JPH06190079A - Measuring method and apparatus for physical power index, and training apparatus - Google Patents

Measuring method and apparatus for physical power index, and training apparatus

Info

Publication number
JPH06190079A
JPH06190079A JP34289592A JP34289592A JPH06190079A JP H06190079 A JPH06190079 A JP H06190079A JP 34289592 A JP34289592 A JP 34289592A JP 34289592 A JP34289592 A JP 34289592A JP H06190079 A JPH06190079 A JP H06190079A
Authority
JP
Japan
Prior art keywords
load
physical fitness
maximum
exercise
pulse rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34289592A
Other languages
Japanese (ja)
Inventor
Katsuhiko Maruo
勝彦 丸尾
Mitsuko Ono
晃子 小野
Mototaka Nagai
基孝 永井
Satsuki Saeki
さつき 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP34289592A priority Critical patent/JPH06190079A/en
Priority to DE4338958A priority patent/DE4338958C2/en
Priority to US08/151,879 priority patent/US5853351A/en
Publication of JPH06190079A publication Critical patent/JPH06190079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PURPOSE:To obtain a physical index with high precision keeping higher safety with a small burden on a person to be inspected by employing a multiple variation model formula using a neural method having at least a pulse rate and an added value of the person to be inspected as input variable in the measurement of the physical index with the application of an exercising load to the person to be inspected. CONSTITUTION:In the measurement of a physical index by applying an exercising load to the person to be inspected, a multiple variation model formula MC is used by a neural method having at least a pulse rate and an added value of the person to be inspected as input variable. At least one of sex, age, a physical weight, elapsed time, a changing rate of pulse rate and a physical index forecast previously is used as the input variable of the multiple variation model formula MC by the neural method in addition to the pulse rate and the added value. In the case of a multi-stage addition system, the exercising load of the subsequent stage is determined based on an estimated value of the physical power index obtained as output variable O at each stage to obtain the subsequent input-variable I and the results are put into the multiple variation model type MC to obtain the physical power index again. This operation is repeated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は体力指標を測定するため
の体力指標測定方法及び測定装置とこれを利用したトレ
ーニング装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a physical fitness index measuring method and a measuring device for measuring a physical fitness index, and a training device using the same.

【0002】[0002]

【従来の技術】体力は、運動を長時間続けることができ
るねばり強さを表す有酸素作業能力と、酸素を利用する
ことなく運動に必要なエネルギーを短時間で供給する力
強さを表す無酸素作業能力とに区分されており、前者を
示す体力指標としては、最大酸素摂取量、最大運動能力
(各個人の最大酸素摂取量に対する負荷値をさし、体力
測定においては最大脈拍数における負荷(W)から求め
る)、PWC170、PWC150、PWC75%HRmax(PWC
は身体作業能力を示すもので、運動に対して体にある一
定の生理反応がみられた時の仕事率(W)で表され、P
WC170、PWC150は各々脈拍数が170拍/分と15
0拍/分の時の仕事率、PWC75%HRmaxは個人の年齢や
性別から推定した最大脈拍数の75%の時の仕事率)が
一般に使用されている。
2. Description of the Related Art Physical strength is an aerobic work capacity, which represents the tenacity of a person who can continue exercising for a long time, and anoxic, which represents the strength of supplying the energy required for exercise in a short time without using oxygen. It is divided into work ability, and as the physical fitness index showing the former, the maximum oxygen uptake amount, the maximum exercise ability (the load value for the maximum oxygen uptake amount of each individual, and in the physical fitness measurement, the load at the maximum pulse rate ( WWC), PWC170, PWC150, PWC75% HRmax (PWC
Is a physical work ability, and is expressed as a work rate (W) when a certain physiological reaction is observed in the body to exercise, P
The pulse rates of WC170 and PWC150 are 170 beats / minute and 15 beats, respectively.
The work rate at 0 beats / minute, and the PWC 75% HRmax is generally the work rate at 75% of the maximum pulse rate estimated from the age and sex of the individual).

【0003】このような体力指標の測定には、負荷値を
可変としている運動負荷装置を用いて、軽い運動から始
めて漸次強くしていき、あらかじめ定めた目標脈拍数に
達したら、その分の最後まで運動を続けた後、運動を終
了する体力測定法である最大下負荷法と、軽い運動から
始めて漸次強くしていき、体力の最大限度まで高める体
力測定法である最大負荷法とがあり、一般には被験者に
3段階の負荷をそれぞれ3分ないし4分ずつかけて、各
段階の最後の脈拍数と負荷を3組のデータとして回帰直
線より体力指標を求める最大下負荷法が用いられてい
る。
To measure such a physical strength index, an exercise load device having a variable load value is used, starting from a light exercise and gradually increasing in strength, and when a predetermined target pulse rate is reached, the end of that amount is reached. There is a maximum underload method, which is a physical strength measurement method that ends exercise after continuing exercise, and a maximum load method, which is a physical strength measurement method that starts with a light exercise and gradually strengthens to increase to the maximum limit of physical strength. Generally, the maximum underload method is used to obtain a physical fitness index from a regression line, in which the test subject is subjected to three-stage load for 3 to 4 minutes, and the final pulse rate and load of each stage are set as three sets of data. .

【0004】なお、運動負荷装置としては、トレッドミ
ルや自転車エルゴメータがある。前者はベルト状の床面
上で歩行あるいは走行運動を行うことができるようにし
たもので、ベルト状床面を動かす速度と傾斜角度とを調
節することで、運動負荷量を可変としている。後者は図
3に示すように、ハンドル4とサドル3とペダル2と本
体1とからなる自転車状であるとともに、ペダル2を踏
む動作に対する負荷を可変としているもので、この負荷
は制御部6において調節することができるようになって
いる。図中5は運動者の脈拍数を計測するために運動者
の耳に装着される脈拍数センサーである。
Note that the exercise load device includes a treadmill and a bicycle ergometer. The former is designed to allow walking or running motion on a belt-shaped floor surface, and the amount of exercise load is made variable by adjusting the speed and inclination angle at which the belt-shaped floor surface is moved. As shown in FIG. 3, the latter has a bicycle shape composed of a handle 4, a saddle 3, a pedal 2 and a main body 1, and also has a variable load for the operation of stepping on the pedal 2. It can be adjusted. Reference numeral 5 in the figure denotes a pulse rate sensor attached to the exerciser's ear to measure the exerciser's pulse rate.

【0005】また従来は、性別に求められる最大脈拍数
より適切な運動脈拍を推定してトレーニングに使用した
り、まず体力測定を行って体力指標を求め、それをもと
に適切な負荷強度を設定してトレーニングを行うことが
一般的である。なお、最大脈拍数は、各個人における最
大の脈拍数であり、正確には最大酸素摂取量(VO2 m
ax:運動中に1分間当たりに体内に摂取される酸素の
最大量で、単位時間に単位体重当たりに摂取する最大酸
素量で表すことが多く、普通は体重1kg当たりに摂取
できる最大酸素量をmlで表す)に対する脈拍数である
が、統計的に求めた性別と年齢とに応じた回帰式で決定
することが多く、この回帰式には種々のものが提案され
ているが、たとえば 男性: 209−0.69×年齢(拍/分) 女性: 205−0.75×年齢(拍/分) が用いられ、この最大脈拍数をもとに、 (最大脈拍数−安静時脈拍数)×運動強度+安静時脈拍
数 で運動時の脈拍数を設定することが多い。なお、運動強
度には、通常30%〜70%(0.3〜0.7)の値が
用いられる。
Further, conventionally, an appropriate exercise pulse rate is estimated from the maximum pulse rate required for sex and used for training, or first, physical fitness is measured to obtain a physical fitness index, and an appropriate load intensity is calculated based on the physical fitness index. It is common to set up and perform training. The maximum pulse rate is the maximum pulse rate for each individual, and to be precise, the maximum oxygen uptake (VO2 m
ax: The maximum amount of oxygen taken into the body per minute during exercise, which is often expressed as the maximum amount of oxygen taken per unit weight per unit time. Usually, the maximum amount of oxygen that can be taken per kg body weight is given. (represented in ml), but is often determined by a regression equation according to the statistically determined sex and age, and various regression equations have been proposed. 209-0.69 x age (beats / min) Female: 205-0.75 x age (beats / min) is used, and based on this maximum pulse rate, (maximum pulse rate-resting pulse rate) x The exercise rate + resting pulse rate is often used to set the pulse rate during exercise. A value of 30% to 70% (0.3 to 0.7) is usually used as the exercise intensity.

【0006】[0006]

【発明が解決しようとする課題】身体作業能力を最大負
荷法で測定する場合は、その人の運動耐容能力(オール
アウト)まで運動強度を強めていくために被験者の負担
が大きく、危険を伴うこともある。最大下負荷法でも回
帰直線で体力指標を推定するために、測定結果の精度を
ある程度まで期待するならば、被験者の負担はかなり大
きくならざるを得ない。
When the physical work capacity is measured by the maximum load method, the exercise load is increased to the exercise tolerance capacity (all out) of the person, and the burden on the subject is large, which is dangerous. Sometimes. Even if the maximum-underload method is used to estimate the physical fitness index with a regression line, if the accuracy of the measurement results is expected to some extent, the burden on the subject must be considerably large.

【0007】一方、健康指向の高まりによって、体力レ
ベルの低い人でも安全に且つ精度よく体力測定をしたい
というニーズは大きくなっているが、体力測定に際して
の安全性の確保とその測定結果の精度の両立はむずかし
く、フィットネスクラブや家庭のように救急体制が完全
とはいえない場所での体力測定は、安全性を優先して負
荷強度を強くしない体力測定機器が多く、従ってその測
定結果の信頼性は低い。
On the other hand, due to the increase in health-orientedness, there is a growing need for a person with a low physical strength level to measure the physical strength safely and accurately. However, ensuring the safety in measuring the physical strength and the accuracy of the measurement result It is difficult to achieve both at the same time, and physical fitness measurement in places where the emergency system is not perfect, such as fitness clubs and homes, often involves physical fitness measuring devices that do not increase the load strength in order to prioritize safety. Is low.

【0008】さらに、従来のトレーニングでは、脈拍を
一定にして行う場合、そのもととなる設定脈拍数は統計
的に算出された最大脈拍数をもとにしているために、必
ずしも個人の体力を反映したものではなく、個人に応じ
た適切なトレーニングになっていないことが多々ある。
体力測定結果に基づいた負荷を設定して運動を行う場合
においても、その負荷設定は過去の体力をもとに行うも
のであるから、体調等、絶えず変化していく個人の体力
を正しく反映したトレーニングになっているとは限らな
い。
Further, in the conventional training, when the pulse rate is kept constant, the set pulse rate which is the basis of the training is based on the statistically calculated maximum pulse rate. It is not a reflection of this, and the training is often not appropriate for the individual.
Even when exercising with a load set based on the physical strength measurement results, the load setting is based on past physical strength, so the physical strength of the individual who constantly changes, such as physical condition, is correctly reflected. It is not always training.

【0009】本発明はこのような点に鑑み為されたもの
であり、その目的とするところは被験者にかかる負担が
小さくて安全性が高いにもかかわらず、精度の高い体力
指標を得ることができる体力指標の測定方法及び装置
と、効果的なトレーニングを行うことができるトレーニ
ング装置を提供するにある。
The present invention has been made in view of the above points, and an object of the present invention is to obtain a highly accurate physical strength index despite a small burden on a subject and high safety. (EN) Provided are a physical fitness index measuring method and device, and a training device capable of effective training.

【0010】[0010]

【課題を解決するための手段】しかして本発明に係る体
力指標の測定方法は、被験者に運動負荷をかけて体力指
標を測定するにあたり、少なくとも被験者の脈拍数と負
荷値とを入力変数とするニューロ手法による多変量モデ
ル式を用いて行うことに主たる特徴を有しており、また
本発明に係る体力指標の測定装置は、被験者に運動負荷
をかけて体力指標を測定するものにおいて、少なくとも
被験者の脈拍数と負荷値とを入力変数とするニューロ手
法による多変量モデル式を用いる測定手段を備えている
ことに特徴を有し、さらにトレーニング装置は、少なく
とも運動者の脈拍数と負荷値とを入力変数とするニュー
ロ手法による多変量モデル式を用いる測定手段と、この
測定手段にて推定した体力指標に応じた運動負荷を設定
する設定手段とを備えていることに特徴を有している。
According to the method for measuring a physical fitness index according to the present invention, at least the pulse rate and the load value of the subject are used as input variables when the physical fitness index is measured by applying an exercise load to the subject. The main feature of the present invention is that it is performed by using a multivariate model equation based on a neuro method, and the physical fitness index measuring device according to the present invention measures at least the physical fitness index by applying an exercise load to the subject. Is characterized by including a measuring means using a multivariate model formula by a neuro method with the pulse rate and the load value as input variables, and the training apparatus further includes at least the pulse rate and the load value of the exerciser. A measuring means using a multivariate model formula by a neuro method as an input variable and a setting means for setting an exercise load according to the physical strength index estimated by this measuring means are provided. It has a feature that is e.

【0011】[0011]

【作用】本発明によれば、被験者の体力指標を早期に得
ることができるために、被験者に長時間にわたる運動負
荷をかけなくとも済むものである。この時、多変量モデ
ル式の入力変数として、脈拍数と負荷値のほかに、運動
者の性別、年齢、体重、、経過時間、脈拍数の変化量、
負荷値の変化量、前回予測した最大酸素摂取量や最大運
動能力等の体力指標のうちの少なくとも一つを用いれ
ば、負荷を高めて体力指標の測定精度をさらに高くする
にあたっての安全性をより確実に確保することができ
る。運動負荷をかける運動負荷装置として、自転車エル
ゴメータを用いる場合、ペダル回転数も入力変数と用い
ると、体力指標の測定に有効である。
According to the present invention, since the physical strength index of the subject can be obtained at an early stage, it is not necessary to subject the subject to an exercise load for a long time. At this time, as an input variable of the multivariate model equation, in addition to the pulse rate and the load value, the exerciser's sex, age, weight, elapsed time, the amount of change in pulse rate,
Using at least one of physical fitness indexes such as the amount of change in the load value and the previously predicted maximum oxygen uptake amount and maximum exercise capacity will increase the safety in increasing the load and further increasing the measurement accuracy of the physical fitness index. It can be ensured. When a bicycle ergometer is used as an exercise load device for exerting an exercise load, using the pedal rotation speed as an input variable is effective in measuring a physical fitness index.

【0012】なお、ここで言う多変量モデル式(数式)
は、目的変量が非線形であるために、目的変量に対して
多数の説明変量を自動的に数式として関連づける多変量
解析では関係づけることができないような場合において
も、多数の説明変量と目的変量との間に有効な数式を提
供するニューロ手法を用いて求めた式を意味し、このよ
うな多変量モデル式は、通常、多数の実験データをもと
に作成する。そして、作成した多変量モデル式を用いて
測定を行う場合、演算速度の関係から、多変量モデル式
を直接利用することが困難であることが多々あるため
に、予めファジィ手法でシミュレーションした結果を制
御テーブル化して利用したり、シミュレーション結果か
ら求めた簡略化モデル式を用いるものも本発明に含むも
のとする。簡略化モデル式は、たとえば、最大酸素摂取
量を出力変数とする場合、ある値に、各入力変数に所定
値を乗算した値を加減算するものとして得ることができ
る。制御テーブルは、制御変数が少ない場合に用いられ
るもので、各変数の制御の関係をテーブルに表して、必
要な時に必要な値をテーブルから求める方法であり、フ
ァジィ手法は制御変数が増えた場合も各制御変数のメン
バーシップ関数を用いて出力を推論・演算することによ
り求める方法である。
The multivariate model formula (formula) referred to here
Since the target variate is non-linear, even if it is impossible to relate the target variate with a multivariate analysis that automatically associates a large number of explanatory variates as mathematical expressions, the Means a formula obtained by using a neuro method that provides an effective mathematical formula, and such a multivariate model formula is usually created based on a large number of experimental data. When performing measurements using the created multivariate model formula, it is often difficult to directly use the multivariate model formula due to the relation of the calculation speed. The present invention also includes a control table that is used and that uses a simplified model formula obtained from a simulation result. The simplified model formula can be obtained, for example, as a value obtained by adding or subtracting a value obtained by multiplying each input variable by a predetermined value, when the maximum oxygen intake amount is used as the output variable. The control table is used when the number of control variables is small.It is a method of expressing the control relationship of each variable in the table and obtaining the required value from the table when necessary. The fuzzy method is used when the number of control variables increases. Is also a method of obtaining the output by inferring and calculating the output using the membership function of each control variable.

【0013】次に述べる実施例に用いた多変量モデル式
の作成には、自転車エルゴメータを利用した最大下負荷
法により体力指標を測定した際の実験データを使用し
た。この時の被験者は20〜60歳代の健康な男女計7
0名であり、運動負荷のかけ方(プロトコル)には、4
0%〜70%運動強度における各4分間計16分間の運
動を行わせて、各段階で得られる4組のデータより回帰
直線を求めて体力指標を算出した。
The multivariate model formulas used in the examples described below were prepared using experimental data obtained when the physical fitness index was measured by the maximum underload method using a bicycle ergometer. The subjects at this time were 7 healthy men and women in their 20s to 60s.
There are 0 people, and the exercise load (protocol) is 4
Exercise was performed for a total of 16 minutes at 0% to 70% exercise intensity, and a regression line was obtained from the four sets of data obtained at each stage to calculate a physical fitness index.

【0014】そして、この体力測定の際に求めた各種デ
ータの中から出た少なくとも脈拍数と負荷値を入力変数
とし(好ましくはこの両者に加えて、被験者の性別、年
齢、身長、体重、体脂肪量、体脂肪率、肥満度、血圧、
呼吸数、経過時間、脈拍数の変化量、負荷値の変化量、
前回予測した最大酸素摂取量あるいは最大運動能力、被
験者が属する階層の平均的な最大酸素摂取量あるいは最
大運動能力の少なくとも一つを入力変数として加え
て)、最大酸素摂取量あるいは最大運動能力を出力変数
とする多変量モデル式を得た。
Then, at least the pulse rate and the load value generated from various data obtained at the time of measuring the physical strength are used as input variables (preferably, in addition to the both, sex, age, height, weight, body Fat mass, body fat percentage, obesity, blood pressure,
Breathing rate, elapsed time, pulse rate change, load value change,
Outputs the maximum oxygen intake or maximum exercise capacity predicted previously, at least one of the average maximum oxygen intake or maximum exercise capacity of the stratum to which the subject belongs as an input variable), maximum oxygen intake or maximum exercise capacity A multivariate model formula for variables was obtained.

【0015】この多変量モデル式MCを用いた測定に際
しての負荷のかけ方は図2(a)に示す固定負荷方式でも
図2(b)に示す多段階負荷方式でもよく、さらには運動
強度を連続的に一定の率で強くしていくいわゆるランプ
負荷方式であってもよい。多段階負荷方式の場合には、
図1に示すように、各段階毎に出力変数Oとして得られ
る被験者の体力指標の推定値に基づいて次の段階の運動
負荷を決定して次の入力変数Iを求め、これを多変量モ
デル式MCにいれて再度体力指標を得ることを繰り返し
て体力指標の測定を行うと、測定精度をより高くするこ
とができる。たとえば、各段階の最後に体力指標として
最大運動能力を推定する場合、推定した最大運動能力に
係数を乗じて次の負荷設定を行うとともに、乗ずる係数
は0.3(30%運動強度)から0.8(80%運動強
度)程度で無理のないレベルまで段階的に係数を大きく
していく。
The load applied in the measurement using this multivariate model formula MC may be the fixed load system shown in FIG. 2 (a) or the multi-stage load system shown in FIG. 2 (b). A so-called lamp load system in which the strength is continuously increased at a constant rate may be used. In case of multi-stage load system,
As shown in FIG. 1, the exercise load at the next stage is determined based on the estimated value of the physical fitness index of the subject obtained as the output variable O at each stage, and the next input variable I is obtained. If the physical strength index is measured again by repeatedly entering the physical strength index into the formula MC and measuring the physical strength index again, the measurement accuracy can be further increased. For example, when estimating the maximum exercise ability as a physical fitness index at the end of each stage, the estimated maximum exercise ability is multiplied by a coefficient to set the next load, and the multiplication coefficient is 0.3 (30% exercise intensity) to 0. Approximately 8 (80% exercise intensity) and gradually increase the coefficient to a reasonable level.

【0016】トレーニング中の負荷設定も、多変量モデ
ル式で最大運動能力を推定した場合、推定した最大運動
能力に係数を乗ずることによって行う。乗ずる係数は目
的とするトレーニングにあった値(運動強度)を選べば
よく、体力維持や減量のためには40%〜60%運動強
度が有効である。多変量モデル式で最大酸素摂取量を推
定する場合には、 最大酸素摂取量(ml/kg/分)×体重(kg)=233+1
3.08×負荷(W) という実験式から最大運動能力に換算して運動強度を乗
ずることにより適切な負荷を算出することができる。
The load setting during training is also performed by multiplying the estimated maximum exercise ability by a coefficient when the maximum exercise ability is estimated by the multivariate model formula. As the multiplication coefficient, a value (exercise intensity) suitable for the target training may be selected, and 40% to 60% exercise intensity is effective for maintaining physical strength and weight loss. When estimating the maximum oxygen uptake by the multivariate model formula, the maximum oxygen uptake (ml / kg / min) × body weight (kg) = 233 + 1
An appropriate load can be calculated by converting the maximum exercise capacity from the empirical formula of 3.08 × load (W) and multiplying by the exercise intensity.

【0017】実験データの解析にはここでは最大下負荷
法を用いたが、最大負荷法を用いてもよいのはもちろん
であり、さらに呼気分析も併用すれば、より精度の高い
多変量モデル式の作成が可能となる。
Although the submaximal loading method was used here for the analysis of the experimental data, it is of course possible to use the maximal loading method, and if the breath analysis is also used, the multivariate model equation with higher accuracy can be obtained. Can be created.

【0018】[0018]

【実施例】以下本発明を図3に示した自転車エルゴメー
タを用いた体力測定について説明する。 実施例1 体力指標として最大運動能力を測定するにあたり、5段
階で計12分の多段階負荷方式を用いて行った。各段階
での次の負荷の決定は、上記多変量モデル式で最大運動
能力を推定し、これに係数を乗ずることにより行った。
開始時から1分経過までの負荷は年齢及び性別に応じて
20〜40Wとし、1〜4分での負荷は1分目で脈数数
と負荷値を入力変数とする多変量モデル式で推定した最
大運動能力の40%運動強度の負荷を、5〜8分での負
荷は4分目で推定した最大運動能力の50%運動強度の
負荷を、9〜12分での負荷は8分目で推定した最大運
動能力の60%運動強度の負荷を設定した。使用したニ
ューロ手法によるモデル式には、出力変数Oを最大運動
能力として4万回の学習をさせた結果を使用した。その
結果、推定した最大運動能力の実測値に対する平均誤差
(W)は次の通りであった。最大運動能力の測定結果は
12分における推定値を用いた。
EXAMPLES The present invention will be described below with reference to the measurement of physical fitness using the bicycle ergometer shown in FIG. Example 1 The maximum exercise capacity was measured as a physical fitness index by using a multi-step loading method in 5 steps for a total of 12 minutes. The determination of the next load at each stage was performed by estimating the maximum exercise capacity using the multivariate model formula and multiplying it by a coefficient.
The load from the start to 1 minute is 20 to 40 W according to age and sex, and the load at 1 to 4 minutes is estimated by the multivariate model formula with the pulse rate and the load value as input variables at the 1st minute. The load of 40% exercise intensity of the maximum exercise capacity, the load of 5 to 8 minutes was the load of 50% exercise intensity of the maximum exercise capacity estimated in the 4th minute, and the load of 9 to 12 minutes was the 8th minute The load of 60% exercise intensity of the maximum exercise ability estimated in step 1 was set. In the model formula based on the neuro method used, the result of learning 40,000 times with the output variable O as the maximum exercise capacity was used. As a result, the average error (W) of the estimated maximum exercise capacity with respect to the measured value was as follows. As the measurement result of the maximum exercise capacity, the estimated value at 12 minutes was used.

【0019】 なお、最大運動能力の測定結果は、4分、8分、12分
において測定した3組の負荷と脈拍のデータから回帰直
線を求めて、性別及び年齢別の最大脈拍数を求める式よ
り被験者の最大脈拍数を求め、その最大脈数における負
荷を最大運動能力として求めてもよい。
[0019] In addition, the measurement result of the maximum athletic ability is obtained by calculating the regression line from the data of the three sets of load and pulse measured at 4 minutes, 8 minutes, and 12 minutes, and calculating the maximum pulse rate of the subject by sex and age. The maximum pulse rate may be obtained, and the load at that maximum pulse rate may be obtained as the maximum exercise capacity.

【0020】実施例2 多段階負荷方式で最大運動能力を測定するにあたり、初
期入力変数Iを年齢、性別、体重とし、その後の予測時
点での入力変数Iを年齢、性別、体重、脈拍数、負荷
値、脈拍数の積分値、負荷の積分値、前回予測時点での
最大運動能力とし、乗ずる係数は初期が年齢、性別、体
重から推定した最大運動能力の30%強度の負荷を、1
〜4分での負荷は1分目で推定した最大運動能力の40
%運動強度の負荷を、5〜8分での負荷は4分目で推定
した最大運動能力の50%運動強度の負荷を、9〜12
分での負荷は8分目で推定した最大運動能力の60%運
動強度の負荷を設定した。使用したニューロ手法による
モデル式は、上記実施例と同様に出力変数Oを最大運動
能力として4万回の学習をさせた結果を使用している。
この時の推定した最大運動能力の実測値に対する平均誤
差は、次の通りであった。最大運動能力の測定結果は1
2分における推定値を用いた。
Example 2 In measuring the maximum exercise capacity by the multi-step load method, the initial input variable I is age, sex, and weight, and the input variable I at the time of prediction thereafter is age, sex, weight, and pulse rate. The load value, the pulse rate integrated value, the load integrated value, and the maximum exercise capacity at the time of the previous prediction, and the multiplication coefficient is the load of 30% of the maximum exercise capacity estimated from age, sex, and weight in the initial stage.
The load in 4 minutes is 40 of the maximum exercise capacity estimated in the 1st minute.
% Exercise intensity load, load at 5 to 8 minutes was 50% of maximum exercise capacity estimated at the 4th minute, and load was 9 to 12
As the load in minutes, a load of 60% exercise intensity of the maximum exercise capacity estimated in the 8th minute was set. The model formula based on the used neuro method uses the result of learning 40,000 times with the output variable O as the maximum exercise capacity, as in the above embodiment.
The average error of the estimated maximum exercise capacity from the measured value at this time was as follows. Maximum exercise capacity is 1
The estimate at 2 minutes was used.

【0021】 実施例3 初期入力変数Iは年齢、性別、体重とし、その後の予測
時点での入力変数Iを年齢と性別と体重に加えて、脈拍
数、負荷値、脈拍数の積分値、負荷の積分値、前回予測
時点での最大酸素摂取量としたこと以外については、実
施例1と同じ条件で出力変数Oとして最大酸素摂取量を
推定した。負荷は、最大酸素摂取量から換算した最大運
動能力に30%から60%まで段階毎に係数を高くして
設定した。なお、ここではニューロ手法によるモデル式
を直接利用せず、4万回の学習をさせた結果から簡略化
モデル式を作成してこれを利用した。なお、簡略化モデ
ル式は、各入力変数Iに各々定数を乗じたものを加算す
る形態となっている。この時の推定した最大酸素摂取量
の実測値に対する平均2乗誤差は、次の通りであった。
最大酸素摂取量の測定結果は12分における推定値を用
いた。
[0021] Example 3 The initial input variable I is age, sex, and weight, and the input variable I at the time of subsequent prediction is added to age, sex, and weight, and the pulse rate, load value, integral value of pulse rate, and integral value of load. The maximum oxygen uptake amount was estimated as the output variable O under the same conditions as in Example 1 except that the maximum oxygen uptake amount at the time of the previous prediction was used. The load was set by increasing the coefficient for each step from 30% to 60% to the maximum exercise capacity converted from the maximum oxygen intake. Here, the model formula by the neuro method was not directly used, but a simplified model formula was created and used from the result of learning 40,000 times. The simplified model formula has a form in which each input variable I is multiplied by a constant and added. The mean squared error of the estimated maximum oxygen uptake at this time with respect to the measured value was as follows.
As the measurement result of the maximum oxygen uptake, the estimated value at 12 minutes was used.

【0022】 実施例4 固定負荷方式で1分間の負荷をかけて最大酸素摂取量を
測定した。負荷の毛邸は、測定開始時に年齢、性別、体
重を入力変数Iとしてニューロ手法による多変量モデル
式で推定した最大酸素摂取量に換算し、それに0.3を
乗ずることで行った。用いた運動負荷装置は自転車エル
ゴメータである。ニューロ手法による推定は、各予測時
点での入力変数Iを表4に示すものとし、出力変数を最
大酸素摂取量として4万回の学習をさせた結果を使用し
て行っている。この時の推定した最大酸素摂取量の実測
値に対する平均2乗誤差は、次の通りであった。最大酸
素摂取量の測定結果は1分における推定値を用いた。
[0022] Example 4 A maximum load of oxygen was measured by applying a load for 1 minute by the fixed load method. The load was calculated by converting the maximum oxygen uptake estimated by the multivariate model equation by the neuro method using the input variable I as the input variable I at the start of measurement and multiplying it by 0.3. The exercise load device used is a bicycle ergometer. In the estimation by the neuro method, the input variable I at each prediction time point is shown in Table 4, and the output variable is used as the maximum oxygen uptake amount, and the result of 40,000 times of learning is used. The mean squared error of the estimated maximum oxygen uptake at this time with respect to the measured value was as follows. The estimated value at 1 minute was used as the measurement result of the maximum oxygen uptake.

【0023】 実施例5 本実施例は、入力変数Iが異なることを除けば実施例3
と同じ条件で最大酸素摂取量を推定し、また各段階での
負荷を設定した。この時の推定した最大酸素摂取量の実
測値に対する平均2乗誤差は、次の通りであった。最大
酸素摂取量の測定結果は12分における推定値を用い
た。
[0023] Embodiment 5 This embodiment is different from Embodiment 3 except that the input variable I is different.
The maximum oxygen uptake was estimated under the same conditions as above, and the load at each stage was set. The mean squared error of the estimated maximum oxygen uptake at this time with respect to the measured value was as follows. As the measurement result of the maximum oxygen uptake, the estimated value at 12 minutes was used.

【0024】 実施例6 本実施例も、入力変数Iが異なることを除けば実施例3
と同じ条件で最大酸素摂取量を推定し、また各段階での
負荷を設定した。この時の推定した最大酸素摂取量の実
測値に対する平均2乗誤差は、次の通りであった。最大
酸素摂取量の測定結果は12分における推定値を用い
た。
[0024] Sixth Embodiment This embodiment is also the third embodiment except that the input variable I is different.
The maximum oxygen uptake was estimated under the same conditions as above, and the load at each stage was set. The mean squared error of the estimated maximum oxygen uptake at this time with respect to the measured value was as follows. As the measurement result of the maximum oxygen uptake, the estimated value at 12 minutes was used.

【0025】 実施例7 初期入力変数Iを年齢、性別、体重とし、その後の予測
時点での入力変数Iをクラス化した年齢(45才未満と
45才以上とに分類)、性別、クラス化した体重(男
性:60kg未満と60kg以上で分類、女性:50k
g未満と50kg以上とで分類)、脈拍数、負荷値、脈
拍数の積分値、負荷の積分値、前回予測時点での最大酸
素摂取量としたこと以外については、実施例3と同じ条
件で最大酸素摂取量を推定し、また負荷を設定した。こ
の時の推定した最大酸素摂取量の実測値に対する平均2
乗誤差は、次の通りであった。最大酸素摂取量の測定結
果は12分における推定値を用いた。
[0025] Example 7 The initial input variable I was age, sex, and weight, and the input variable I at the time of prediction thereafter was classified into classes (classified as under 45 years old and above 45 years old), sex, and class weight (male). : Less than 60kg and more than 60kg, female: 50k
less than g and 50 kg or more), pulse rate, load value, integrated value of pulse rate, integrated value of load, and maximum oxygen uptake at the time of the previous prediction, except under the same conditions as in Example 3. Maximum oxygen uptake was estimated and load was set. Average of the estimated maximum oxygen uptake at this time 2
The power error was as follows. As the measurement result of the maximum oxygen uptake, the estimated value at 12 minutes was used.

【0026】 以上の説明では、体力測定の場合についてのみ説明した
が、測定した体力指標に基づく負荷の決定次第でトレー
ニング装置として用いることができる。たとえば4分間
のウォーミングアップを兼ねた運動の最終段階で最大運
動能力(最大酸素摂取量)をニューロ手法による多変量
モデル式で推定し、推定した最大運動能力に対して所定
の運動強度となる負荷を設定して引き続き運動を行うの
である。減量や持久力向上に適したトレーニングでは4
5%運動強度の運動を行うことが好ましいとされている
が、この場合、運動開始時の負荷設定は、たとえば実施
例2と同様に、体重や性別、年齢より推定した最大運動
能力に0.3を乗じた値とし、運動開始後1分目に実施
例2と同様な入力変数を用いて最大運動能力を推定し
て、これに0.4を乗じた値の負荷設定を行い、この状
態で3分間のウォーミングアップを行い、4分目に推定
した最大運動能力に0.45を乗じた値の負荷設定を行
うのである。この後も最大運動能力の推定を行っていけ
ば、より正確な最大運動能力の測定を行えるために、負
荷設定もより正確になっていく。また、その日の体調が
悪ければ、これが反映された負荷設定となるために、無
理な負担がかかることのない安全なトレーニングを常に
行うことができる。実施例2の測定方法を利用した場合
について説明したが、これに限るものでないのはもちろ
んである。
[0026] In the above description, only the case of measuring the physical strength has been described, but it can be used as a training apparatus depending on the determination of the load based on the measured physical strength index. For example, the maximum exercise capacity (maximum oxygen uptake) is estimated by a multivariate model formula by the neuro method at the final stage of the exercise that also serves as a warm-up for 4 minutes, and the load that gives a predetermined exercise intensity to the estimated maximum exercise capacity is calculated. Set it and continue to exercise. 4 for training suitable for weight loss and improving endurance
It is said that it is preferable to perform exercise with 5% exercise intensity. In this case, the load setting at the start of exercise is set to the maximum exercise ability estimated from the weight, sex, and age as in Example 2, for example. The maximum exercise capacity is estimated using the same input variable as that of the second embodiment 1 minute after the start of exercise, and the load is set to a value obtained by multiplying this by 0.4. Then, warming up for 3 minutes is performed, and the maximum exercise capacity estimated at 4 minutes is multiplied by 0.45 to set the load. If the maximum exercise capacity is estimated after that, the load setting becomes more accurate because the maximum exercise capacity can be measured more accurately. In addition, if the physical condition of the day is not good, the load setting reflects this, so that safe training can be always performed without undue burden. The case where the measuring method of the second embodiment is used has been described, but it goes without saying that the method is not limited to this.

【0027】[0027]

【発明の効果】以上のように本発明においては、少なく
とも被験者の脈拍数と負荷値とを入力変数とする多変量
モデル式を用いて体力指標を測定するために、従来の最
大下負荷法のように必ずしも数点のデータをとる必要が
なく、このために体力測定に要する時間を短くできて、
被験者の負担を小さくすることができる上に、負荷強度
を高く設定しなくとも、良好な精度の測定結果を得られ
るために、体力レベルの低い人に高負荷を強いてしまう
ことがなくて、体力レベルに応じた測定が可能なもので
あり、安全性及び信頼性の高い体力指標の測定を行える
ものである。
As described above, according to the present invention, in order to measure the physical fitness index using the multivariate model equation in which at least the pulse rate and the load value of the subject are used as input variables, the conventional maximum maximum load method is used. It is not always necessary to collect data from several points, so the time required to measure physical strength can be shortened,
In addition to reducing the burden on the test subject, it is possible to obtain measurement results with good accuracy without setting a high load intensity, so that a person with a low physical strength level is not forced to a high load, and It is possible to measure according to the level, and it is possible to measure a physical strength index having high safety and reliability.

【0028】またこのような体力指標の測定に基づいた
負荷設定を行うトレーニング装置は、トレーニング効果
や被験者の体調を加味したものとなるために、効果的で
安全なトレーニングを行うことができる。
Further, since the training device for setting the load based on the measurement of the physical fitness index takes into consideration the training effect and the physical condition of the subject, effective and safe training can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例におけるブロック図である。FIG. 1 is a block diagram of an embodiment.

【図2】(a)は固定負荷方式の説明図、(b)は多段階負荷
方式の説明図である。
2A is an explanatory diagram of a fixed load system, and FIG. 2B is an explanatory diagram of a multi-stage load system.

【図3】自転車エルゴメータの一例を示す斜視図であ
る。
FIG. 3 is a perspective view showing an example of a bicycle ergometer.

【符号の説明】[Explanation of symbols]

MC 多変量モデル式 I 入力変数 O 出力変数 MC Multivariate model formula I Input variable O Output variable

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月20日[Submission date] September 20, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】次に述べる実施例に用いた多変量モデル式
の作成には、自転車エルゴメータを利用した最大下負荷
法により体力指標を測定した際の実験データを使用し
た。この時の被験者は20〜60歳代の健康な男女計7
0名であり、運動負荷のかけ方(プロトコル)には、4
0%〜70%運動強度における4段階各4分間計16分
間の運動を行わせて、各段階で得られる4組のデータよ
り回帰直線を求めて体力指標を算出した。
The multivariate model formulas used in the examples described below were prepared using experimental data obtained when the physical fitness index was measured by the maximum underload method using a bicycle ergometer. The subjects at this time were 7 healthy men and women in their 20s to 60s.
There are 0 people, and the exercise load (protocol) is 4
Exercise was performed for 4 minutes in 4 stages at 0% to 70% exercise intensity for a total of 16 minutes, and a regression line was obtained from the 4 sets of data obtained at each stage to calculate a physical fitness index.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】[0018]

【実施例】以下本発明を図3に示した自転車エルゴメー
タを用いた体力測定について説明する。 実施例1 体力指標として最大運動能力を測定するにあたり、
階で計12分の多段階負荷方式を用いて行った。各段階
での次の負荷の決定は、上記多変量モデル式で最大運動
能力を推定し、これに係数を乗ずることにより行った。
開始時から1分経過までの負荷は年齢及び性別に応じて
20〜40Wとし、1〜4分での負荷は1分目で脈数数
と負荷値を入力変数とする多変量モデル式で推定した最
大運動能力の40%運動強度の負荷を、〜8分での負
荷は4分目で推定した最大運動能力の50%運動強度の
負荷を、〜12分での負荷は8分目で推定した最大運
動能力の60%運動強度の負荷を設定した。使用したニ
ューロ手法によるモデル式には、出力変数Oを最大運動
能力として4万回の学習をさせた結果を使用した。その
結果、推定した最大運動能力の実測値に対する平均誤差
(W)は次の通りであった。最大運動能力の測定結果は
12分における推定値を用いた。
EXAMPLES The present invention will be described below with reference to the measurement of physical fitness using the bicycle ergometer shown in FIG. Example 1 When measuring the maximum exercise capacity as a physical fitness index, a multi-stage loading method was performed in four stages for a total of 12 minutes. The determination of the next load at each stage was performed by estimating the maximum exercise capacity using the multivariate model formula and multiplying it by a coefficient.
The load from the start to 1 minute is 20 to 40 W according to age and sex, and the load at 1 to 4 minutes is estimated by the multivariate model formula with the pulse rate and the load value as input variables at the 1st minute. The load of 40% exercise intensity of the maximum exercise capacity, the load at 4 to 8 minutes was the load of 50% exercise intensity of the maximum exercise capacity estimated at 4 minutes, and the load at 8 to 12 minutes was the 8th minute The load of 60% exercise intensity of the maximum exercise ability estimated in step 1 was set. In the model formula based on the neuro method used, the result of learning 40,000 times with the output variable O as the maximum exercise capacity was used. As a result, the average error (W) of the estimated maximum exercise capacity with respect to the measured value was as follows. As the measurement result of the maximum exercise capacity, the estimated value at 12 minutes was used.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】実施例2 多段階負荷方式で最大運動能力を測定するにあたり、初
期入力変数Iを年齢、性別、体重とし、その後の予測時
点での入力変数Iを年齢、性別、体重、脈拍数、負荷
値、脈拍数の積分値、負荷の積分値、前回予測時点での
最大運動能力とし、乗ずる係数は初期が年齢、性別、体
重から推定した最大運動能力の30%強度の負荷を、1
〜4分での負荷は1分目で推定した最大運動能力の40
%運動強度の負荷を、〜8分での負荷は4分目で推定
した最大運動能力の50%運動強度の負荷を、〜12
分での負荷は8分目で推定した最大運動能力の60%運
動強度の負荷を設定した。使用したニューロ手法による
モデル式は、上記実施例と同様に出力変数Oを最大運動
能力として4万回の学習をさせた結果を使用している。
この時の推定した最大運動能力の実測値に対する平均誤
差は、次の通りであった。最大運動能力の測定結果は1
2分における推定値を用いた。
Example 2 In measuring the maximum exercise capacity by the multi-step load method, the initial input variable I is age, sex, and weight, and the input variable I at the time of prediction thereafter is age, sex, weight, and pulse rate. The load value, the pulse rate integrated value, the load integrated value, and the maximum exercise capacity at the time of the previous prediction, and the multiplication coefficient is the load of 30% of the maximum exercise capacity estimated from age, sex, and weight in the initial stage.
The load in 4 minutes is 40 of the maximum exercise capacity estimated in the 1st minute.
% Exercise intensity load, load at 4 to 8 minutes was 50% exercise load of maximum exercise capacity estimated at 4 minutes, 8 to 12
As the load in minutes, a load of 60% exercise intensity of the maximum exercise capacity estimated in the 8th minute was set. The model formula based on the used neuro method uses the result of learning 40,000 times with the output variable O as the maximum exercise capacity, as in the above embodiment.
The average error of the estimated maximum exercise capacity from the measured value at this time was as follows. Maximum exercise capacity is 1
The estimate at 2 minutes was used.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】 実施例4 固定負荷方式で1分間の負荷をかけて最大酸素摂取量を
測定した。負荷の決定は、測定開始時に年齢、性別、体
重を入力変数Iとしてニューロ手法による多変量モデル
式で推定した最大酸素摂取量に換算し、それに0.3を
乗ずることで行った。用いた運動負荷装置は自転車エル
ゴメータである。ニューロ手法による推定は、各予測時
点での入力変数Iを表4に示すものとし、出力変数を最
大酸素摂取量として4万回の学習をさせた結果を使用し
て行っている。この時の推定した最大酸素摂取量の実測
値に対する平均2乗誤差は、次の通りであった。最大酸
素摂取量の測定結果は1分における推定値を用いた。
[0022] Example 4 A maximum load of oxygen was measured by applying a load for 1 minute by the fixed load method. The load was determined by converting the maximum oxygen uptake estimated by the multivariate model equation by the neuro method using the input variable I as the input variable I at the start of measurement and multiplying it by 0.3. The exercise load device used is a bicycle ergometer. In the estimation by the neuro method, the input variable I at each prediction time point is shown in Table 4, and the output variable is used as the maximum oxygen uptake amount, and the result of 40,000 times of learning is used. The mean squared error of the estimated maximum oxygen uptake at this time with respect to the measured value was as follows. The estimated value at 1 minute was used as the measurement result of the maximum oxygen uptake.

フロントページの続き (72)発明者 佐伯 さつき 大阪府門真市大字門真1048番地松下電工株 式会社内Front page continuation (72) Inventor Satsuki Saeki 1048, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被験者に運動負荷をかけて体力指標を測
定するにあたり、少なくとも被験者の脈拍数と負荷値と
を入力変数とするニューロ手法による多変量モデル式を
用いて行うことを特徴とする体力指標の測定方法。
1. A physical fitness, characterized in that, when an exercise load is applied to a subject to measure a physical fitness index, a multivariate model formula by a neuro method using at least the pulse rate and the load value of the subject as input variables is used. How to measure the index.
【請求項2】 ニューロ手法による多変量モデル式の入
力変数として、脈拍数と負荷値のほかに、性別、年齢、
体重、経過時間、脈拍数の変化量、負荷値の変化量、前
回予測した体力指標の少なくとも一つを用いることを特
徴とする請求項1記載の体力指標の測定方法。
2. As input variables of the multivariate model formula by the neuro method, in addition to pulse rate and load value, sex, age,
The method for measuring a physical fitness index according to claim 1, wherein at least one of the weight, the elapsed time, the amount of change in pulse rate, the amount of change in load value, and the previously predicted physical fitness index is used.
【請求項3】 運動負荷を固定負荷方式でかけることを
特徴とする請求項1記載の体力指標の測定方法。
3. The method for measuring a physical fitness index according to claim 1, wherein the exercise load is applied by a fixed load method.
【請求項4】 運動負荷を負荷を漸増させる多段階負荷
方式でかけることを特徴とする請求項1記載の体力指標
の測定方法。
4. The method for measuring a physical fitness index according to claim 1, wherein the exercise load is applied by a multi-stage load method in which the load is gradually increased.
【請求項5】 各段階毎の体力指標を多変量モデル式で
推定して、推定した体力指標に基づいて次の段階の運動
負荷を決定することを特徴とする請求項4記載の体力指
標の測定方法。
5. The physical fitness index according to claim 4, wherein the physical fitness index for each stage is estimated by a multivariate model formula, and the exercise load of the next stage is determined based on the estimated physical fitness index. Measuring method.
【請求項6】 各段階毎の体力指標を各段階における脈
拍と負荷の特徴量より回帰直線を求めることで算出する
ことを特徴とする請求項5記載の体力指標の測定方法。
6. The method for measuring a physical fitness index according to claim 5, wherein the physical fitness index for each stage is calculated by obtaining a regression line from the characteristic quantities of the pulse and the load at each stage.
【請求項7】 被験者に運動負荷をかけて体力指標を測
定する体力測定装置であって、少なくとも被験者の脈拍
数と負荷値とを入力変数とするニューロ手法による多変
量モデル式を用いる測定手段を備えていることを特徴と
する体力指標の測定装置。
7. A physical fitness measuring device for measuring a physical fitness index by exerting an exercise load on a subject, the measuring means using a multivariate model formula by a neuro method in which at least the pulse rate and the load value of the subject are used as input variables. A device for measuring a physical fitness index, which is characterized by being provided.
【請求項8】 被験者に運動負荷をかけるトレーニング
装置であって、少なくとも運動者の脈拍数と負荷値とを
入力変数とするニューロ手法による多変量モデル式を用
いる測定手段と、この測定手段にて推定した体力指標に
応じた運動負荷を設定する設定手段とを備えていること
を特徴とするトレーニング装置。
8. A training device for exerting an exercise load on a subject, comprising: a measuring means using a multivariate model formula by a neuro method in which at least the pulse rate and the load value of the exerciser are input variables; and the measuring means. A training device comprising: a setting unit configured to set an exercise load according to the estimated physical fitness index.
JP34289592A 1992-11-16 1992-12-22 Measuring method and apparatus for physical power index, and training apparatus Pending JPH06190079A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP34289592A JPH06190079A (en) 1992-12-22 1992-12-22 Measuring method and apparatus for physical power index, and training apparatus
DE4338958A DE4338958C2 (en) 1992-11-16 1993-11-15 Method for determining an optimum power for maintaining a target pulse number
US08/151,879 US5853351A (en) 1992-11-16 1993-11-15 Method of determining an optimum workload corresponding to user's target heart rate and exercise device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34289592A JPH06190079A (en) 1992-12-22 1992-12-22 Measuring method and apparatus for physical power index, and training apparatus

Publications (1)

Publication Number Publication Date
JPH06190079A true JPH06190079A (en) 1994-07-12

Family

ID=18357348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34289592A Pending JPH06190079A (en) 1992-11-16 1992-12-22 Measuring method and apparatus for physical power index, and training apparatus

Country Status (1)

Country Link
JP (1) JPH06190079A (en)

Similar Documents

Publication Publication Date Title
US5853351A (en) Method of determining an optimum workload corresponding to user's target heart rate and exercise device therefor
Robertson et al. Validation of the adult OMNI scale of perceived exertion for cycle ergometer exercise
Borg Subjective effort in relation to physical performance and working capacity
Santo et al. Predicting maximum oxygen uptake from a modified 3-minute step test
AT407950B (en) METHOD AND DEVICE FOR DETERMINING AN INDICATOR DEPENDING ON RESPIRATORY MEASUREMENT DATA
Stewart et al. The measurement properties of fitness measures and health status for persons with spinal cord injuries
EP0590634A2 (en) Method of measuring a subject's physical strength and apparatus for the same
US11324404B2 (en) Kinesitherapy apparatus and anaerobic threshold identifying method
Tuxworth et al. The design and evaluation of a step test for the rapid prediction of physical work capacity in an unsophisticated industrial work force
Carey et al. Can aerobic and anaerobic power be measured in a 60-second maximal test?
TW202302031A (en) Method for estimating optimum exercise strength, training method, exercise instructing apparatus and system for estimating optimum exercise strength
Dryden A predictive model for the maximum permissible weight of lift from knuckle to shoulder height
Knapik et al. Physiological factors in stretcher carriage performance
Dalleck et al. Development of a metabolic equation for the NuStep recumbent stepper in older adults
KR100545772B1 (en) System and method for evaluating fitness level and calculating customized exercise by calculating maximum oxygen intake by non-contact method
JPH06190079A (en) Measuring method and apparatus for physical power index, and training apparatus
Hollmann et al. Methods for measurement of physical fitness and training recommendations in studies on humans
JPH06245914A (en) Method and device for estimating and utilizing normal number of pulses
Chen et al. Effect of combined dynamic and static workload on heart rate recovery cost
JPH07116286A (en) Method for measuring aerobic working ability
JP2547887B2 (en) Maximum oxygen uptake estimation method and maximum oxygen uptake estimation device
KR20170124500A (en) System And Method For Smart Recumbent Rehabilitation Exercise
Adams Relationship and possible causal effect of selected variables to treadmill endurance running performance
RU2722265C2 (en) Method of determining physical performance
JP3058741B2 (en) Maximum oxygen uptake estimation device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030930