JPH06188180A - Charged particle beam exposure - Google Patents
Charged particle beam exposureInfo
- Publication number
- JPH06188180A JPH06188180A JP33645492A JP33645492A JPH06188180A JP H06188180 A JPH06188180 A JP H06188180A JP 33645492 A JP33645492 A JP 33645492A JP 33645492 A JP33645492 A JP 33645492A JP H06188180 A JPH06188180 A JP H06188180A
- Authority
- JP
- Japan
- Prior art keywords
- mark
- amount
- scanning time
- marks
- charged particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Electron Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体装置等の製造プロ
セスに用いられる荷電粒子ビーム(電子ビーム等)露光
方法に係り, 特に露光装置の熱的変化に起因するビーム
偏向位置のドリフトを補正する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam (electron beam etc.) exposure method used in a manufacturing process of semiconductor devices and the like, and in particular, it corrects a beam deflection position drift caused by a thermal change of an exposure apparatus. Regarding the method.
【0002】近年,荷電粒子ビーム露光装置はLSI のパ
ターン形成等に使用されているが,LSI の高密度化, 微
細化に伴い, 一層高精度, 高解像性が要求されている。
本発明はフィールド(ビームの実用可能な偏向範囲,描
画範囲)のビーム偏向位置を補正する(所謂,フィール
ド補正)ために,マーク上をビームで走査して位置ずれ
量(オフセット)を測定する際に,偏向コイルの発熱に
起因する装置の熱的影響によって生ずる位置ずれ量のド
リフトを補正するために利用できる。In recent years, charged particle beam exposure apparatuses have been used for pattern formation of LSIs, etc., but with higher density and finer LSIs, higher precision and higher resolution are required.
According to the present invention, in order to correct the beam deflection position of a field (a practical deflection range of a beam, a drawing range) (so-called field correction), when a beam is scanned over a mark to measure a positional deviation amount (offset). In addition, it can be used to correct the drift of the positional deviation amount caused by the thermal influence of the device due to the heat generation of the deflection coil.
【0003】[0003]
【従来の技術】荷電粒子ビーム露光装置(図3参照)の
主偏向器20の偏向用コイルはコラム下部の狭い空間(最
終レンズの中)に配置されているため,ビーム偏向時に
コイルに流れる電流により発熱する。発熱によるコイル
自体の熱膨張により,コイル形状が変形したり位置ずれ
を起こす。また,コイルで発生したジュール熱は熱伝導
や熱輻射により,レンズの磁界を形成するポールピース
の変形,位置ずれを引き起こす。そのために偏向ずれや
原点ずれを発生してしまう。2. Description of the Related Art The deflection coil of a main deflector 20 of a charged particle beam exposure apparatus (see FIG. 3) is arranged in a narrow space below the column (in the final lens). Generates heat. Due to the thermal expansion of the coil itself due to heat generation, the coil shape is deformed and the position is displaced. In addition, the Joule heat generated in the coil causes deformation and displacement of the pole piece that forms the magnetic field of the lens due to heat conduction and heat radiation. As a result, a deviation in deflection or a deviation in the origin occurs.
【0004】実際に露光する場合には,ビームの補正係
数,例えば,フィールド補正係数をある一定時間ごとに
求めて更新する操作と露光とを繰り返して行っていた。
従来の補正係数算出の過程は以下のように行われてい
る。ステージを移動させることによってウエハ上の描画
範囲中の所定位置に配置されたマークを順次ビーム位置
に移動させ, ビームを偏向させてマークを走査すること
によりビーム位置と各マーク位置のずれ量を取得してい
き, 取得したずれ量より補正係数を算出していた。In the case of actual exposure, an operation of obtaining and updating a beam correction coefficient, for example, a field correction coefficient at a certain fixed time and the exposure are repeated.
The conventional process of calculating the correction coefficient is performed as follows. By moving the stage, the marks placed at specified positions in the drawing area on the wafer are sequentially moved to the beam position, the beam is deflected and the marks are scanned, and the amount of deviation between the beam position and each mark position is acquired. Then, the correction coefficient was calculated from the obtained shift amount.
【0005】ところが,上記偏向用コイルの発熱による
コイル自体の熱変形により,ビームの偏向位置にずれが
生じてしまう。そのため長時間のビーム走査によって取
得された,ビームと各マークのずれ量は真のずれ量に装
置の熱的影響によるドリフト量を含んだままであり,こ
れを基にして補正係数を算出していた。However, the deflection position of the beam is deviated due to the thermal deformation of the coil itself due to the heat generation of the deflection coil. Therefore, the amount of deviation between the beam and each mark acquired by long-time beam scanning still includes the amount of drift due to the thermal effect of the device in the true amount of deviation, and the correction coefficient was calculated based on this. .
【0006】[0006]
【発明が解決しようとする課題】従来例では,各マーク
の位置測定が進行するほど,各マークのずれ量は装置の
熱的変化を受けるため,ウエハ全面の各領域に対するス
テージの位置補正は,その領域の走査時刻に依存した量
になってしまい,正確な補正係数を算出できないという
問題を生じていた。In the conventional example, as the position measurement of each mark progresses, the amount of displacement of each mark is subject to the thermal change of the apparatus. The amount depends on the scanning time of the area, which causes a problem that an accurate correction coefficient cannot be calculated.
【0007】本発明は露光装置の熱的影響を除去して各
マークの走査時刻に依存しない真の補正係数を算出し,
高精度,高解像性を実現することを目的とする。The present invention removes the thermal influence of the exposure apparatus to calculate a true correction coefficient that does not depend on the scanning time of each mark,
The purpose is to achieve high precision and high resolution.
【0008】[0008]
【課題を解決するための手段】上記課題の解決は,1)
被露光面上に形成された複数のマークの内n個のマーク
を荷電粒子ビームで順次走査して, ビーム位置と各マー
クの中心位置のずれ量di (1≦i≦n)を取得し,最
初に走査したマークを再度,最後に走査して前記ずれ量
d1'を取得し,最初のマークの2度の走査における測定
ずれ量の差 (d1'−d1)をΔと置き,全走査時間をTと
すると,各マーク走査時刻におけるドリフト量Δi を
(1) 式で求め, Δi =Δ×(i−1)/n (1) 各マークの真のずれ量Di を(2) 式により算出し, Di =di −Δi (2) このDi 値を用いてビームの偏向位置を補正する荷電粒
子ビーム露光方法,あるいは2)請求項1記載の前記
(1) 式の代わりに次の(3)式 Δi =Δ×(ti −t1 )/T (3) ここで,t1 は1番目のマークの走査時刻,ti はi番
目のマークの走査時刻.を用いる荷電粒子ビーム露光方
法により達成される。[Means for Solving the Problems] 1)
The n marks of the plurality of marks formed on the exposed surface are sequentially scanned by the charged particle beam to obtain the deviation amount d i (1 ≦ i ≦ n) between the beam position and the center position of each mark. , The first scanned mark is scanned again and the last one is scanned to obtain the displacement amount d 1 ′, and the difference (d 1 ′ −d 1 ) between the measured displacement amounts of the first mark in two scans is set as Δ. If the total scanning time is T, the drift amount Δ i at each mark scanning time is
Equation (1), Δ i = Δ × (i-1) / n (1) The true deviation amount D i of each mark is calculated by equation (2), and D i = d i −Δ i (2 ) A charged particle beam exposure method for correcting the deflection position of a beam using this D i value, or 2) the method according to claim 1.
Instead of equation (1), the following equation (3) Δ i = Δ × (t i −t 1 ) / T (3) where t 1 is the scanning time of the first mark and t i is the i-th Mark scan time. Is achieved by the charged particle beam exposure method.
【0009】[0009]
【作用】本発明では,複数のマークをビームで走査した
後, 走査時間の経過に伴う装置の熱的影響によって生ず
るオフセットドリフト量〔位置ずれ量(オフセット)の
ドリフト〕の経時変化を取得し,これを基に各マークの
位置ずれの測定量に対して熱的影響分のドリフト量を差
し引いて補正を行うことにより, 測定量の走査時刻依存
性をなくするようにしている。この結果, ビームを偏向
させてマークを走査することによりビーム位置と各マー
ク位置のずれ量より単純に算出される従来の熱的影響を
含んだ補正係数から,装置の熱的影響によって生ずる位
置ずれ量のドリフト分が差し引かれた正確な補正係数を
算出することができる。In the present invention, after scanning a plurality of marks with a beam, the time-dependent change of the offset drift amount (positional shift amount (offset) drift) caused by the thermal influence of the apparatus with the passage of the scanning time is acquired, Based on this, the drift amount of the thermal effect is subtracted from the measured amount of misalignment of each mark to correct it, so that the scanning time dependence of the measured amount is eliminated. As a result, the positional deviation caused by the thermal effect of the device is calculated from the correction coefficient that includes the conventional thermal effect, which is simply calculated from the amount of deviation between the beam position and each mark position by deflecting the beam and scanning the mark. It is possible to calculate an accurate correction coefficient from which the drift amount has been subtracted.
【0010】[0010]
【実施例】図1(A) 〜(C) は本発明の実施例の説明図で
ある。図1(A) にウエハ上に形成されたn個のマークの
配置図を示す。ウエハを載置したステージを矢印の方向
に移動させていき,各マークがビームの直下にきた時点
でビームを走査させ,その反射電子の波形を解析するこ
とによって,ビームとマークの中心のずれ量di (1≦
i≦n)を取得する。これをウエハ上の全マークについ
て行い,その際,最初に走査したマークを再度,最後に
走査する。Embodiments FIGS. 1A to 1C are explanatory views of an embodiment of the present invention. FIG. 1A shows a layout of n marks formed on the wafer. The stage on which the wafer is placed is moved in the direction of the arrow, the beam is scanned when each mark comes directly under the beam, and the amount of deviation between the beam and the mark center is analyzed by analyzing the waveform of the reflected electrons. d i (1 ≦
i <n) is acquired. This is performed for all the marks on the wafer, in which case the first scanned mark is again scanned last.
【0011】図1(B) は測定ずれ量と経過時間の関係を
示す。2度の走査における測定ずれ量(d1'−d1 ) の
差は全マークを走査している時間Tの経過によって生じ
たオフセットドリフト量Δを示している。各マーク走査
時刻におけるオフセットドリフト量Δi をリニア補間に
よって求める。この際,各マーク走査時刻の間隔は全マ
ークの走査時間Tをマークの個数nで等分した時間で近
似すると次式が得られる。FIG. 1B shows the relationship between the amount of measurement deviation and the elapsed time. The difference between the measured deviation amounts (d 1 '-d 1 ) in the two scans indicates the offset drift amount Δ caused by the passage of the time T during which all marks are scanned. The offset drift amount Δ i at each mark scanning time is obtained by linear interpolation. At this time, the interval between the scanning times of the respective marks is approximated by a time obtained by equally dividing the scanning time T of all the marks by the number n of the marks to obtain the following equation.
【0012】 Δi =(d1'−d1 )×(i−1)/n (1) この式を用いて,装置の熱的変化によるオフセットドリ
フト量Δi を考慮した真のずれ量Di は次式により算出
する。Δ i = (d 1 ′ −d 1 ) × (i−1) / n (1) Using this equation, the true deviation amount D considering the offset drift amount Δ i due to the thermal change of the device. i is calculated by the following equation.
【0013】 Di =di −Δi (2) この値を用いてゲインG,ローテイションR,台形H,
オフセットOの補正係数を求める。D i = d i −Δ i (2) Using these values, gain G, rotation R, trapezoid H,
A correction coefficient for the offset O is calculated.
【0014】図1(C) はリニア補間の説明図である。図
はオフセットドリフト量の時間経過を示し,1番目のマ
ークの走査時刻t1,最後に走査した再度の1番目のマ
ークの走査時刻t1 ' とすると, i番目のマークの走査
時刻ti のオフセットドリフト量Δi は図のようにリニ
ア補間によって求められる。FIG. 1C is an explanatory diagram of linear interpolation. Figure shows the time course of the offset drift amount, the first scanning time t 1 of a mark, when the last scan time of the first mark again scanned in the t 1 ', the scanning time t i of the i-th mark The offset drift amount Δ i is obtained by linear interpolation as shown in the figure.
【0015】図2は測定ずれ量に対する補正の説明図で
ある。各マークの走査時刻ごとのずれ量di から,装置
の熱的変化によるドリフト量Δi を差し引いた値が真の
ずれ量Di となる。FIG. 2 is an explanatory diagram of the correction for the measurement deviation amount. The value obtained by subtracting the drift amount Δ i due to the thermal change of the apparatus from the deviation amount d i of each mark at the scanning time is the true deviation amount D i .
【0016】実施例では,ウエハ上の全マークを走査し
てオフセットドリフト量Δを求めたが,マークを或る個
数単位で区切り,その単位内の全マークを走査して単位
ごとのオフセットドリフト量を求めてもよい。In the embodiment, the offset drift amount Δ is obtained by scanning all the marks on the wafer. However, the marks are divided into a certain number of units, and all the marks in the unit are scanned to obtain the offset drift amount for each unit. May be asked.
【0017】また,実施例では各マークの走査時刻の間
隔を,全走査時間Tをマークの個数nで等分した時間で
近似したが,実際の露光においては,各マークの走査時
刻を順次メモリに格納し,次式によりi番目のマークの
走査時刻ti のオフセットドリフト量Δi を求める方が
より厳密である。Further, in the embodiment, the interval of the scanning time of each mark is approximated by a time obtained by equally dividing the total scanning time T by the number n of marks, but in the actual exposure, the scanning time of each mark is sequentially stored in the memory. It is more strict to store the offset drift amount Δ i at the scanning time t i of the i-th mark by the following equation.
【0018】 Δi =(d1'−d1 )×(ti −t1 )/T (3) ここで,t1 は1番目のマークの走査時刻である。次
に,実施例の過程の流れを説明する。Δ i = (d 1 ′ −d 1 ) × (t i −t 1 ) / T (3) where t 1 is the scanning time of the first mark. Next, the process flow of the embodiment will be described.
【0019】(1) マークの逐次照射:ステージによる移
動 (2) マークの位置情報の取得:マーク走査のためのビー
ム偏向 (3)マークの位置情報と偏向制御情報の比較:マーク中
心と偏向中心のずれ (4)全マークの照射完了 (5) 最初のマークの再照射 (6) 最初のマークの位置情報取得:d1 ,d1' (7) 最初のマークの2回の位置情報の比較:ドリフトに
よる位置ずれ抽出 Δ=d1'−d1 (8) 各マークのドリフトによる位置ずれ量を内挿:Δi (9) 各マークの位置ずれ量からドリフトによる位置ずれ
量の除去: Di =di −Δi (10) 各マークに対応する領域に露光するパターン情報
に対する補正: (A) フィールド補正 ここで補正される値は, ビームの偏向位置x,yを次式
により,x’,y’に補正するゲインG,ローテイショ
ンR,台形H,位置ずれ量(オフセット)Oの補正係数
である。(1) Sequential irradiation of marks: movement by stage (2) Acquisition of mark position information: beam deflection for mark scanning (3) Comparison of mark position information and deflection control information: mark center and deflection center Deviation (4) Completion of irradiation of all marks (5) Re-irradiation of first mark (6) Acquisition of position information of first mark: d 1 , d 1 '(7) Comparison of position information of first mark twice : Extraction of displacement due to drift Δ = d 1 '-d 1 (8) Interpolation of displacement due to drift of each mark: Δ i (9) Removal of displacement due to drift from displacement of each mark: D i = d i −Δ i (10) Correction for the pattern information exposed in the area corresponding to each mark: (A) Field correction The value corrected here is the deflection position x, y of the beam by Gain G to correct to ', y', rotation R, trapezoid H, displacement amount ( Offset) is a correction coefficient of the O.
【0020】 x’=Gx*x+Rx*y+Hx*x*y+Ox y’=Gy*y+Ry*x+Hy*x*y+Oy ここで,ゲインGはパターンの大きさに対する補正係
数, ローテイションRはパターンの方向に対する補正係
数, 台形Hは矩形パターンの形状歪みに対する補正係
数, 位置ずれ量(オフセット)Oはパターンの位置ずれ
に対する補正係数である。X ′ = Gx * x + Rx * y + Hx * x * y + Ox y ′ = Gy * y + Ry * x + Hy * x * y + Oy Here, the gain G is a correction coefficient for the size of the pattern, and the rotation R is a correction coefficient for the direction of the pattern. The trapezoid H is a correction coefficient for the shape distortion of the rectangular pattern, and the positional deviation amount (offset) O is a correction coefficient for the positional deviation of the pattern.
【0021】偏向器はフィールド補正をするため,露光
装置のパターン発生器に補正係数を入れたフィールド補
正レジスタを設けている。これは,ビームの偏向位置
x,yを上記の補正係数G,R,H,Oにより補正を行
う。In order to perform field correction, the deflector is provided with a field correction register containing a correction coefficient in the pattern generator of the exposure apparatus. This corrects the deflection positions x and y of the beam with the above-mentioned correction factors G, R, H, and O.
【0022】フィールド補正は, ステージを移動させて
1つのマークをフィールドの四隅の点に移動させ,ビー
ムで追随させたときの前記本発明の真の位置ずれ量Di
より補正項目である上記のG,R,H,Oを算出し,フ
ィールド補正レジスタに格納する。In the field correction, the true positional deviation amount D i of the present invention when one mark is moved to four corner points of the field and the beam is made to follow the mark is moved by moving the stage.
The correction items G, R, H, and O described above are calculated and stored in the field correction register.
【0023】(B) 歪み補正 実際の露光においては,フィールド補正が終わると,さ
らにビームの偏向位置に対してフィールド内の各点の位
置ずれ(歪み)を補正し,フィールド補正後のビーム位
置に加算することにより偏向器の位置補正を行ってい
る。(B) Distortion correction In actual exposure, after the field correction is completed, the positional deviation (distortion) of each point in the field is further corrected with respect to the beam deflection position, and the beam position after the field correction is obtained. The position of the deflector is corrected by adding them.
【0024】次に, 実施例に使用した露光装置の構成例
を示す。図3は電子ビーム露光装置の構成の一例を示す
図である。図において,3は試料,9は電子ビーム露光
装置,10はカソード, 11はグリッド, 12はアノード, 13
a は矩形孔, 14は集束レンズ, 15は可変調整デフレク
タ,16a は矩形孔, 17は集束レンズ, 18aはアパーチャ,
19a はリフォーカスレンズ, 20は主偏向器, 22は中央
処理装置, 24a, 24b, 24c, 24dはメモリ, 25は補正演算
回路, 26, 27, 33,34はDAC(DAコンバータ), 28, 29, 3
5, 36 はAMP(増幅器),30はレジスタ, 31は積算器, 32は
加算及び補正演算回路(本発明の補正に関連する)であ
る。Next, a configuration example of the exposure apparatus used in the embodiment is shown. FIG. 3 is a diagram showing an example of the configuration of an electron beam exposure apparatus. In the figure, 3 is a sample, 9 is an electron beam exposure apparatus, 10 is a cathode, 11 is a grid, 12 is an anode, 13
a is a rectangular hole, 14 is a focusing lens, 15 is a variable deflector, 16a is a rectangular hole, 17 is a focusing lens, 18a is an aperture,
19a is a refocus lens, 20 is a main deflector, 22 is a central processing unit, 24a, 24b, 24c, 24d are memories, 25 is a correction arithmetic circuit, 26, 27, 33, 34 are DACs (DA converters), 28, 29, 3
5, 36 is an AMP (amplifier), 30 is a register, 31 is an integrator, 32 is an addition and correction arithmetic circuit (related to the correction of the present invention).
【0025】次に,位置ずれ量Di より補正係数G,
R,H,Oを算出する具体例を簡単に説明する。電子ビ
ームをウエハ上に走査してマーク検出したときのマーク
位置からのずれ量の各成分を(ΔX,ΔY)とすると,
式(1) が得られる。Next, position deviation amount D i than the correction coefficient G,
A specific example of calculating R, H, and O will be briefly described. Letting each component of the amount of deviation from the mark position when the mark is detected by scanning the electron beam on the wafer is (ΔX, ΔY),
Equation (1) is obtained.
【0026】[0026]
【数1】 ここで,X,Yは電子ビームの偏向位置,A,B,・・
・・,O,Pは補正係数である。いま,式(1) の高次の
項をεx(X,Y),εy(X,Y)とすると式(2) を
得る。[Equation 1] Here, X and Y are the deflection positions of the electron beam, A, B, ...
.., O and P are correction factors. Now, assuming that the higher-order terms of the equation (1) are εx (X, Y) and εy (X, Y), the equation (2) is obtained.
【0027】[0027]
【数2】 直接描画では,一般にチップの4隅にマークを設け,マ
ーク検出を行って補正係数A,B,・・・・,G,Hを
決定し,電子ビームの偏向位置の位置合わせを行う。[Equation 2] In direct writing, generally, marks are provided at four corners of a chip, mark detection is performed to determine correction coefficients A, B, ..., G, and H, and the deflection positions of electron beams are aligned.
【0028】更に,高次の項εx(X,Y),εy
(X,Y)を補正すると論理的に正しい電子ビーム偏向
が可能となる。いま,4隅のマークでの(ΔX,ΔY)
をそれぞれ(ΔX1 ,ΔY1) ,(ΔX2 ,ΔY2) ,(Δ
X3 ,ΔY3) ,(ΔX4 ,ΔY4)とすると, 式(2) の低
次の項より, 式(3),(4)を得る。Further, the higher-order terms εx (X, Y), εy
Correcting (X, Y) enables logically correct electron beam deflection. Now, with the marks at the four corners (ΔX, ΔY)
(ΔX 1 , ΔY 1 ) , (ΔX 2 , ΔY 2 ) , (Δ
X 3, [Delta] Y 3), when the ([Delta] X 4, [Delta] Y 4), lower order term in equation (2), Equation (3) to obtain (4).
【0029】[0029]
【数3】 式(3),(4)より, 次の式(5),(6)を得る。[Equation 3] From equations (3) and (4), the following equations (5) and (6) are obtained.
【0030】[0030]
【数4】 式(5),(6)により,補正係数A,B,・・・・,G,H
が求まり,正しい位置に電子ビームを照射するには,式
(7) で示される次の位置に照射すればよい。[Equation 4] The correction factors A, B, ..., G, H are calculated from the equations (5) and (6).
To obtain the electron beam at the correct position,
Irradiate the next position indicated by (7).
【0031】[0031]
【数5】 式(7) は一般的に次の式(8) のように書かれる。[Equation 5] Equation (7) is generally written as the following equation (8).
【0032】[0032]
【数6】 ここで, Gx =B,Gy =G :ゲイン Rx =C,Ry =F :ローテイション Hx =D,Hy =H :台形 Ox =A,Oy =E :オフセット Dx =εx(X,Y), Dy =εy(X,Y):歪み である。[Equation 6] Here, G x = B, G y = G: Gain R x = C, R y = F: Roteishon H x = D, H y = H: trapezoidal O x = A, O y = E: Offset D x = εx (X, Y), D y = εy (X, Y): distortion.
【0033】[0033]
【発明の効果】本発明によれば,露光装置の熱的影響を
除外して,各マークの走査時刻に依存しない真の補正係
数を算出し,高精度,高解像性を実現することができ
た。According to the present invention, it is possible to eliminate the thermal influence of the exposure apparatus, calculate a true correction coefficient that does not depend on the scanning time of each mark, and realize high accuracy and high resolution. did it.
【図1】 本発明の実施例の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.
【図2】 測定ずれ量に対する補正の説明図FIG. 2 is an explanatory diagram of correction for a measurement deviation amount.
【図3】 電子ビーム露光装置の構成の一例を示す図FIG. 3 is a diagram showing an example of a configuration of an electron beam exposure apparatus.
Claims (2)
内n個のマークを荷電粒子ビームで順次走査して, ビー
ム位置と各マークの中心位置のずれ量di(1≦i≦
n)を取得し,最初に走査したマークを再度,最後に走
査して前記ずれ量d1'を取得し,最初のマークの2度の
走査における測定ずれ量の差(d1'−d1)をΔと置き,
全走査時間をTとすると,各マーク走査時刻におけるド
リフト量Δi を(1) 式で求め, Δi =Δ×(i−1)/n (1) 各マークの真のずれ量Di を(2) 式により算出し, Di =di −Δi (2) このDi 値を用いてビームの偏向位置を補正することを
特徴とする荷電粒子ビーム露光方法。1. A deviation amount d i (1 ≦ i ≦) between a beam position and a center position of each mark is obtained by sequentially scanning n marks of a plurality of marks formed on an exposed surface with a charged particle beam.
n) is obtained, the mark scanned first is scanned again, and the displacement amount d 1 ′ is acquired by scanning the mark lastly, and the difference (d 1 ′ −d 1) between the measured displacement amounts in the two scans of the first mark is acquired. ) As Δ,
When the total scan time is T, the drift amount delta i in each mark scanning time obtained in (1), the Δ i = Δ × (i- 1) / n (1) true shift amount D i of the marks D i = d i −Δ i calculated by equation (2) (2) A charged particle beam exposure method characterized in that the beam deflection position is corrected using this D i value.
の(3)式 Δi =Δ×(ti −t1 )/T (3) ここで,t1 は1番目のマークの走査時刻,ti はi番
目のマークの走査時刻.を用いることを特徴とする荷電
粒子ビーム露光方法。2. In place of the equation (1) according to claim 1, the following equation (3) Δ i = Δ × (t i −t 1 ) / T (3) where t 1 is the first The scanning time of the mark, t i is the scanning time of the i-th mark. A charged particle beam exposure method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33645492A JPH06188180A (en) | 1992-12-17 | 1992-12-17 | Charged particle beam exposure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33645492A JPH06188180A (en) | 1992-12-17 | 1992-12-17 | Charged particle beam exposure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06188180A true JPH06188180A (en) | 1994-07-08 |
Family
ID=18299309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33645492A Withdrawn JPH06188180A (en) | 1992-12-17 | 1992-12-17 | Charged particle beam exposure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06188180A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7122809B2 (en) | 2003-12-05 | 2006-10-17 | Kabushiki Kaisha Toshiba | Charged beam writing method and writing tool |
-
1992
- 1992-12-17 JP JP33645492A patent/JPH06188180A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7122809B2 (en) | 2003-12-05 | 2006-10-17 | Kabushiki Kaisha Toshiba | Charged beam writing method and writing tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6222195B1 (en) | Charged-particle-beam exposure device and charged-particle-beam exposure method | |
US5301124A (en) | Registration of patterns formed of multiple fields | |
TWI639895B (en) | Multi-charged particle beam drawing device and adjusting method thereof | |
JPH1064799A (en) | Apparatus and method for drawing charged beam | |
JP2008085120A (en) | Position correction coefficient calculating method of charged particle beam drawing apparatus, and position correction coefficient updating method of charged particle beam drawing apparatus | |
JP6791051B2 (en) | Multi-charged particle beam drawing device and multi-charged particle beam drawing method | |
EP0024884A2 (en) | Method of detecting the position of a substrate using an electron beam | |
US5798528A (en) | Correction of pattern dependent position errors in electron beam lithography | |
US6624430B2 (en) | Method of measuring and calibrating inclination of electron beam in electron beam proximity exposure apparatus, and electron beam proximity exposure apparatus | |
EP0033138B1 (en) | A method for correcting deflection distortions in an apparatus for charged particle lithography | |
US6177680B1 (en) | Correction of pattern-dependent errors in a particle beam lithography system | |
US6352799B1 (en) | Charged-particle-beam pattern-transfer methods and apparatus including beam-drift measurement and correction, and device manufacturing methods comprising same | |
US6182369B1 (en) | Pattern forming apparatus | |
KR102429977B1 (en) | Method for compensating pattern placement errors caused by variation of pattern exposure density in a multi-beam writer | |
JPH06188180A (en) | Charged particle beam exposure | |
JP3689097B2 (en) | Charged beam drawing apparatus and drawing method | |
JP2786660B2 (en) | Charged beam drawing method | |
JP3388066B2 (en) | Electron beam exposure apparatus and method of adjusting deflection efficiency in the apparatus | |
JPH0922859A (en) | Compensation method for sample surface height in electron beam exposure process | |
JP3569273B2 (en) | Charged beam drawing apparatus and drawing method | |
JP2786661B2 (en) | Charged beam drawing method | |
JP2786662B2 (en) | Charged beam drawing method | |
JP7484491B2 (en) | Charged particle beam drawing method and charged particle beam drawing apparatus | |
JPH05175106A (en) | Apparatus and method for exposing with charged particle beam | |
JPH10209008A (en) | Charge beam exposing method and mask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000307 |