直線の比例関係を有する。そこで、異
なった2条件以上の流速比uo /ui における粒子濃度
i の値を求め、各測定時の流速比uo /ui と粒子濃
度の相関関係を示す図2の直線から、流速比1の時の真
の粒子濃度Co つまり主流の気流中の粒子濃度が求ま
る。
Moreover, there is a correlation between the change in the flow velocity ratio between the main flow velocity and the suction flow velocity and the change in the sampling amount. When the relation between the flow velocity ratio at the time of measurement and the measured particle concentration is plotted, FIG.
It has a substantially linear proportional relationship as shown in. Therefore, the value of the particle concentration C i at different flow velocity ratios u o / u i of two or more conditions is obtained, and from the straight line in FIG. 2 showing the correlation between the flow velocity ratio u o / u i at each measurement and the particle concentration, When the flow velocity ratio is 1, the true particle concentration C o, that is, the particle concentration in the mainstream airflow is obtained.

【0013】また、流速比を1からずれた値に変えた際
の粒子濃度の変化は、流速の変化の影響が粒径によって
異なることに基因していることから、同時に粒径分布の
変化を含んでいる。そして、この粒径分布の変化は、図
4に示すような粒子濃度比と流速比との相関関係の傾き
として表われる。つまり、主流流速下における吸引流速
の変化が与える粒子状物質の採取量への影響が粒径分布
に支配され、これが粒子濃度比と流速比との比例直線の
傾きとして表われることから、この傾きを求めて粒径分
布を計算にて求める。例えば、異なった2条件以上の流
速比uo /uiにおける粒子状物質の採取量の差異から
各測定流速比uo /ui における粒子濃度Ci 並びに粒
子濃度比Ci /Co を求め、この粒子濃度比Ci /Co
と流速比uo /ui との比例関係の傾きから粒径分布
を求める。
The change in particle concentration when changing the flow velocity ratio to a value deviating from 1 is due to the effect of the change in flow velocity depending on the particle size. Contains. The change in the particle size distribution is shown as a slope of the correlation between the particle concentration ratio and the flow velocity ratio as shown in FIG. In other words, the influence of the change in the suction flow velocity under the main flow velocity on the amount of particulate matter collected is governed by the particle size distribution, and this appears as the slope of the proportional straight line between the particle concentration ratio and the flow velocity ratio. And the particle size distribution is calculated. For example, the particle concentration C i and the particle concentration ratio C i / C o at each measured flow velocity ratio u o / u i are determined from the difference in the amount of particulate matter collected at different flow velocity ratios u o / u i of two or more conditions. , The particle concentration ratio C i / C o
And flow rate ratio uo The particle size distribution is obtained from the slope of the proportional relationship with / u i .

【0014】[0014]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0015】図1に、本発明の測定方法を実施する測定
装置の一例を示す。この測定装置は、煙道排ガス中に含
まれる粒子状物質を測定するためのものである。この測
定装置1は、測定対象たる排ガスを流す主流管8と、こ
の主流管8内を流れる被測定ガス(排ガス)を抽出する
吸引用ノズル2、粒子状物質を捕集するするフィルタ1
0を内蔵するフィルターホルダ3、ドレインポット4、
ガスメータ5、バルブ6,9、真空ポンプ7及び図示さ
れていない流速計とにより構成される。
FIG. 1 shows an example of a measuring apparatus for carrying out the measuring method of the present invention. This measuring device is for measuring the particulate matter contained in the flue gas. The measuring device 1 includes a mainstream pipe 8 for flowing an exhaust gas to be measured, a suction nozzle 2 for extracting a measured gas (exhaust gas) flowing in the mainstream pipe 8, and a filter 1 for collecting particulate matter.
Filter holder 3, which incorporates 0, drain pot 4,
It is composed of a gas meter 5, valves 6 and 9, a vacuum pump 7, and a velocity meter (not shown).

【0016】吸引用ノズル2は、主流管8内を流れる排
ガスを一定量抽出してフィルターホルダ3へ導くための
もので、主流管8内の排ガスの流れと平行に開口するよ
うにして主流管8の中央に配置されている。フィルター
ホルダ3は、排ガス中に含まれる粒子状物質を捕捉する
ためのフィルタを設置する装置である。フィルタは捕集
した粒子物質を秤量するために取り出し可能に設置され
る。ドレインポット4は、排ガスの吹き溜め装置であ
る。ガスメータ5は、吸引用ノズル2を介して吸引した
排ガスの量を測定する装置である。また、バルブ6,9
は、吸引用ノズル2の吸い込み力を制御したり、真空ポ
ンプ7による吸い込み運転を制御する装置である。
The suction nozzle 2 is for extracting a certain amount of the exhaust gas flowing in the main flow pipe 8 and guiding it to the filter holder 3. The suction nozzle 2 is opened in parallel with the flow of the exhaust gas in the main flow pipe 8. It is located in the center of 8. The filter holder 3 is a device for installing a filter for capturing particulate matter contained in exhaust gas. The filter is removably installed to weigh the collected particulate matter. The drain pot 4 is a device for collecting exhaust gas. The gas meter 5 is a device that measures the amount of exhaust gas sucked through the suction nozzle 2. Also, valves 6, 9
Is a device that controls the suction force of the suction nozzle 2 and the suction operation by the vacuum pump 7.

【0017】尚、測定対象たるの煙道排ガスは、内径d
o の主流管8中を主流流速uo をもって輸送されてい
る。この主流流速uo の測定には、例えば図示していな
いがピトー管や熱線風速計などが用いられる。そして、
粒子状物質の採取は、真空ポンプ7の吸引力により、ノ
ズル径dc の吸引用ノズル2からガスを吸引流速ui
吸引することにより行われる。粒子状物質は、全て粒子
捕集用フィルタ10の内蔵されたフィルターホルダ3に
おいて採取される。そして、採取粒子量Mi は、吸引前
後のフィルタ重量を秤量することによってその差の量か
ら求められる。
The flue gas, which is the object of measurement, has an inner diameter d.
mainstream pipe 8 middle of the o being transported with a mainstream flow velocity u o. For the measurement of the mainstream flow velocity u o , for example, a Pitot tube, a hot-wire anemometer, or the like is used, although not shown. And
The collection of the particulate matter is performed by sucking the gas at a suction flow rate u i from the suction nozzle 2 having the nozzle diameter d c by the suction force of the vacuum pump 7. All the particulate matter is collected in the filter holder 3 having the particle collecting filter 10 built therein. Then, the collected particle amount M i is obtained from the difference amount by weighing the filter weight before and after the suction.

【0018】また、吸引ガス量Vi はガスメータ5によ
り計測される。そして、吸引流速ui は吸引ガス量Vi
と吸引時間Ti および先端ノズル断面積S(S=π・d
c 2)とから、関係式ui =Vi /(Ti ・S)、により
求められる。その際の粒子濃度Ci は、粒子採取量Mi
と吸引ガス量Vi とから、関係式Ci =Mi /Vi 、に
より求められる。
The suction gas amount V i is measured by the gas meter 5. The suction flow rate u i is the suction gas amount V i.
And suction time T i and tip nozzle cross-sectional area S (S = π · d
c 2 ) and the relational expression u i = V i / (T i · S). The particle concentration C i at that time is the particle collection amount M i.
And the suction gas amount V i , the relational expression C i = M i / V i is obtained.

【0019】以上のように構成された測定装置におい
て、主流流速を一定にして吸引流速を主流流速と異なら
せると、同じ流れの排ガス中から採取される粒子状物質
の量に違いが生じる。つまり、粒径の大きさによって気
流の流れから受ける影響が異なり、粒径が比較的小さい
ものは採取量即ち粒子濃度が流速の変化の影響を受け難
いが、比較的大きな場合には慣性力が大きくなり流速の
変化の影響を受ける。
In the measuring device constructed as described above, if the main flow velocity is kept constant and the suction flow velocity is different from the main flow velocity, the amount of particulate matter collected from the exhaust gas of the same flow will differ. In other words, the influence of the flow of the air flow varies depending on the size of the particle size, and those with a relatively small particle size are less likely to be affected by changes in the flow rate of the sampling amount, that is, particle concentration, but when the particle size is relatively large, the inertial force is It becomes large and is affected by changes in flow velocity.

【0020】そこで、主流流速と吸引流速との流速比を
変えると、流速の変化にほとんど影響を受け難い粒子と
受け易い粒子とでは吸引用ノズルに吸引される量に差が
生じる。このため、流速比によって吸引される粒子の大
きさが異なり、吸引時に分級されることとなる。
Therefore, when the flow velocity ratio between the main flow velocity and the suction flow velocity is changed, the amount of particles sucked by the suction nozzle differs between the particles that are hardly affected by the change in the flow velocity and the particles that are easily affected. Therefore, the size of the particles to be sucked differs depending on the flow velocity ratio, and the particles are classified during the suction.

【0021】しかも、この主流流速と吸引流速との流速
比の変化と採取量との変化は相関関係があり、測定時の
流速比と測定粒子濃度との関係をプロットすると、図2
に示すようなほぼ直線の比例関係を有する。今、異なる
6種類の吸引流速u1 〜u6で採取を行い、その時に測
定された粒子濃度をC1 〜C6 とすると、吸引主流流速
との比率uo /u1 〜uo /u6 は、図2に示すように
1 〜C6 に対して常に直線関係を示す。この関係を利
用して、真の粒子濃度を示す条件である主流速度と吸引
流速の比が1の等速吸引条件時の粒子濃度Co を図2の
グラフから容易に求めることが可能となる。ここで、本
実施例の気流中粒子濃度の測定は、図2に示すように6
点における異なる流速比u0 /ui で採取しているがこ
れに特に限定されるものではない。粒子濃度Ci と流速
比uo /ui との直線関係を得るには、流速比の異なる
2点以上についてのデータを得れば理論的に求めること
が可能である。2点以上において計測した上記の測定値
のプロット、より好ましくは3点以上のプロットを直線
で結び、流速比uo /ui が1の地点の粒子濃度Ci
値を読めば、その値が主流の気流中粒子濃度の値Co
なる。
Moreover, there is a correlation between the change in the flow velocity ratio between the main flow velocity and the suction flow velocity and the change in the sampling amount. When the relation between the flow velocity ratio at the time of measurement and the measured particle concentration is plotted, FIG.
It has a substantially linear proportional relationship as shown in. Sampling is performed at six different suction flow rates u 1 to u 6 , and the particle concentration measured at that time is C 1 to C 6 , the ratio of the main suction flow velocity u o / u 1 to u o / u. As shown in FIG. 2, 6 always has a linear relationship with C 1 to C 6 . By utilizing this relationship, it is possible to easily obtain the particle concentration C o under the constant velocity suction condition in which the ratio of the main flow velocity and the suction flow velocity, which is the condition indicating the true particle concentration, is 1 from the graph of FIG. . Here, the measurement of the particle concentration in the air stream of this example was performed as shown in FIG.
Samples are collected at different flow rate ratios u 0 / u i at different points, but the present invention is not limited to this. In order to obtain the linear relationship between the particle concentration C i and the flow velocity ratio u o / u i, it can be theoretically obtained by obtaining data on two or more points having different flow velocity ratios. If the plots of the above measured values measured at two or more points, more preferably the plots of three or more points are connected by a straight line and the value of the particle concentration C i at the point where the flow velocity ratio u o / u i is 1 is read, that value is obtained. Is the value C o of the particle concentration in the mainstream air stream.

【0022】また、吸引流速比が1から偏移した場合の
採取量への影響は、粒径、主流流速によって異なる。図
3に示すように、粒径が大きく主流流速が速いほど、測
定された粒子濃度CiDp は、真の粒子濃度CoDp から異
なってくる。この真の粒子濃度からのずれは、粒径Dp
の粒子について次のデービス(Davies)の数式1で与え
られる。
Further, when the suction flow velocity ratio deviates from 1, the influence on the sampling amount depends on the particle size and the mainstream flow velocity. As shown in FIG. 3, the faster the particle size is large mainstream flow rate, measured particle concentration C IDP is differs from the true particle concentration C ODP. The deviation from the true particle concentration is the particle diameter D p
Is given by the following Davies equation 1.

【0023】[0023]

【数1】 ここで、Pは慣性パラメータと呼ばれ、数式2で求めら
れる。
[Equation 1] Here, P is called an inertial parameter, and is calculated by Equation 2.

【0024】[0024]

【数2】 [Equation 2]

【0025】また、係数Cm は数式3で与えられる。The coefficient C m is given by equation (3).

【数3】 [Equation 3]

【0026】主流流速uo 、ガスの濃度、種類が一定な
らば数式1は粒径と吸引流速ui のみの関数となる。測
定された粒子濃度CiDp は、粒径Dp の粒子が、吸引流
速u i において測定された濃度であり、真の粒子濃度C
oDp は粒径Dp の粒子の真の粒子濃度である。実際の測
定対象は粒径Dp の粒子だけではなく、各々の粒径を持
った粒子の集合体(粒子群)であり、その粒径分布に
は、例えば燃料生成粒子については、次の対数正規分布
が良く適合する。
Mainstream flow velocity uo, Gas concentration, type is constant
The mathematical formula 1 is based on particle size and suction flow rate uiWill only be a function. Measurement
Specified particle concentration CiDpIs the particle size DpParticles of suction flow
Speed u iThe true particle concentration C
oDpIs the particle size DpIs the true particle concentration of the particles. Actual measurement
Target particle size is DpNot only the particles of each
It is an aggregate of particles (particle group) and its particle size distribution
Is the logarithmic normal distribution of
Fits well.

【0027】[0027]

【数4】 ここで、数式4のf(Dp )は粒径分布関数であり、粒
径Dp の粒子が、粒子全体に占める割合を示している。
記号DP50 は平均粒径、また、σg は幾何標準偏差であ
り、このDP50 とσg が定まれば、粒径分布は一義的に
決定される。測定対象となる粒子群全体の真の粒子濃度
をCo とすると、その中に粒径Dp の粒子はCo ・f
(Dp )だけ含まれることになり、当然数式1のCoDp
と同一になる。そこで、数式1は、次のように書き換え
ることができる。
[Equation 4] Here, f (D p ) in Expression 4 is a particle size distribution function, and indicates the ratio of particles having a particle size D p to the entire particles.
The symbol D P50 is the average particle size, and σ g is the geometric standard deviation. If this D P50 and σ g are determined, the particle size distribution is uniquely determined. When the true particle density of the entire particles to be measured and C o, particles having a particle diameter D p therein C o · f
Only (D p ) is included, and naturally Co Dp in Equation 1 is included.
Will be the same as Therefore, Equation 1 can be rewritten as follows.

【0028】[0028]

【数5】 数式5は、粒径Dp の粒子のみの測定濃度を示している
ものであるから、粒子群全体の測定濃度Ci は、数式5
を粒子径について積分すれば求められる。
[Equation 5] Since the mathematical formula 5 shows the measured concentration of only the particles having the particle diameter D p , the measured concentration C i of the entire particle group is the mathematical formula 5.
Can be obtained by integrating with respect to the particle size.

【0029】[0029]

【数6】 数式6は、次式のように粒子群全体の真の粒子濃度と測
定濃度の比で表すことができる。
[Equation 6] Formula 6 can be expressed by the ratio of the true particle concentration and the measured concentration of the entire particle group as in the following formula.

【0030】[0030]

【数7】 [Equation 7]

【0031】また、実験による測定結果は図2に示すよ
うに、濃度Ci がuo /ui に対して1次関数形となる
ため、Ci /C0 とuo /ui の関係も図4のように1
次関数形となり次式で表せる。
Further, the results measured by experiment, as shown in FIG. 2, since the concentration C i is a linear function type with respect to u o / u i, relation C i / C 0 and u o / u i 1 as shown in Figure 4
It has the following function form and can be expressed by the following equation.

【0032】[0032]

【数8】 数式7と数式8を比較すると、次の数式9および数式1
0が成立する。
[Equation 8] Comparing Equation 7 and Equation 8, the following Equation 9 and Equation 1
0 holds.

【0033】[0033]

【数9】 [Equation 9]

【数10】 [Equation 10]

【0034】AとBは、実験結果である図4から求めら
れるため、数式9及び数式10中の未知数はf(Dp
に含まれるDP50 とσg のみとなり、上の2つの式を連
立させて解くことにより、測定対象である粒子群の粒径
分布を求めることができる。
Since A and B are obtained from FIG. 4 which is an experimental result, the unknowns in the equations 9 and 10 are f (D p ).
Only D P50 and σ g included in the above are solved, and by solving the above two equations simultaneously, the particle size distribution of the particle group to be measured can be obtained.

【0035】図5には、このようにして求めた粒径分布
を示す。該図において、黒丸「●」は本発明による計算
結果のプロットであり、白丸「○」は従来の方法である
カスケードインパクタ(ASS:アンダーセン・スタッ
ク・サンプラ)によって求めた結果のプロットである。
両者は非常に良い一致を示している。
FIG. 5 shows the particle size distribution thus obtained. In the figure, the black circles "●" are plots of the calculation results according to the present invention, and the white circles "○" are plots of the results obtained by the conventional cascade impactor (ASS: Andersen Stack Sampler).
The two show a very good agreement.

【0036】上述の実施例は本発明の好適な実施の一例
ではあるがこれに限定されるものではなく本発明の要旨
を逸脱しない範囲において種々変形実施可能である。例
えば、本実施例では気流中の粒子の採取にフィルタを用
いているが、遠心分離装置を用いても良い。更に、測定
対象が実施例の燃焼生成粒子ではなく、微粉炭などの粉
砕粒子となった場合には粒径分布関数として、それらに
よく適合するロジン・ラムラー分布式を数式4の代わり
に用いることで同様の方法で容易に粒径分布等が求めら
れる。
The above-mentioned embodiment is an example of the preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, although a filter is used to collect particles in the air stream in this embodiment, a centrifugal separator may be used. Furthermore, when the measurement target is not the combustion-produced particles of the embodiment but pulverized particles such as pulverized coal, use the Rosin-Rammler distribution equation that is well suited to them as the particle size distribution function instead of Equation 4. Then, the particle size distribution and the like can be easily obtained by the same method.

【0037】[0037]

【発明の効果】以上の説明より明らかなように、本発明
の分級方法は、主流流速と吸引流速との流速比を変化さ
せることによって気流中から採取する粒子状物質の粒径
を可変にしているので、複雑な分級装置を用いずとも粒
子濃度測定装置の流速比を変えるだけの簡単な操作で分
級できる。
As is apparent from the above description, the classification method of the present invention makes the particle size of the particulate matter sampled from the air flow variable by changing the flow speed ratio between the main flow speed and the suction flow speed. Therefore, it is possible to perform classification by a simple operation of changing the flow velocity ratio of the particle concentration measuring device without using a complicated classifying device.

【0038】また、本発明の気流中粒子の濃度測定方法
によれば、これまで粒子濃度計測において、常に一致さ
せなければならなかった吸引流速と主流流速を一致させ
るという難しい条件の必要がない。しかも、本発明方法
は、それぞれの流速と採取量を秤量するだけで良いので
公知の確立された測定法によって簡単に正確な測定が行
える。したがって、本発明方法は、測定条件、測定装置
操作条件が同一条件で測定できるので、自動操作とする
ことも容易である。
Further, according to the method for measuring the concentration of particles in the air stream of the present invention, it is not necessary to make the suction flow velocity and the main flow velocity coincident with each other in the particle concentration measurement, which is always necessary. Moreover, since the method of the present invention only needs to weigh each flow rate and the collected amount, accurate measurement can be easily performed by a well-known established measuring method. Therefore, the method of the present invention can be automatically operated because the measurement conditions and the operating conditions of the measuring device can be measured under the same conditions.

【0039】また、本発明の気流中粒子の粒径分布測定
方法においては、複雑で高価な分級装置を用いることな
く、採取部で直接分級できるので、非常に安価で簡単に
計測が行える。しかも、本発明方法は、2条件以上の吸
引条件で捕集した粒子量の秤量を行うだけで良いので、
短時間で何回もの計測が行え、粒子濃度測定と同様に自
動化することも容易である。
Further, in the method for measuring the particle size distribution of airborne particles according to the present invention, since the classification can be performed directly at the sampling portion without using a complicated and expensive classifying device, the measurement is very inexpensive and easy. Moreover, since the method of the present invention only needs to weigh the amount of particles collected under two or more suction conditions,
It is possible to measure many times in a short time, and it is easy to automate like the particle concentration measurement.

【0040】更に、本発明においては、粒子濃度測定と
粒径分布測定とが同じデータから求めることができるの
で、一度の測定で粒子濃度と粒径分布の測定が可能とな
る。
Further, in the present invention, since the particle concentration measurement and the particle size distribution measurement can be obtained from the same data, the particle concentration and the particle size distribution can be measured by one measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施する測定装置の一実施例を示
す原理図である。
FIG. 1 is a principle view showing an embodiment of a measuring apparatus for carrying out the method of the present invention.

【図2】図1の測定装置を用いて測定した流速比と粒子
濃度の関係を表す図である。
FIG. 2 is a diagram showing a relationship between a flow velocity ratio and a particle concentration measured using the measuring device of FIG.

【図3】図1の測定装置を用いて測定した流速比と粒子
濃度比の関係を表す図である。
FIG. 3 is a diagram showing a relationship between a flow velocity ratio and a particle concentration ratio measured using the measuring device of FIG.

【図4】図2の特性を一般式化して関係を表す図であ
る。
FIG. 4 is a diagram showing a relationship by generalizing the characteristics of FIG. 2;

【図5】図1の測定装置を用いて得られた粒子径分布の
結果を、従来の測定法によって得られた結果と比較して
表した図である。
FIG. 5 is a diagram showing a result of particle size distribution obtained by using the measuring apparatus of FIG. 1 in comparison with a result obtained by a conventional measuring method.

【符号の説明】[Explanation of symbols]

2 吸引ノズル 3 フィルターホルダ 5 ガスメータ 7 真空ポンプ 8 主流管 10 フィルタ uO 主流流速 ui 吸引流速 do 主流管内径 dc 吸引ノズル内径2 suction nozzle 3 filter holder 5 gas meter 7 vacuum pump 8 main flow pipe 10 filter u O main flow velocity u i suction flow velocity d o main flow pipe inner diameter d c suction nozzle inner diameter

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月24日[Submission date] February 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】また、吸引ガス量Vi はガスメータ5によ
り計測される。そして、吸引流速ui は吸引ガス量Vi
と吸引時間Ti および先端ノズル断面積S(S=π・d
c 2 /4)とから、関係式ui =Vi /(Ti ・S)、に
より求められる。その際の粒子濃度Ci は、粒子採取量
i と吸引ガス量Vi とから、関係式Ci =Mi
i 、により求められる。
The suction gas amount V i is measured by the gas meter 5. The suction flow rate u i is the suction gas amount V i.
And suction time T i and tip nozzle cross-sectional area S (S = π · d
Since c 2/4) and, equation u i = V i / (T i · S), the obtained. The particle concentration C i at that time is calculated from the particle collection amount M i and the suction gas amount V i by the relational expression C i = M i /
V i is obtained.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】[0024]

【数2】 [Equation 2]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】[0029]

【数6】 数式6は、次式のように粒子群全体の真の粒子濃度と測
定濃度の比で表すことができる。
[Equation 6] Formula 6 can be expressed by the ratio of the true particle concentration and the measured concentration of the entire particle group as in the following formula.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】[0032]

【数8】 数式7と数式8を比較すると、次の数式9および数式1
0が成立する。
[Equation 8] Comparing Equation 7 and Equation 8, the following Equation 9 and Equation 1
0 holds.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主流流速uo と吸引流速ui との流速比
o /ui を変化させ、気流中から採取する粒子状物質
の粒子径を可変にしたことを特徴とする気流中粒子の分
級方法。
1. A main flow velocity u o and the suction flow rate by varying the flow rate ratio u o / u i and u i, stream particles characterized in that the particle size of the particulate matter collected from air stream to the variable Classification method.
【請求項2】 主流流速uo と吸引流速ui との流速比
o /ui を変化させ、気流中の粒子状物質を異なる2
条件以上の前記流速比uo /ui で採取し、この採取さ
れた前記粒子状物質の量から求まる粒子濃度Ci と前記
流速比との相関関係に基づいて前記流速比が1における
前記気流中の真の粒子濃度Co を求めることを特徴とす
る気流中粒子濃度の測定方法。
2. The particulate matter in the air flow is changed by changing the flow rate ratio u o / u i of the main flow velocity u o and the suction flow velocity u i.
Were taken at conditions above the flow rate ratio u o / u i, the air flow in the flow rate ratio is 1 based on the correlation between the amount particle concentration obtained from C i of the harvested the particulate matter and the flow rate ratio A method for measuring a particle concentration in an air stream, which comprises obtaining a true particle concentration Co in the air.
【請求項3】 主流流速uo と吸引流速ui との流速比
o /ui を変化させ、気流中の粒子状物質を異なる2
条件以上の前記流速比uo /ui で採取し、この採取さ
れた前記粒子状物質の量から求まる粒子濃度Ci と請求
項2の測定方法で求まる気流中の真の粒子濃度Co との
粒子濃度比Ci /Co を求め、この粒子濃度比Ci /C
o と前記流速比uo /ui との比例関係を表す直線の傾
きから前記気流中の粒子径の分布を求めることを特徴と
する気流中粒径分布の測定方法。
3. The particulate matter in the air flow is changed by changing the flow rate ratio u o / u i of the main flow velocity u o and the suction flow velocity u i.
The particle concentration C i obtained at the flow velocity ratio u o / u i above the conditions, and the true particle concentration C o in the air flow obtained by the measuring method according to claim 2 and the particle concentration C i obtained from the amount of the collected particulate matter. determine the particle concentration ratio C i / C o, the particle concentration ratio C i / C
A method of measuring a particle size distribution in an air stream, characterized in that a particle size distribution in the air stream is obtained from a slope of a straight line representing a proportional relationship between o and the flow velocity ratio u o / u i .
JP35786892A 1992-12-25 1992-12-25 Method of classifying particles in air flow and method for measuring concentration and particle size distribution of particles in air flow using same Pending JPH06190226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35786892A JPH06190226A (en) 1992-12-25 1992-12-25 Method of classifying particles in air flow and method for measuring concentration and particle size distribution of particles in air flow using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35786892A JPH06190226A (en) 1992-12-25 1992-12-25 Method of classifying particles in air flow and method for measuring concentration and particle size distribution of particles in air flow using same

Publications (1)

Publication Number Publication Date
JPH06190226A true JPH06190226A (en) 1994-07-12

Family

ID=18456352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35786892A Pending JPH06190226A (en) 1992-12-25 1992-12-25 Method of classifying particles in air flow and method for measuring concentration and particle size distribution of particles in air flow using same

Country Status (1)

Country Link
JP (1) JPH06190226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838707B1 (en) * 2016-11-30 2018-03-14 한국과학기술연구원 Method and apparatus for analysis of concentration depletion layer formed in electroviscous flows of fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838707B1 (en) * 2016-11-30 2018-03-14 한국과학기술연구원 Method and apparatus for analysis of concentration depletion layer formed in electroviscous flows of fluid

Similar Documents

Publication Publication Date Title
Durham et al. Evaluation of aerosol aspiration efficiency as a function of Stokes number, velocity ratio and nozzle angle
Fuchs Sampling of aerosols
JP3050719B2 (en) Proportional and isokinetic sampling method and apparatus
US6062092A (en) System for extracting samples from a stream
US20050160838A1 (en) System for extracting samples from a stream
CN103068456B (en) Particulate matter monitor
WO2018209714A1 (en) Filter cartridge performance measuring method for natural gas filtration and separation equipment
US3794909A (en) Apparatus for and method of sensing particulate matter
US3842678A (en) Isokinetic sampling system
CN1330958C (en) Device for collecting and monitoring particles of solid source discharged gas
KR102290065B1 (en) Beta-ray type chimney fine dust measuring device with diffusion pipe
KR102332142B1 (en) Beta-ray type chimney fine dust measuring device with diffusion pipe
US20050050968A1 (en) Method and apparatus for monitoring particles in a flowing gas
Strand et al. Characterization of participates in the exhaust plume of large solid-propellant rockets
JPH09159598A (en) Measuring device for particle concentration/particle size distribution in gas flow
CN107036950A (en) A kind of dynamic dust concentration instrument detecting system and its calibration method
JPH06190226A (en) Method of classifying particles in air flow and method for measuring concentration and particle size distribution of particles in air flow using same
Berner The collection of fog droplets by a jet impaction stage
CN113720739B (en) Separation-free respiratory dust concentration online measurement method
US4979403A (en) Procedure for the quantification of dust collectability
JP3696436B2 (en) Method for classifying particles in airflow and measuring particle size distribution
LUNDGREN et al. Sampling of tangential flow streams
JPH08261904A (en) Fine particle concentration measuring device
CN111398101A (en) System capable of measuring particulate matter
JPH03221830A (en) Instrument for measuring unburned component in ash