JPH06188170A - Method of projection exposure - Google Patents

Method of projection exposure

Info

Publication number
JPH06188170A
JPH06188170A JP5183660A JP18366093A JPH06188170A JP H06188170 A JPH06188170 A JP H06188170A JP 5183660 A JP5183660 A JP 5183660A JP 18366093 A JP18366093 A JP 18366093A JP H06188170 A JPH06188170 A JP H06188170A
Authority
JP
Japan
Prior art keywords
light
pattern
wavelength
wafer
reticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5183660A
Other languages
Japanese (ja)
Other versions
JPH0777194B2 (en
Inventor
Shinji Kuniyoshi
伸治 国吉
Tsuneo Terasawa
恒男 寺澤
Toshishige Kurosaki
利栄 黒崎
Yoshio Kawamura
喜雄 河村
Sumio Hosaka
純男 保坂
Akihiro Takanashi
明紘 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5183660A priority Critical patent/JPH0777194B2/en
Publication of JPH06188170A publication Critical patent/JPH06188170A/en
Publication of JPH0777194B2 publication Critical patent/JPH0777194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To detect the projection of a wafer pattern by arranging an optical system that responds to wavelength-dependent changes of position where the image of the pattern is projected. CONSTITUTION:A pattern on a wafer 4 forms its image on a reticle through a reduction lens 3 at a wavelength of exposure light. The same image is formed on the reticle at a wavelength of green color if the wafer is lowered a given distance. An optical system for detection is arranged to respond to wavelength- dependent changes of position where the image is projected so that the projection of the pattern may be detected. This enables pattern detection at various wavelengths. Detection signals of good contrast can constantly be obtained if an appropriate wavelength is selected depending on the thickness of photoresist on the wafer, the material of photoresist, and the material of the wafer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造工程の中の
マスクアライナ等においてウエーハ又はマスク等の精密
位置計測に使用されるパターン位置検出方法及び装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pattern position detecting method and apparatus used for precise position measurement of a wafer or a mask in a mask aligner in a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】パターン検出装置の一例として、図1に
示すような縮小投影露光装置(参照:特開昭55−16
2227号公報)における場合を例にとって説明する。
縮小投影露光装置では、通常前工程で形成されるウエー
ハ4上の回路パターンに対して、新たに形成すべきレテ
イクル2の回路パターンを露光用集光レンズ1および縮
小レンズ3により重ね焼きする。通常、何枚かのレテイ
クルに関してこの重ね焼きを順次繰返して所望する回路
パターンをウエーハ上に形成する。このとき、重ね合せ
すべき2つの回路パターンの位置合せは、通常1μm以
下の高精度が要求されている。図1に示す縮小投影露光
装置では、このような位置合せはウエーハ上の位置合せ
用パターンの位置を検出し、そのウエーハと一致するよ
うに新たに形成するパターンを有するレテイクルを相対
移動することにより行なっている。
2. Description of the Related Art As an example of a pattern detection apparatus, a reduction projection exposure apparatus as shown in FIG. 1 (see Japanese Patent Laid-Open No. 55-16).
2227) will be described as an example.
In the reduction projection exposure apparatus, the circuit pattern of the reticle 2 to be newly formed is overprinted by the exposure condenser lens 1 and the reduction lens 3 on the circuit pattern on the wafer 4 which is usually formed in the previous step. Usually, this repeated baking is sequentially repeated for several reticles to form a desired circuit pattern on the wafer. At this time, the alignment of the two circuit patterns to be superposed is usually required to have a high accuracy of 1 μm or less. In the reduction projection exposure apparatus shown in FIG. 1, such alignment is performed by detecting the position of the alignment pattern on the wafer and relatively moving the reticule having a pattern to be newly formed so as to match the wafer. I am doing it.

【0003】すなわちウエーハ4の位置合せ用パターン
(図示されていない)は、ライトガイド10により局部
照明されて、その反射光が縮小レンズ3、レテイクル
2、拡大光学系5を通してスリット6をのせた往復移動
台7の運動面上に拡大結像される。拡大像はスリット6
により走査され、スリット通過光の明暗がホトマル9に
より光電変換され、例えば以下の方法(参照:特開昭5
3−69063号公報)でウエーハ位置を求めることが
できる。すなわち、スリットの任意の位置Xiを仮想中
心としてその両側のデータ(Yi)2m個を重ね合せ
て、 を計算する。こうして得られたZの値の中で最小値を与
える点をウエーハ上位置合せ用パターンの中心位置とす
るものである。
That is, the alignment pattern (not shown) of the wafer 4 is locally illuminated by a light guide 10, and the reflected light is reciprocated through a reduction lens 3, a reticle 2, and a magnifying optical system 5 with a slit 6 mounted thereon. An enlarged image is formed on the moving surface of the movable table 7. Magnified image is slit 6
And the photoelectric conversion of the light and darkness of the light passing through the slit is carried out by the photomultiplier 9.
The position of the wafer can be obtained by the method described in JP-A-3-69063). That is, by using the arbitrary position X i of the slit as a virtual center, 2 m pieces of data (Y i ) on both sides thereof are superposed, To calculate. The point giving the minimum value of the Z values thus obtained is the center position of the wafer alignment pattern.

【0004】[0004]

【発明が解決しようとする課題】本装置では、レテイク
ル基準パターン中心位置あるいは往復移動台7上にもう
けた原点センサ(図示されてない)に対する、ウエーハ
上の位置合せ用パターンの中心位置を求め、その結果に
応じてウエーハ上のパターンに新たなパターンの重ね合
せを行なう。
In this apparatus, the center position of the alignment pattern on the wafer with respect to the center position of the reticle reference pattern or the origin sensor (not shown) provided on the reciprocating carriage 7 is determined, In accordance with the result, a new pattern is overlaid on the pattern on the wafer.

【0005】このように縮小レンズ3を介してパターン
位置を検出するときは、縮小レンズ3は露光波長に対し
て収差補正されているので、通常検出光波長としてぱ露
光波長のみの単色光を使用する。それゆえ、ウエーハ上
に塗布されたホトレジスト中で等厚干渉縞が発生し、ホ
トレジストの厚さによって検出信号のコントラストの低
下を導き、パターン位置合せ精度が劣化するという欠点
がある。また、露光波長のウエーハからの反射が微細パ
ターンの形成を妨げるので、ウエーハに反射防止膜をも
うけたり、ホトレジスト中に露光波長の吸光剤を混入す
ることがある。このようなとき、露光波長による検出で
はウエーハから検出に十分な反射光強強度が得られな
い。
As described above, when the pattern position is detected via the reduction lens 3, since the reduction lens 3 is aberration-corrected with respect to the exposure wavelength, normally monochromatic light having only the exposure wavelength is used as the detection light wavelength. To do. Therefore, uniform thickness interference fringes are generated in the photoresist coated on the wafer, and the thickness of the photoresist leads to a decrease in the contrast of the detection signal, resulting in the deterioration of the pattern alignment accuracy. Further, since reflection from the wafer having the exposure wavelength hinders formation of a fine pattern, an antireflection film may be provided on the wafer, or a light absorber having the exposure wavelength may be mixed in the photoresist. In such a case, the intensity of the reflected light that is sufficient for detection cannot be obtained from the wafer by the detection using the exposure wavelength.

【0006】上記の欠点を解消するため露光波長と異な
る波長によるパターン検出が必要となる。このとき、通
常は縮小レンズ3とレテイクル2の間に色収差補正レン
ズをもうけたり、あるいはあらかじめ色収差に応じた専
用のパターン検出光学系をもうけ特定波長のみによるパ
ターン検出を行なっている。それゆえ、補正レンズ位置
の再現誤差にともない、パターン検出誤差が発生した
り、あるいは異なる波長専用のパターン検出光学系で
は、試料によって波長を変えてパターン検出を行なうこ
とができない。すなわち、任意の波長によるパターン検
出を行なうことができないなどの欠点を有する。
In order to solve the above drawbacks, it is necessary to detect a pattern with a wavelength different from the exposure wavelength. At this time, usually, a chromatic aberration correction lens is provided between the reduction lens 3 and the reticle 2, or a dedicated pattern detection optical system according to chromatic aberration is provided in advance to perform pattern detection only with a specific wavelength. Therefore, a pattern detection error occurs due to the reproduction error of the correction lens position, or the pattern detection optical system dedicated to different wavelengths cannot perform the pattern detection by changing the wavelength depending on the sample. That is, there is a defect that the pattern cannot be detected with an arbitrary wavelength.

【0007】[0007]

【課題を解決するための手段】所定のパターンを有する
レティクルと、該レティクルより下方に配置される縮小
レンズと、上記縮小レンズの下方に配置したマークを有
する被露光基板と、上記レティクル上方から、上記縮小
レンズを通して、上記レティクル上のパターンを上記被
露光基板に露光するための光源と、上記被露光基板上の
マークを上記縮小レンズを通して照明する照明光と、上
記照明光により上記マークを照明し、上記マークからの
反射光を電気信号に変換し検出するための光電変換手段
とから成る投影露光装置を用い、上記被露光基板をアラ
イメントとする工程と、上記レティクル上のパターンを
上記被露光基板上に投影し露光する工程とから成る投影
露光方法において、上記被露光基板をアライメントとす
る工程として、上記被露光基板上のマークを照明する光
として、露光光とは波長の異なる光を用い、かつ露光時
とは異なる高さの位置に被露光基板を配置し、上記縮小
レンズを通して照明する工程と、上記露光光とは波長の
異なる光による上記マークからの反射光を光電変換手段
へ導く工程と、上記光電変換手段により電気信号に変換
し上記被露光基板をアライメントする工程とから成る。
A reticle having a predetermined pattern, a reduction lens arranged below the reticle, an exposed substrate having marks arranged below the reduction lens, and a reticle from above. A light source for exposing a pattern on the reticle onto the exposed substrate through the reduction lens, an illumination light for illuminating a mark on the exposed substrate through the reduction lens, and the illumination light for illuminating the mark. A step of aligning the substrate to be exposed with a projection exposure apparatus comprising photoelectric conversion means for converting the reflected light from the mark into an electric signal and detecting the signal, and a pattern on the reticle to the substrate to be exposed. In the projection exposure method, which comprises the step of projecting onto and exposing to light, the step of aligning the exposed substrate includes As the light for illuminating the mark on the substrate to be exposed, using light having a wavelength different from that of the exposure light, and arranging the substrate to be exposed at a position of a height different from that at the time of exposure, and illuminating through the reduction lens, The exposure light includes a step of guiding light reflected by the mark due to light having a different wavelength to the photoelectric conversion means, and a step of converting the light to an electric signal by the photoelectric conversion means to align the substrate to be exposed.

【0008】[0008]

【作用】上記の欠点を解消するため露光波長と異なる波
長によるパターン検出が必要となる。このとき、通常は
縮小レンズ3とレテイクル2の間に色収差補正レンズを
もうけたり、あるいはあらかじめ色収差に応じた専用の
パターン検出光学系をもうけ特定波長のみによるパター
ン検出を行なっている。それゆえ、補正レンズ位置の再
現誤差にともない、パターン検出誤差が発生したり、あ
るいは異なる波長専用のパターン検出光学系では、試料
によって波長を変えてパターン検出を行なうことができ
ない。すなわち、任意の波長によるパターン検出を行な
うことができないなどの欠点を有する。
In order to solve the above drawbacks, it is necessary to detect a pattern with a wavelength different from the exposure wavelength. At this time, usually, a chromatic aberration correction lens is provided between the reduction lens 3 and the reticle 2, or a dedicated pattern detection optical system according to chromatic aberration is provided in advance to perform pattern detection only with a specific wavelength. Therefore, a pattern detection error occurs due to the reproduction error of the correction lens position, or the pattern detection optical system dedicated to different wavelengths cannot perform the pattern detection by changing the wavelength depending on the sample. That is, there is a defect that the pattern cannot be detected with an arbitrary wavelength.

【0009】本発明の目的は、任意の波長の単色光を使
用することにより、ウエーハ上のホトレジストで発生す
る等厚干渉縞を有効利用して、パターン検出信号のコン
トラストを向上させパターン位置合せの高精度化を得る
ことにある。上記の目的を達成するために、本発明では
検出光学系の使用波長に応じたウエーハ上パターンの結
像位置の変動に対応した検出光学系を構成して、ウエー
ハ上パターンの投影像の検出を行なう。
An object of the present invention is to use monochromatic light of an arbitrary wavelength to effectively utilize the equal-thickness interference fringes generated in the photoresist on the wafer to improve the contrast of the pattern detection signal and improve the pattern alignment. It is to obtain high precision. In order to achieve the above object, in the present invention, the detection optical system corresponding to the variation of the image forming position of the pattern on the wafer according to the wavelength used in the detection optical system is configured to detect the projected image of the pattern on the wafer. To do.

【0010】[0010]

【実施例】以下、本発明を実施例によって具体的かつ詳
細に説明する。まず、縮小レンズの色収差について、図
2を用いて説明する。図2においてウエーハ4上の位置
合せ用パターン4´は、紫色の露光波長により図中実線
21に示すようにレテイクル2上に拡大結像される。し
かし、異なる波長例えば緑色光を使用したときは、図中
点線22に示すようにレテイクルには結像されずレテイ
クル2の上方に拡大結像される。そこで、露光波長によ
る拡大像並びに緑色光による拡大像それぞれに対応した
検出光学系を有する本発明による1実施例を図3に示
す。図3の例では、露光光波長によりレテイクル上に結
像したウエーハ上のパターンを拡大光学系5、スリット
6を通してホトマル9により光電変換する。一方、露光
波長で検出に十分な反射の得られないウエーハを検出す
るときには、緑色光によりレテイクル上方に結像した拡
大像を拡大光学系5´、スリット6´を通してホトマル
9´により光電変換することにより、検出に十分なコン
トラストの良い検出信号が得られる。このとき、波長の
指定は、ライトガイド入口あるいは出口で光学フイルタ
を切換えるか、拡大光学系5あるいは5´中に所定の光
学フイルタを切換えることにより可能である。縮小レン
ズの色収差が本実施例のごとく大きくて結像位置が異な
るときは、光学フイルタの有無にかかわらず、所定の波
長による拡大像しか検出するこができない。尚、本実施
例では対物レンズを並列に設置したが、レテイクル上方
に2段に重ねる構造とすることも可能であり設置位置は
任意で良い。
EXAMPLES The present invention will be described in detail below with reference to examples. First, the chromatic aberration of the reduction lens will be described with reference to FIG. In FIG. 2, the alignment pattern 4 ′ on the wafer 4 is magnified and imaged on the reticle 2 as indicated by the solid line 21 in the figure by the purple exposure wavelength. However, when a different wavelength, for example, green light is used, the image is not formed on the reticle 2 as shown by the dotted line 22 in the figure, and is enlarged above the reticle 2. Therefore, FIG. 3 shows one embodiment according to the present invention which has a detection optical system corresponding to each of the magnified image by the exposure wavelength and the magnified image by the green light. In the example of FIG. 3, the pattern on the wafer imaged on the reticle according to the wavelength of the exposure light is photoelectrically converted by the photomultiplier 9 through the magnifying optical system 5 and the slit 6. On the other hand, when detecting a wafer that does not have sufficient reflection at the exposure wavelength for detection, the magnified image formed above the reticle by green light is photoelectrically converted by the photo-maru 9'through the magnifying optical system 5'and the slit 6 '. As a result, a detection signal having a sufficient contrast for detection can be obtained. At this time, the wavelength can be designated by switching the optical filter at the entrance or the exit of the light guide or by switching a predetermined optical filter in the magnifying optical system 5 or 5 '. When the chromatic aberration of the reduction lens is large as in the present embodiment and the image forming position is different, only an enlarged image with a predetermined wavelength can be detected regardless of the presence or absence of an optical filter. In this embodiment, the objective lenses are installed in parallel, but it is also possible to have a structure in which they are stacked in two stages above the reticle, and the installation position may be arbitrary.

【0011】一方、縮小レンズの色収差が大きくて結像
位置が異なるときに結像位置を補正するのはウエーハと
縮小レンズとの距離を変更することによっても可能であ
る。例えば、使用波長によってウエーハを上下動させ、
ウエーハ上のパターンを使用波長にかかわらずレテイク
ル上に結像させることも可能である。光学系の概要を図
4に示す。本図に示すように、露光波長でウエーハ上の
パターンがレテイクル上に結像するウエーハ位置に対し
て、緑色光では所定量ウエーハを下降させることにより
露光波長の場合と同様にレテイクル上にウエーハ上のパ
ターンが結像する。本原理に基づく本発明の1実施例を
図5に示す。本実施例では、ウエーハはX,Y,Z各移
動台上に装着され、各方向に移動可能である。また拡大
光学系中に光学フイルタ切換機構11をもうける。この
結果、露光波長によるパターン検出は従来通りである
が、緑色光波長ではウエーハを所定量下降させ、レテイ
クル上に結像した像を緑色の光学フイルタを通してスリ
ット6上に結像させることができる。この場合、波長の
切換えににともない、ウエーハおよびレテイクル間の結
像光学系中に新たな光学部品等の追加等が不要のため、
光学部品の追加にともなうパターン検出誤差の発生はな
い。尚、本実施例では、ウエーハを上下動させ波長の変
化にともなう色収差の補正を行なったが、縮小レンズ,
レテイクル,パターン検出光学系等を上昇させて、ウエ
ーハ上のパターンをレテイクル上に結像させることも可
能である。また、縮小レンズの色収差が対さく結像位置
の変動が無視できる程小さいときには、単に光学フイル
タの切換えで検出光波長を指定して本発明を実施するこ
とができる。
On the other hand, when the chromatic aberration of the reduction lens is large and the image formation position is different, the image formation position can be corrected by changing the distance between the wafer and the reduction lens. For example, move the wafer up and down according to the wavelength used,
It is also possible to form an image of the pattern on the wafer on the reticle regardless of the wavelength used. The outline of the optical system is shown in FIG. As shown in this figure, the green position of the wafer at which the pattern on the wafer is imaged on the reticle at the exposure wavelength is lowered by a predetermined amount for green light. Pattern is imaged. One embodiment of the present invention based on this principle is shown in FIG. In this embodiment, the wafer is mounted on each of the X, Y and Z moving bases and is movable in each direction. Further, an optical filter switching mechanism 11 is provided in the magnifying optical system. As a result, the pattern detection by the exposure wavelength is the same as the conventional one, but at the green light wavelength, the wafer is lowered by a predetermined amount, and the image formed on the reticle can be formed on the slit 6 through the green optical filter. In this case, it is not necessary to add new optical parts, etc. in the imaging optical system between the wafer and the reticle as the wavelength is switched.
No pattern detection error occurs due to the addition of optical components. In this example, the wafer was moved up and down to correct the chromatic aberration due to the change in wavelength.
It is also possible to raise the reticle, the pattern detection optical system and the like to form an image of the pattern on the wafer on the reticle. Further, when the chromatic aberration of the reduction lens is small and the variation of the image forming position is so small that it can be ignored, the present invention can be carried out by simply specifying the detection light wavelength by switching the optical filters.

【0012】[0012]

【発明の効果】以上のごとく、本発明によれば種々の波
長によるパターン検出が可能であり、ウエーハ上のホト
レジスト厚さ、ホトレジスト材料、基盤材料に応じて、
検出波長を選択することにより、常にコントラストの良
い検出信号を得ることができる。またこのとき、補正レ
ンズ等の光学部品を挿入する必要もないので、パターン
検出の高精度化が可能である。
As described above, according to the present invention, it is possible to detect patterns at various wavelengths, and depending on the photoresist thickness on the wafer, the photoresist material, and the substrate material,
By selecting the detection wavelength, it is possible to always obtain a detection signal with good contrast. Further, at this time, since it is not necessary to insert an optical component such as a correction lens, it is possible to improve the accuracy of pattern detection.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のパータン検出装置を備えた縮小投影露光
装置の基本構成図。
FIG. 1 is a basic configuration diagram of a reduction projection exposure apparatus including a conventional pattern detection device.

【図2】縮小レンズの色収差を示す概念図。FIG. 2 is a conceptual diagram showing chromatic aberration of a reduction lens.

【図3】本発明の1実施例を示図。FIG. 3 is a diagram showing an embodiment of the present invention.

【図4】ウエーハの上下動による縮小レンズの色収差補
正の概念説明図。
FIG. 4 is a conceptual explanatory diagram of chromatic aberration correction of a reduction lens by vertically moving a wafer.

【図5】本発明の他の1実施例を示す図。FIG. 5 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…パターン露光用集光レンズ、2…レテイクル、3…
縮小レンズ、4…ウエーハ、4´…ウエーハ上の位置合
せ用パターン、5…露光波長による拡大光学系、5´…
波長の異なる検出光学系中の拡大光学系、6,6´…ス
リット、7…往復移動台、8…リニアエンコーダ、9,
9´…ホトマル、10…パターン検出照明用ライトガイ
ド、11…干渉フイルタ交換機構、12…X移動台、1
3…Y移動台、14…Z移動台。
1 ... Focusing lens for pattern exposure, 2 ... Reticle, 3 ...
Reduction lens, 4 ... Wafer, 4 '... Positioning pattern on wafer, 5 ... Enlargement optical system by exposure wavelength, 5' ...
Enlarging optical system in detection optical system having different wavelengths, 6, 6 '... Slit, 7 ... Reciprocating stage, 8 ... Linear encoder, 9,
9 '... Photo Maru, 10 ... Light guide for pattern detection illumination, 11 ... Interference filter exchange mechanism, 12 ... X moving stand, 1
3 ... Y mobile base, 14 ... Z mobile base.

フロントページの続き (72)発明者 河村 喜雄 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 保坂 純男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 高梨 明紘 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front Page Continuation (72) Inventor Yoshio Kawamura 1-280 Higashi Koigokubo, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory (72) Inventor Sumio Hosaka 1-280 Higashi Koikeku, Tokyo Kokubunji City Inside Hitachi Central Research Laboratory (72) Akihiro Takanashi 1-280 Higashi Koigokubo, Kokubunji City, Tokyo Metropolitan Research Center, Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】所定のパターンを有するレティクルと、 該レティクルより下方に配置される縮小レンズと、 上記縮小レンズの下方に配置したマークを有する被露光
基板と、 上記レティクル上方から、上記縮小レンズを通して、上
記レティクル上のパターンを上記被露光基板に露光する
ための光源と、 上記被露光基板上のマークを上記縮小レンズを通して照
明する照明光と、 上記照明光により上記マークを照明し、上記マークから
の反射光を電気信号に変換し検出するための光電変換手
段とから成る投影露光装置を用い、 上記被露光基板をアライメントとする工程と、上記レテ
ィクル上のパターンを上記被露光基板上に投影し露光す
る工程とから成る投影露光方法において、 上記被露光基板をアライメントとする工程として、 上記被露光基板上のマークを照明する光として、 露光光とは波長の異なる光を用い、かつ露光時とは異な
る高さの位置に被露光基板を配置し、上記縮小レンズを
通して照明する工程と、 上記露光光とは波長の異なる光による上記マークからの
反射光を光電変換手段へ導く工程と、 上記光電変換手段により電気信号に変換し上記被露光基
板をアライメントする工程とから成ることを特徴とする
投影露光方法。
1. A reticle having a predetermined pattern, a reduction lens arranged below the reticle, an exposed substrate having a mark arranged below the reduction lens, and a reduction lens from above the reticle. A light source for exposing the pattern on the reticle to the exposed substrate, illumination light for illuminating the mark on the exposed substrate through the reduction lens, and illuminating the mark with the illumination light, Using a projection exposure apparatus comprising a photoelectric conversion means for converting the reflected light of the above into an electric signal and detecting the same, and using the step of aligning the above-mentioned substrate to be exposed, and projecting the pattern on the reticle onto the above-mentioned substrate to be exposed. In the projection exposure method, which comprises the step of exposing, as the step of aligning the substrate to be exposed, the substrate to be exposed is As the light for illuminating the upper mark, a light having a wavelength different from that of the exposure light is used, and the substrate to be exposed is arranged at a position having a height different from that at the time of exposure, and the illumination is performed through the reduction lens. The projection exposure is characterized in that it comprises a step of guiding the reflected light from the mark by light of different wavelengths to the photoelectric conversion means, and a step of converting the light into electric signals by the photoelectric conversion means and aligning the exposed substrate. Method.
【請求項2】上記照明する光として、互いに波長の異な
る複数の光を切り換えて用いることを特徴とする請求項
1記載の投影露光方法。
2. The projection exposure method according to claim 1, wherein a plurality of lights having different wavelengths are switched and used as the illuminating light.
【請求項3】上記照明する光として、露光光と同一波長
の光と、露光光と波長の異なる光を切り換えて用いるこ
とを特徴とする請求項1記載の投影露光方法。
3. The projection exposure method according to claim 1, wherein, as the illuminating light, light having the same wavelength as the exposure light and light having a different wavelength from the exposure light are switched and used.
JP5183660A 1993-07-26 1993-07-26 Projection exposure method Expired - Lifetime JPH0777194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5183660A JPH0777194B2 (en) 1993-07-26 1993-07-26 Projection exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5183660A JPH0777194B2 (en) 1993-07-26 1993-07-26 Projection exposure method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57189047A Division JPS5979527A (en) 1982-10-29 1982-10-29 Pattern detector

Publications (2)

Publication Number Publication Date
JPH06188170A true JPH06188170A (en) 1994-07-08
JPH0777194B2 JPH0777194B2 (en) 1995-08-16

Family

ID=16139703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5183660A Expired - Lifetime JPH0777194B2 (en) 1993-07-26 1993-07-26 Projection exposure method

Country Status (1)

Country Link
JP (1) JPH0777194B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200029A (en) * 1981-06-03 1982-12-08 Nippon Seiko Kk Exposing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200029A (en) * 1981-06-03 1982-12-08 Nippon Seiko Kk Exposing device

Also Published As

Publication number Publication date
JPH0777194B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US20060250597A1 (en) Positional information measuring method and device, and exposure method and apparatus
US8947665B2 (en) Measurement method, measurement apparatus, exposure method, and exposure apparatus
US7426017B2 (en) Focus test mask, focus measurement method and exposure apparatus
US6016186A (en) Alignment device and method with focus detection system
TWI729380B (en) Measurement apparatus, exposure apparatus, and method of manufacturing article
US6975384B2 (en) Exposure apparatus and method
US4614432A (en) Pattern detector
JPH0785466B2 (en) Positioning device
US5838450A (en) Direct reticle to wafer alignment using fluorescence for integrated circuit lithography
JP2003151884A (en) Focusing method, position-measuring method, exposure method, and device-manufacturing method
US4295735A (en) Optical projection system having a photorepetition function
US5671057A (en) Alignment method
US7106419B2 (en) Exposure method and apparatus
US6539326B1 (en) Position detecting system for projection exposure apparatus
JPH03211812A (en) Exposure aligner
JPH06188170A (en) Method of projection exposure
JP2007173689A (en) Optical characteristic measuring apparatus, exposure device, and device manufacturing method
JP2021067880A (en) Measurement apparatus, lithography apparatus, and method of producing article
JP2005116779A (en) Exposure device and device manufacturing method
US6896999B2 (en) Method of exposing a semiconductor wafer in an exposer
JP2002134392A (en) Apparatus and method for measuring position, aligner and device manufacturing method
JP2010135475A (en) Exposure apparatus and device manufacturing method
JP2884767B2 (en) Observation device
JP2022187831A (en) Measurement device, lithography device, and manufacturing method of article
JP2000338683A (en) Aligner and exposure method