JPH06189445A - Overvoltage protective control method for series capacitor - Google Patents

Overvoltage protective control method for series capacitor

Info

Publication number
JPH06189445A
JPH06189445A JP4334534A JP33453492A JPH06189445A JP H06189445 A JPH06189445 A JP H06189445A JP 4334534 A JP4334534 A JP 4334534A JP 33453492 A JP33453492 A JP 33453492A JP H06189445 A JPH06189445 A JP H06189445A
Authority
JP
Japan
Prior art keywords
series capacitor
series
transmission line
capacitor
overvoltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4334534A
Other languages
Japanese (ja)
Inventor
Shunichi Hirose
俊一 広瀬
Satoru Yoshida
知 吉田
Hiyougo Takami
表吾 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP4334534A priority Critical patent/JPH06189445A/en
Publication of JPH06189445A publication Critical patent/JPH06189445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Static Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To control an overvoltage developed across a series capacitor, by inserting resistors in parallel or series with the capacitor for a short time and limiting a rapid change in current flowing into the series capacitor largely affecting the overvoltage occurring across the series capacitor when the series capacitor is inserted into an AC power system. CONSTITUTION:After removing a system failure, a control circuit 9 of an overvoltage developed across a series capacitor 1 is turned off by a switch 10, and a switch 7a is turned off immediately before the switch 10 is turned off. At this time, switches 7b, 7c and 7d are turned off and a switch 7e is turned on. Thus, a current flowing into the series capacitor 1 flows through resistors 6a, 6b, 6c and 6d and is limited by these resistors. Next, the switches 7b, 7c and 7d are sequentially short-circuited and the resistors 6a, 6b and 6c are removed. When the switch 7a is short-circuited and the switch 7e is turned off, the current flowing into the series capacitor 1 is gradually increased and a steady-state operation is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、交流電力送電系統にコ
ンデンサを直列に挿入することにより送電線のリアクタ
ンス分を補償する、いわゆる直列コンデンサ補償方式の
制御方法に係り、特に、系統故障除去後に直列コンデン
サを再挿入した時、あるいは定常運転中に直列コンデン
サを挿入した時などに、直列コンデンサに発生する過大
な電圧を抑制する保護制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called series capacitor compensation system control method for compensating a reactance component of a transmission line by inserting a capacitor in series in an AC power transmission system, and in particular, after eliminating a system fault. The present invention relates to a protection control method for suppressing an excessive voltage generated in a series capacitor when the series capacitor is reinserted or when the series capacitor is inserted during steady operation.

【0002】[0002]

【従来の技術】交流電力系統では電力を送電するために
鉄塔に架空送電線を張って送電されるのが一般的であ
る。本来、電源は需要地に近接して立地することが経済
的に望ましい。しかし、発展地域に電源立地点を求める
ことは、年々困難となり、電源立地点は遠隔化の傾向が
みられる。このように、電源設備の立地、あるいは発電
地点と電力消費地が遠く離れている場合、送電線は長距
離にならざるを得なくなる。
2. Description of the Related Art In an AC power system, an overhead power transmission line is generally installed on a steel tower to transmit electric power. Originally, it is economically desirable to locate the power source close to the demand area. However, it is becoming more difficult to find a power source location point in the developed area year by year, and the power source location point tends to be remote. In this way, when the location of the power supply facility or the power generation point and the power consumption area are far apart, the transmission line has to be long distance.

【0003】送電線のリアクタンスはほぼ送電線の距離
に比例するため、交流電力系統においては、送電線の送
電距離が長くなればなるほど、送電線によるリアクタン
スが大きくなる。このリアクタンスにより送電線の無効
電力消費が大きくなり、送電電力の力率が悪くなって送
電損失が増大したり、あるいは系統安定度上の問題など
により送電電力量が制限されるなどの問題がある。
Since the reactance of the power transmission line is almost proportional to the distance of the power transmission line, in the AC power system, the longer the power transmission distance of the power transmission line, the greater the reactance of the power transmission line. Due to this reactance, the reactive power consumption of the transmission line increases, the power factor of the transmitted power deteriorates, the transmission loss increases, and the amount of transmitted power is limited due to problems such as system stability. .

【0004】したがって、送電線のリアクタンスを補償
するために、コンデンサを送電線に直列に挿入する、い
わゆる直列コンデンサ補償方式が従来より採用されてき
た。しかしながら、直列コンデンサ補償方式のように、
直列コンデンサを使用した電力系統においては、系統故
障のような外乱が発生した場合に直列コンデンサに異状
電圧(過渡時過電圧)が発生することがよく知られてお
り、その対策が従来から検討されてきた。
Therefore, in order to compensate the reactance of the power transmission line, a so-called series capacitor compensation system in which a capacitor is inserted in series with the power transmission line has been conventionally adopted. However, like the series capacitor compensation method,
It is well known that in a power system using series capacitors, abnormal voltage (transient overvoltage) is generated in the series capacitors when disturbance such as system failure occurs. It was

【0005】このようなことから、系統故障により直列
コンデンサに過渡過電圧が発生して所定の電圧に到達す
ると、直列コンデンサに並列に設けられた放電回路を放
電させ、その放電回路に組み込まれた抵抗器付きのリア
クトルと共振させ、直列コンデンサに発生する過渡時過
電圧を抑制する方法が取られている。
For this reason, when a transient overvoltage occurs in the series capacitor due to a system failure and reaches a predetermined voltage, the discharge circuit provided in parallel with the series capacitor is discharged, and the resistor incorporated in the discharge circuit is discharged. The method of suppressing the transient overvoltage generated in the series capacitor by making it resonate with the reactor with a built-in capacitor is adopted.

【0006】[0006]

【発明が解決しようとする課題】上記の従来技術では、
系統故障時に直列コンデンサに発生する過渡過電圧を放
電回路により抑制することができる。しかしながら、故
障除去後、直列コンデンサの放電回路を外し、直列コン
デンサをもとの系統に復帰させる時に、直列コンデンサ
に発生する過渡現象による過電圧の抑制が難しいという
問題点があった。
SUMMARY OF THE INVENTION In the above prior art,
The transient overvoltage that occurs in the series capacitor at the time of system failure can be suppressed by the discharge circuit. However, there is a problem that it is difficult to suppress overvoltage due to a transient phenomenon that occurs in the series capacitor when the discharge circuit of the series capacitor is removed and the series capacitor is restored to the original system after the failure is removed.

【0007】このことから、直列コンデンサを系統に復
帰時、直列コンデンサとリアクトルを組合せ、過電圧を
抑制する方式が取られている例もあるが、制御上の問題
等種々の課題がある。一方、系統故障に限らず、直列コ
ンデンサを系統に入れる場合にも過電圧がでる場合があ
る。このため、直列コンデンサは定常運転時の直列コン
デンサにかかる電圧の数倍(例えば、2. 5倍)の電圧
に耐えるように使用最高電圧を決めて使用されるのが一
般的であるが、条件によっては、この使用最高電圧を超
えて過電圧が発生することがある。したがって、この最
高電圧値と定常運転時にかかる電圧の値の比が小さけれ
ば、直列コンデンサの体格低減、系統の信頼性の向上
等、種々の利点がでるため、過電圧抑制法の開発が望ま
れていた。
For this reason, there is an example in which a series capacitor and a reactor are combined to suppress overvoltage when the series capacitor is restored to the system, but there are various problems such as control problems. On the other hand, not only a system failure but also an overvoltage may occur when a series capacitor is inserted in the system. For this reason, it is common for the series capacitor to be used by deciding the maximum voltage to be used so as to withstand a voltage that is several times (for example, 2.5 times) the voltage applied to the series capacitor during steady operation. Depending on the maximum operating voltage, an overvoltage may occur depending on the situation. Therefore, if the ratio between this maximum voltage value and the value of the voltage applied during steady operation is small, there are various advantages such as reduction in the size of series capacitors and improvement in system reliability, so the development of an overvoltage suppression method is desired. It was

【0008】本発明は、このような問題に鑑みてなされ
たものであって、その目的は、直列コンデンサを系統に
挿入時に直列コンデンサに発生する過電圧を抑制すると
ともに、系統の信頼性を向上させ、しかも、直列コンデ
ンサの製作をより容易にする直列コンデンサの過電圧保
護制御方法を提供することである。
The present invention has been made in view of the above problems, and an object thereof is to suppress an overvoltage generated in a series capacitor when the series capacitor is inserted in the system and to improve the reliability of the system. Moreover, it is an object of the present invention to provide a method for controlling overvoltage protection of a series capacitor, which makes it easier to manufacture the series capacitor.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明に係わる直列コンデンサ過電圧保護制御方
法は、基本的には、交流電力系統の送電線にコンデンサ
を直列に挿入する直列コンデンサ方式において、系統故
障除去後直列コンデンサを送電系統に再挿入時、あるい
は直列コンデンサを送電線に挿入する場合の少なくとも
いずれかにおいて、該送電線に1又は2以上の抵抗を直
列に挿入するようになし、かつ、該抵抗を短絡させる
か、あるいは該抵抗の値が漸次減少すべく制御すること
を特徴としている。
In order to achieve the above object, a series capacitor overvoltage protection control method according to the present invention is basically a series capacitor for inserting a capacitor in series in a transmission line of an AC power system. In the method, one or more resistors are serially inserted into the transmission line at least when the series capacitor is reinserted into the transmission system after the system fault is removed or when the series capacitor is inserted into the transmission line. None, and the resistor is controlled so as to be short-circuited or the value of the resistor is gradually reduced.

【0010】また、交流電力系統の送電線にコンデンサ
を直列に挿入する直列コンデンサ方式において、系統故
障除去後直列コンデンサを送電系統に再挿入時、あるい
は直列コンデンサを送電線に挿入する場合の少なくとも
いずれかにおいて、該直列コンデンサに少なくとも1以
上の抵抗を並列に挿入するようになし、かつ該抵抗の値
が漸次増加すべく制御することを特徴とするものも挙げ
られる。
Further, in a series capacitor system in which a capacitor is inserted in series in a transmission line of an AC power system, at least either when the series capacitor is reinserted in the transmission system after the system failure is removed or when the series capacitor is inserted in the transmission line. In this case, at least one or more resistors may be inserted in parallel with the series capacitor, and the value of the resistor may be controlled to be gradually increased.

【0011】[0011]

【作用】従来の考え方は直列コンデンサにかかる電圧を
考慮して直列コンデンサの最高耐電圧値を決めていた
が、この方法では最高耐電圧値を大きく取る必要があ
り、コンデンサの耐電圧を小さくすことが出来ない。そ
れに対し、前述の特徴を備えた本発明の直列コンデンサ
過電圧保護制御方法においては、直列コンデンサを系統
に挿入する場合に、直列コンデンサに並列、あるいは直
列に抵抗を短時間挿入して、直列コンデンサに発生する
過電圧に大きく影響する直列コンデンサに流れる急激な
電流の変化を制限し、直列コンデンサに発生する過電圧
を抑制させることができる。
[Function] In the conventional way of thinking, the maximum withstand voltage value of the series capacitor was determined in consideration of the voltage applied to the series capacitor, but this method requires that the maximum withstand voltage value be large, and the withstand voltage of the capacitor should be reduced I can't. On the other hand, in the series capacitor overvoltage protection control method of the present invention having the above-mentioned characteristics, when inserting a series capacitor in the system, a resistor is inserted in parallel or in series with the series capacitor for a short time, It is possible to limit a rapid change in the current flowing through the series capacitor, which greatly affects the generated overvoltage, and suppress the overvoltage generated in the series capacitor.

【0012】以下、本発明の考え方を判り易くするため
に、直列コンデンサが挿入された送電線の部分のみを取
りだし、その送電線の両端の母線の電圧差esを es(t)=Emsin( ωt+θ) として説明する(ただし、Emは最大電圧)。直列コン
デンサの静電容量をC(μF)、送電線のインピーダン
スをR(Ω)、L(H)とし、この直列回路に上記の母
線電圧差がかかるとすると考え方が簡単になり、この場
合の過渡現象を解いて電流を計算すると下記のようにな
る。
In order to make the concept of the present invention easy to understand, only the part of the transmission line in which the series capacitor is inserted is taken out, and the voltage difference es of the busbars at both ends of the transmission line is expressed as es (t) = Emsin (ωt + θ ) (Where Em is the maximum voltage). If the capacitance of the series capacitor is C (μF) and the impedance of the transmission line is R (Ω) and L (H), and the bus voltage difference described above is applied to this series circuit, the idea becomes simple. The current is calculated by solving the transient phenomenon as follows.

【0013】 [0013]

【0014】ただし、However,

【0015】 [0015]

【0016】また、In addition,

【0017】 [0017]

【0018】ただし、However,

【0019】 [0019]

【0020】ここで、直列コンデンサに発生する電圧v
Here, the voltage v generated in the series capacitor
Is

【0021】 [0021]

【0022】で表わされる。前記12式から理解される
ように、直列コンデンサに流れる電流の大きさが直列コ
ンデンサに発生する電圧を左右し、したがって、その変
化の大きさを小さくすれば、直列コンデンサに発生する
電圧を小さく抑えられる。すなわち、系統故障等の擾乱
が発生し、擾乱除去後、直列コンデンサを送電線に挿入
する場合に、抵抗を挿入することにより直列コンデンサ
に流れる電流を抑制し、電流変化が小さくなり直列コン
デンサに発生する過電圧を抑制することができる。
It is represented by As can be understood from the above equation 12, the magnitude of the current flowing in the series capacitor influences the voltage generated in the series capacitor. Therefore, if the magnitude of the change is reduced, the voltage generated in the series capacitor is suppressed to a small value. To be In other words, when a disturbance such as a system failure occurs and the disturbance is removed and the series capacitor is inserted in the transmission line, the current flowing through the series capacitor is suppressed by inserting a resistor, and the current change is reduced, causing the series capacitor to occur. Overvoltage can be suppressed.

【0023】[0023]

【実施例】以下、図面により本発明の実施例を説明す
る。 〔実施例1〕本発明を適用した一実施例を図1に示す。
本実施例においては、故障発生時等において直列コンデ
ンサ(以下SrCと略す)を挿入する場合のSrCに発
生する過電圧発生抑制を目的として、SrC挿入時にS
rCを挿入する送電線に抵抗を直列に挿入し電流を抑制
するものである。
Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] FIG. 1 shows an embodiment to which the present invention is applied.
In this embodiment, for the purpose of suppressing the overvoltage generated in SrC when a series capacitor (hereinafter abbreviated as SrC) is inserted when a failure occurs, SrC is inserted when SrC is inserted.
A resistor is inserted in series to the transmission line in which rC is inserted to suppress the current.

【0024】図1において、SrC補償送電線の母線5
a、5b間には、SrC1、抵抗6、並びに送電線8が
直列に設けられている。SrC1にはスイッチ10を介
して過電圧抑制回路9が並列に設けられている。この過
電圧抑制回路9は故障発生時にSrCに発生する過電圧
を抑制するものである。送電線8に直列に挿入される抵
抗6は、4個に分割された抵抗6a、6b、6c、6d
からなり、接続点5cおよび5dにおいて、それぞれS
rC1および送電線8と接続されている。これら抵抗6
a、6b、6c、6dはそれぞれスイッチ7b、7c、
7d、7aにより短絡自在となっている。また、抵抗6
はスイッチ7eを介して送電線8に接続されている。
In FIG. 1, the bus 5 of the SrC compensation transmission line is shown.
The SrC1, the resistor 6, and the power transmission line 8 are provided in series between a and 5b. An overvoltage suppressing circuit 9 is provided in parallel with the SrC1 via a switch 10. The overvoltage suppressing circuit 9 suppresses an overvoltage generated in SrC when a failure occurs. The resistor 6 inserted in series in the power transmission line 8 is divided into four resistors 6a, 6b, 6c, 6d.
At the connection points 5c and 5d, respectively,
It is connected to rC1 and the power transmission line 8. These resistors 6
a, 6b, 6c, 6d are switches 7b, 7c,
Short-circuiting is possible by 7d and 7a. Also, the resistor 6
Is connected to the power transmission line 8 via the switch 7e.

【0025】また、送電線8には送電線の抵抗2及びリ
アクタンス3が直列に設けられている。4a、4bは送
電線の静電容量である。本実施例で送電線8に挿入した
SrCの静電容量をCとする。また、送電線8 におい
ては送電線の大地からの配置、亘長等で決まる送電線の
抵抗2(Ro( Ω)),リアクタンス3(Lo( H)),お
よび静電容量4a,4b(Co( F))がある。この実施
例においてはSrCに流れる電流iは先に述べた
(1),および(2)式から
Further, the transmission line 8 is provided with a resistance 2 and a reactance 3 of the transmission line in series. 4a and 4b are capacitances of the power transmission line. In this embodiment, the capacitance of SrC inserted in the power transmission line 8 is C. In addition, in the power transmission line 8, the resistance 2 (Ro (Ω)), the reactance 3 (Lo (H)), and the electrostatic capacitances 4a, 4b (Co (F)) In this embodiment, the current i flowing through SrC is calculated from the equations (1) and (2) described above.

【0026】 [0026]

【0027】で表わされる。ただし、It is represented by However,

【0028】 [0028]

【0029】である。前述したとおり、電流の大きさで
SrCに発生する過電圧が左右されるため、Zの大きさ
を調整する方法として、送電線に抵抗R1を投入する
と、抵抗Rは R=Ro+R1 となる。これにより、Zの大きさを大きくし、電流iの
値を抑制する。すなわち
[0029] As described above, the magnitude of the current affects the overvoltage generated in SrC. Therefore, when the resistance R1 is input to the power transmission line as a method of adjusting the magnitude of Z, the resistance R becomes R = Ro + R1. As a result, the magnitude of Z is increased and the value of the current i is suppressed. Ie

【0030】 [0030]

【0031】において、SrCを送電線に再挿入時に、
送電線に直列に抵抗R1を投入してSrCに流れる電流
を抑制し、SrCに発生する過電圧を抑制する。これに
より、過電圧が抑制できる。過去、実験等により、抵抗
R1を分割することにより電流を段階的に変えた方が過
電圧の抑制がし易く、また、よい結果が得られることが
知られている。その理由は、抵抗R1が大きい方がSr
Cに流れる電流が抑制され、かつこの抵抗を段階的に小
さくしていくと、電流変化を小きざみに変化させること
ができるからであり、電流の大きさ、電流変化の大きさ
が過電圧発生に大きく関与していることは前記したとお
りである。
At the time of reinserting SrC into the power transmission line,
A resistor R1 is inserted in series with the power transmission line to suppress the current flowing in SrC and suppress the overvoltage generated in SrC. Thereby, overvoltage can be suppressed. In the past, it is known from experiments and the like that it is easier to suppress the overvoltage and to obtain good results by dividing the resistance R1 to change the current stepwise. The reason is that the larger the resistance R1, the more Sr.
This is because if the current flowing through C is suppressed and the resistance is gradually reduced, the current change can be changed in small steps, and the magnitude of the current and the magnitude of the current change may cause overvoltage. It is as described above that it is greatly involved.

【0032】次に、本実施例の作用について説明する。
まず、故障除去後、SrC1に発生する過電圧の抑制回
路9をスイッチ10で切り、かつスイッチ7aはスイッ
チ10が切られる直前に切る。また、この時点ではスイ
ッチ7b,7c,7dは切られており、7eは投入され
ている状態とする。これにより、SrC1に流れる電流
は抵抗6a,6b,6c,6dを通って流れ、SrCに
流れる電流iはこれらの抵抗によって制限される。 次
に、スイッチ7b、7c,7dの順に短絡し抵抗6a、
6b,6c除去していく。さらに、7aを短絡し、次い
で7eを切る。これにより、SrC1に流れる電流を徐
々に増やしていき、最後に全ての抵抗を短絡して定常運
転に入る。
Next, the operation of this embodiment will be described.
First, after the failure is removed, the overvoltage suppressing circuit 9 generated in SrC1 is turned off by the switch 10, and the switch 7a is turned off immediately before the switch 10 is turned off. At this time, the switches 7b, 7c and 7d are turned off, and the switch 7e is turned on. As a result, the current flowing through SrC1 flows through the resistors 6a, 6b, 6c, 6d, and the current i flowing through SrC is limited by these resistors. Next, the switches 7b, 7c, and 7d are short-circuited in this order to form the resistor 6a,
6b and 6c are removed. Further, 7a is short-circuited and then 7e is cut off. As a result, the current flowing through SrC1 is gradually increased, and finally all the resistors are short-circuited to start the steady operation.

【0033】この方法により、SrCを直接送電線に戻
す方式に比較して、SrCに流れる電流の変化を小さく
でき、SrCに発生する過電圧を小さくできる。なお、
上記に述べたように電流変化が小さい方がSrCに発生
する過電圧が小さくなることから、抵抗を連続的に小さ
く変える方が望ましいことはいうまでもない。 〔実施例2〕図2は本発明の他の実施例を示し、以下、
図1に示した構成と同一の構成については同一の符号を
付して重複する説明は省略し、相違点を重点的に説明す
る。
By this method, the change in the current flowing through the SrC can be reduced and the overvoltage generated in the SrC can be reduced as compared with the method of directly returning the SrC to the power transmission line. In addition,
As described above, the smaller the current change is, the smaller the overvoltage generated in SrC is. Therefore, it is needless to say that it is preferable to continuously reduce the resistance. [Embodiment 2] FIG. 2 shows another embodiment of the present invention.
The same components as those shown in FIG. 1 are designated by the same reference numerals, duplicate description will be omitted, and different points will be mainly described.

【0034】本実施例においては、〔実施例1〕の場合
のように、抵抗を多段ではなく1段にした点で相違す
る。このような構成により、まず故障除去後、SrC1
に発生する電圧抑制回路9をスイッチ10で切り、かつ
スイッチ7aはスイッチ10が切られる直前に切り、7
eは投入されている状態とする。これにより、SrC1
に流れる電流は抵抗6を通って流れ、SrC1に流れる
電流iはこれらの抵抗によって制限される。次に、スイ
ッチ7aを短絡し、次いで7eを切る。これにより、S
rC1に流れる電流が段階的に変化するが、SrC1に
流れる電流が小さければSrC1に発生する過電圧はあ
まり大きくならない。 〔実施例3〕本発明の他の実施例を図3に示す。
The present embodiment is different from the first embodiment in that the resistance is one stage rather than multistage. With this configuration, after the failure is removed, the SrC1
The voltage suppression circuit 9 generated at the switch 10 is turned off by the switch 10, and the switch 7a is turned off immediately before the switch 10 is turned off.
It is assumed that e has been turned on. As a result, SrC1
The current flowing through the resistor flows through the resistor 6, and the current i flowing through SrC1 is limited by these resistors. Next, the switch 7a is short-circuited and then 7e is turned off. This allows S
Although the current flowing through rC1 changes stepwise, if the current flowing through SrC1 is small, the overvoltage generated in SrC1 does not become so large. [Embodiment 3] FIG. 3 shows another embodiment of the present invention.

【0035】本実施例においては、SrCに並列に抵抗
を挿入したものである。先に、実施例1などの説明でS
rCに流れる電流がSrCの発生過電圧に大きく関与す
ることを述べたが、本実施例においてはSrCに並列に
抵抗を入れ、かつその抵抗を段階的に投入していき、最
後に抵抗を切る方法である。以下、本実施例を図3を用
いて説明する。
In this embodiment, a resistor is inserted in parallel with SrC. First, in the description of the first embodiment, etc., S
Although it has been described that the current flowing through the rC greatly affects the overvoltage generated by the SrC, in the present embodiment, a method is adopted in which a resistance is inserted in parallel with the SrC, and the resistance is gradually turned on, and finally the resistance is cut off. Is. Hereinafter, this embodiment will be described with reference to FIG.

【0036】SrC1に挿入する並列抵抗11を、4個
に分割し11a,11b,11c,11dとした。ま
た、これら抵抗11a、11b、11cを短絡させるス
イッチ12a、12b、12bが設けられるとともに、
抵抗11に流れる電流を全て絶つスイッチ12dが設け
られている。このような構成により、まず故障除去後9
をスイッチ10で切る。この時点でスイッチ12a、1
2b,12c、および12dは入っている。この操作に
より送電線8に流れる電流iはSrC 1 と抵抗11
dに分流して流れる。
The parallel resistor 11 to be inserted in the SrC1 is divided into four to form 11a, 11b, 11c and 11d. Further, switches 12a, 12b, 12b for short-circuiting these resistors 11a, 11b, 11c are provided, and
A switch 12d for cutting off all the current flowing through the resistor 11 is provided. With such a configuration, first, after the failure is removed, 9
Switch off. At this point the switches 12a, 1
2b, 12c, and 12d are included. By this operation, the current i flowing through the power transmission line 8 is SrC 1 and the resistance 11
It splits into d and flows.

【0037】次に、スイッチ12a,12b,12cの
順に開放していくと、送電線8に流れる電流のSrC1
と抵抗11に分流して流れる電流は抵抗11が増加する
に従がい、SrC 1 に流れる分が増えていく。抵抗
11の値が十分大きくなった時点でスイッチ12dを切
ることにより、送電線8に流れる電流が全てSrC1に
流れることになるが、スイッチ12dが切られたことに
よるSrC1に流れる電流変化が小さければ、SrC1
に発生する電圧はかなり抑制される。したがって、抵抗
の11a,11b,11c,11d値を適切に選ぶこと
により、SrC1に流れる電流の大きさ、およびその変
化を十分小さくでき、このことからSrC1に発生する
電圧は規定の電圧以上にならないように制御することが
可能になる。この場合、実施例1の場合と同様、抵抗を
連続的に変える方が望ましいことはいうまでもない。
Next, when the switches 12a, 12b, 12c are opened in this order, SrC1 of the current flowing through the transmission line 8
As the resistance 11 increases, the current shunting to the resistance 11 increases, and the current flowing to SrC 1 increases. By turning off the switch 12d when the value of the resistor 11 becomes sufficiently large, all the current flowing through the power transmission line 8 will flow through SrC1, but if the change in the current flowing through SrC1 due to the turning off of the switch 12d is small. , SrC1
The voltage generated at is significantly suppressed. Therefore, by appropriately selecting the values of the resistors 11a, 11b, 11c, and 11d, the magnitude of the current flowing through SrC1 and its change can be made sufficiently small, so that the voltage generated at SrC1 does not exceed the specified voltage. It becomes possible to control. In this case, needless to say, it is desirable to continuously change the resistance, as in the case of the first embodiment.

【0038】以上、本発明の実施例を詳述したが、本発
明は、前記実施例に限定されるものではなく、特許請求
の範囲に記載された本発明を逸脱することなく種々の設
計変更を行うことが可能である。たとえば、図3の図示
例における抵抗11dに換えてサイリスタを他の抵抗1
1a〜11cに直列に設け、流れる電流を増減可能とす
ることにより、同様の効果を得ることがでる。また、そ
の場合には、装置を小型化することもできる。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various design changes can be made without departing from the present invention described in the claims. It is possible to For example, in place of the resistor 11d in the illustrated example of FIG.
The same effect can be obtained by providing in series with 1a to 11c and increasing or decreasing the flowing current. In that case, the device can be downsized.

【0039】[0039]

【発明の効果】以上の説明から理解されるように、本発
明によれば、直列コンデンサに流れる電流の大きさを抑
制でき、これにより直列コンデンサに発生する過電圧を
抑制することが可能となり、しかも、直列コンデンサの
信頼性を向上させ、かつ直列コンデンサの絶縁が容易と
なる。
As can be understood from the above description, according to the present invention, it is possible to suppress the magnitude of the current flowing in the series capacitor, and thereby suppress the overvoltage generated in the series capacitor. The reliability of the series capacitor is improved, and the series capacitor can be easily insulated.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による実施例1FIG. 1 is a first embodiment according to the present invention.

【図2】 本発明による実施例2FIG. 2 is a second embodiment according to the present invention.

【図3】 本発明による実施例3FIG. 3 is a third embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1………SrC(直列コンデンサ) 2………送電線の抵抗 3………送電線のリアクタンス 4a,4b………送電線の静電容量 6………抵抗 6a,6b,6c,6d………分割抵抗 7a,7b,7c,7d,7e………スイッチ 8………送電線 11a,11b,11c,11d………分割抵抗 12a,12b,12c,12d………スイッチ 1 ... SrC (series capacitor) 2 ... Transmission line resistance 3 ... Transmission line reactance 4a, 4b ... Transmission line capacitance 6 ... Resistances 6a, 6b, 6c, 6d ... ...... Dividing resistors 7a, 7b, 7c, 7d, 7e ......... Switch 8 ......... Transmission line 11a, 11b, 11c, 11d ......... Dividing resistors 12a, 12b, 12c, 12d ...

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高見 表吾 東京都調布市西つつじケ丘2丁目4番1号 東京電力株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Otomo Takami 2-4-1 Nishitsutsujigaoka, Chofu-shi, Tokyo Tokyo Electric Power Company Technical Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 交流電力系統の送電線にコンデンサを直
列に挿入する直列コンデンサ方式において、系統故障除
去後直列コンデンサを送電系統に再挿入時、あるいは直
列コンデンサを送電線に挿入する場合の少なくともいず
れかにおいて、該送電線に1又は2以上の抵抗を直列に
挿入するようになし、かつ、該抵抗を短絡させるか、あ
るいは該抵抗の値が漸次減少すべく制御することを特徴
とする直列コンデンサ過電圧保護制御方法。
1. In a series capacitor system in which a capacitor is inserted in series in a transmission line of an AC power system, at least either when the series capacitor is reinserted in the transmission system after the system fault is removed or when the series capacitor is inserted in the transmission line. In this case, one or more resistors are inserted in series in the transmission line, and the resistors are short-circuited or the value of the resistors is controlled so as to gradually decrease. Overvoltage protection control method.
【請求項2】 交流電力系統の送電線にコンデンサを直
列に挿入する直列コンデンサ方式において、系統故障除
去後直列コンデンサを送電系統に再挿入時、あるいは直
列コンデンサを送電線に挿入する場合の少なくともいず
れかにおいて、該直列コンデンサに少なくとも1以上の
抵抗を並列に挿入するようになし、かつ該抵抗の値が漸
次増加すべく制御することを特徴とする直列コンデンサ
過電圧保護制御方法。
2. In a series capacitor system in which a capacitor is inserted in series in a transmission line of an AC power system, at least either when the series capacitor is reinserted in the transmission system after the system fault is removed or when the series capacitor is inserted in the transmission line. In the above method, at least one resistance is inserted in parallel to the series capacitor, and the series capacitor overvoltage protection control method is controlled so that the value of the resistance gradually increases.
JP4334534A 1992-12-15 1992-12-15 Overvoltage protective control method for series capacitor Pending JPH06189445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4334534A JPH06189445A (en) 1992-12-15 1992-12-15 Overvoltage protective control method for series capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4334534A JPH06189445A (en) 1992-12-15 1992-12-15 Overvoltage protective control method for series capacitor

Publications (1)

Publication Number Publication Date
JPH06189445A true JPH06189445A (en) 1994-07-08

Family

ID=18278484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4334534A Pending JPH06189445A (en) 1992-12-15 1992-12-15 Overvoltage protective control method for series capacitor

Country Status (1)

Country Link
JP (1) JPH06189445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884701A (en) * 2010-05-11 2013-01-16 Abb技术有限公司 A plant for transmitting high voltage DC electric power including overvoltage protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884701A (en) * 2010-05-11 2013-01-16 Abb技术有限公司 A plant for transmitting high voltage DC electric power including overvoltage protection

Similar Documents

Publication Publication Date Title
JP5215662B2 (en) Power line filter
JPS62250875A (en) Abnormal state detector for dc condenser
JP4017343B2 (en) Power adjustment circuit
EP1069673B1 (en) Line filter
US9531166B2 (en) Method and arrangement for triggering a series spark gap
JPH06189445A (en) Overvoltage protective control method for series capacitor
CN108599106B (en) Method for adjusting capacity in longitudinal differential protection calculation of series transformer
JP2000164441A (en) Potential transformer device
JP4919592B2 (en) Zero phase voltage detector
US2222711A (en) Circuit breaker testing arrangement
JP3251814B2 (en) Inverter protection circuit
JP2590614B2 (en) Instrument transformer
JP2721285B2 (en) Control device of AC / DC converter
JPH0813168B2 (en) Electrostatic capacitor capacity adjustment device
JPS5846524A (en) Power circuit
JPS59128716A (en) Dc breaker
JPS59162714A (en) Transforming device for instrument
SUSTAINED Correlation οί System Overvoltages and System-Grounding Impedance
JPS6226992Y2 (en)
JP2830825B2 (en) Constant setting method for series capacitor device
JP2553837B2 (en) Input device for ratio differential relay
JPH07194132A (en) Inverter facility
JPH0748075B2 (en) Three-phase common tank type circuit breaker test circuit
JPH0759259A (en) Three-phase four-wire load circuit
Johnson et al. Neutral Grounding and the Prevention of Neutral Instability