JPH06187321A - Compressive fluid piping system simulator device - Google Patents

Compressive fluid piping system simulator device

Info

Publication number
JPH06187321A
JPH06187321A JP33409792A JP33409792A JPH06187321A JP H06187321 A JPH06187321 A JP H06187321A JP 33409792 A JP33409792 A JP 33409792A JP 33409792 A JP33409792 A JP 33409792A JP H06187321 A JPH06187321 A JP H06187321A
Authority
JP
Japan
Prior art keywords
pipe
network system
simulator device
pressure
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33409792A
Other languages
Japanese (ja)
Inventor
Akiyoshi Nakajima
章喜 中島
Junichi Tanji
順一 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33409792A priority Critical patent/JPH06187321A/en
Publication of JPH06187321A publication Critical patent/JPH06187321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To shorten a dynamic characteristic analysis processing time by modeling a part where a pipe and a pipe are connected by a conduit network system to be analyzed with two kind of pipe connection parts. CONSTITUTION:As an example wherein the object of analysis is modeled, the whole conduit network system to be analyzed is modeled with conduit networks 1a, 1b, and 1c, 1st pipe coupling parts 2a, 2b, 2c, 2d, and 2e, and 2nd pipe connection parts 3a, 3b, and 3c. In this example, three subordinate conduit network systems 4a, 4b, and 4c surround by the 1st pipe connection parts are formed in total. Arithmetic units are installed in the simulator device corresponding to the respective subordinate conduit network systems and then the flow rates of the respective subordinate conduit network systems can be processed at the same time. Therefore, when dynamic characteristics of a large-scale conduit network system consisting of many pipes are analyzed, the analysis time can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多数の配管で構成され
た管路網中の圧縮性流体の流れを予測するシミュレータ
装置に係り、特に、圧縮性流体を作動流体とした、大規
模な配管系の解析に好適なシミュレータ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simulator device for predicting the flow of a compressible fluid in a pipeline network composed of a large number of pipes, and particularly to a large-scale simulator using the compressible fluid as a working fluid. The present invention relates to a simulator device suitable for analyzing a piping system.

【0002】[0002]

【従来の技術】大規模な配管系システムは、火力発電プ
ラントやコジェネレーションシステム等がある。例え
ば、火力発電プラントでは、近年、その改良が進んでお
り、排熱ガス温度が高い高性能なガスタービンが採用さ
れている。そのガスタービンから出た排熱ガスを利用し
て蒸気を生成し、その蒸気を蒸気タービンで利用する、
いわゆる、複合発電方式が実用化されている。この複合
発電方式の一つとして、複数のガスタービンから出た排
熱ガスを利用して蒸気を生成し、各々生成した蒸気を集
め、その蒸気を蒸気タービンで利用する多軸型複合発電
方式がある。このような複合発電方式を採用した火力発
電プラントでは、蒸気が通る管路網が従来よりも複雑化
するとともに、規模が大きくなる。したがって、複合火
力発電プラントをはじめとした、大規模な圧縮性流体配
管系プラントの設計効率を向上するためには、汎用的で
解析処理時間を短くする手段を採用したシミュレータ装
置が必要である。
2. Description of the Related Art Large-scale piping systems include thermal power plants and cogeneration systems. For example, in thermal power plants, improvements have been made in recent years, and high-performance gas turbines with high exhaust heat gas temperatures have been adopted. The exhaust heat gas from the gas turbine is used to generate steam, and the steam is used in the steam turbine,
A so-called combined power generation system has been put to practical use. As one of the combined power generation systems, there is a multi-axis combined power generation system in which exhaust heat gas from multiple gas turbines is used to generate steam, each steam is collected, and the steam is used in a steam turbine. is there. In a thermal power plant that employs such a combined power generation system, the pipeline network through which steam passes becomes more complicated than before and the scale becomes larger. Therefore, in order to improve the design efficiency of a large-scale compressible fluid piping system plant such as a combined cycle thermal power plant, a simulator device that employs a general-purpose means for shortening the analysis processing time is required.

【0003】大規模プラント用シミュレータ装置の動特
性解析処理時間の短縮化を図る従来技術として、特開昭
63−216163号公報がある。この従来技術は、プラントの
規模が大きくなるにともない、蒸気表,密度,比熱等の
物性値が膨大になることに注目し、動特性コード解析処
理に並行して、物性値の演算処理だけを独立して実行す
るようにシミュレータ装置を構成している。
As a conventional technique for reducing the dynamic characteristic analysis processing time of a simulator for a large-scale plant, Japanese Patent Laid-Open No.
There is a 63-216163 publication. This conventional technology pays attention to the fact that the physical properties such as the steam table, density, and specific heat become enormous as the scale of the plant increases, and in parallel with the dynamic characteristic code analysis process, only the physical property calculation process is performed. The simulator device is configured to execute independently.

【0004】[0004]

【発明が解決しようとする課題】複合火力発電プラント
は熱効率が高く、今後の火力プラントの主流になると考
えられる。また、火力発電では、電力需要に応じた、高
度な負荷追従運転を行う必要がある。したがって、火力
プラントの運転性能を精度良く、短時間で解析できる、
シミュレータ装置を提供することは非常に重要な課題で
ある。
The combined thermal power plant has high thermal efficiency and is considered to become the mainstream of thermal power plants in the future. Further, in thermal power generation, it is necessary to perform advanced load follow-up operation according to power demand. Therefore, the operating performance of the thermal power plant can be accurately analyzed in a short time,
Providing a simulator device is a very important issue.

【0005】また、プラントが大規模になると、動特性
解析処理時間それ自体が増大する恐れがある。従来技術
では、動特性コード解析処理に並行して、物性値の演算
処理だけを独立して実行するようにシミュレータ装置を
構成しているが、動特性コード解析処理そのものの時間
の短縮化に対する配慮が欠けている。
When the plant becomes large in scale, the dynamic characteristic analysis processing time itself may increase. In the prior art, the simulator device is configured to independently execute only the calculation processing of the physical property values in parallel with the dynamic characteristic code analysis processing, but consideration is given to shortening the time of the dynamic characteristic code analysis processing itself. Is missing.

【0006】本発明は、上記のような背景のもとに、特
に、大規模な配管の管路網系で圧縮性流体を作動させる
プラントにおいて、動特性解析処理時間の短縮に関する
改善方法を備えた、管路網系での圧縮性流体の動特性を
解析するシミュレータ装置を提供するものである。
In view of the above background, the present invention is provided with an improved method for shortening the dynamic characteristic analysis processing time, particularly in a plant in which a compressive fluid is operated in a pipeline network system of large-scale piping. Another object of the present invention is to provide a simulator device for analyzing dynamic characteristics of a compressible fluid in a pipeline network system.

【0007】[0007]

【課題を解決するための手段】本発明は、管路網系の圧
縮性流体の流量計算を以下に示す対象のモデル化と動特
性計算手順に従うことを特徴とする。
SUMMARY OF THE INVENTION The present invention is characterized in that the flow rate calculation of a compressible fluid in a pipeline network system follows the object modeling and dynamic characteristic calculation procedure shown below.

【0008】(1)解析対象の管路網系で、配管と配管
を結合する部分を、2種類の配管結合部でモデル化す
る。即ち、管路網系で体積が相対的に大きい第1の配管
結合部(以下ボリューム)と、主配管から別の配管が分
岐した、体積が相対的に小さい第2の配管結合部(分岐
点)を用いて、管路網系をモデル化する。
(1) In a pipeline network system to be analyzed, a portion connecting pipes to each other is modeled by two types of pipe connecting portions. That is, in the pipeline network system, a first pipe connecting portion (hereinafter referred to as a volume) having a relatively large volume and a second pipe connecting portion (a branch point) having a relatively small volume branched from another pipe from the main pipe. ) Is used to model the pipeline network system.

【0009】(2)前記ボリュームを管路網の境界と考
えることで形成される管路網系をサブ管路網系と考え
て、解析対象の管路網系を複数のサブ管路網系の結合形
と考える。
(2) The pipeline network system formed by considering the volume as the boundary of the pipeline network is considered as a sub pipeline network system, and the pipeline network system to be analyzed is a plurality of sub pipeline networks. Think of it as a combined form of.

【0010】(3)前記ボリュームの圧力計算用演算装
置で、前記ボリュームの圧力変化率を計算し、前記圧力
変化率を用いることで、前記サブ管路網系の境界条件で
ある前記ボリュームの圧力をすべて計算する。
(3) The volume pressure calculation unit calculates the pressure change rate of the volume and uses the pressure change rate to obtain the pressure of the volume which is a boundary condition of the sub pipeline network system. Calculate all.

【0011】(4)手順(3)で求めた圧力データを、
手順(2)で生成された各サブ管路網系の流量計算用演
算装置に送り、各サブ管路網系の管路の流量,分岐点の
圧力およびエンタルピ計算を同時に実行する。
(4) The pressure data obtained in step (3) is
It is sent to the arithmetic unit for calculating the flow rate of each sub pipeline network generated in step (2), and the flow rate of the pipeline of each sub pipeline network, the pressure at the branch point, and the enthalpy calculation are executed at the same time.

【0012】(5)手順(4)で求めた流量およびエン
タルピのデータを、前記ボリュームの圧力計算用演算装
置に転送する。
(5) The flow rate and enthalpy data obtained in the procedure (4) are transferred to the arithmetic unit for pressure calculation of the volume.

【0013】(6)以下、手順(3)から(5)の手順
を解析したい終了時刻まで繰り返す。この計算手順に従
えば、ある時刻における、各サブ管路網系の圧縮性流体
の流量計算を同時に実行することができ、大規模な管路
網系の動特性解析処理時間を短縮化できる。
(6) Hereafter, the steps (3) to (5) are repeated until the analysis ending time. According to this calculation procedure, it is possible to simultaneously perform the flow rate calculation of the compressible fluid of each sub pipeline network system at a certain time, and it is possible to shorten the dynamic characteristic analysis processing time of a large-scale pipeline network system.

【0014】[0014]

【作用】まず最初に、本発明で解析する対象例を図2に
示す。図2は、火力複合発電プラントの水・蒸気管路網
系の概略を示すものである。復水器17から出た水は管
路18を経て、排熱回収ボイラ11に達し、各排熱回収
ボイラ11で蒸気に変わる。生成された蒸気は、各々の
圧力レベルに応じて、蒸気ドラム12を経て管路19を
通る。その後、各圧力レベルの蒸気ヘッダ13で各排熱
回収ボイラ11で生成された蒸気が合流し、蒸気タービ
ン14に達する。一方、蒸気ヘッダ13に至る前には、
管路の分岐部分15があり、制御弁16の開閉によっ
て、蒸気が復水器17へ抜けるようにバイパス系が設置
されている。
First, FIG. 2 shows an example of an object to be analyzed in the present invention. FIG. 2 shows an outline of the water / steam pipeline network system of the combined cycle thermal power plant. The water discharged from the condenser 17 reaches the exhaust heat recovery boiler 11 through the pipe 18, and is converted into steam in each exhaust heat recovery boiler 11. The generated steam passes through the steam drum 12 and the line 19 according to the respective pressure levels. Then, the steam header 13 at each pressure level joins the steam generated in each exhaust heat recovery boiler 11 and reaches the steam turbine 14. On the other hand, before reaching the steam header 13,
There is a branch portion 15 of the pipeline, and a bypass system is installed so that steam can escape to the condenser 17 by opening and closing the control valve 16.

【0015】この対象例で、蒸気が通る配管の結合部
は、蒸気ドラム12や蒸気ヘッダ13を、体積が相対的
に大きい第1の配管結合部と、バイパス系の管路端にあ
たる分岐部分15を、体積が相対的に小さい第2の配管
結合部とに分類して考えることができる。
In this object example, the connecting portion of the pipe through which the steam passes includes the steam drum 12 and the steam header 13, the first connecting portion having a relatively large volume, and the branch portion 15 corresponding to the pipe line end of the bypass system. Can be considered as being classified as a second pipe coupling part having a relatively small volume.

【0016】結合部において、圧縮性流体の圧力変化率
P/dtは、エネルギ保存式,質量保存式、および状態
方程式を連立させることで、次式で求められる。
At the joint portion, the pressure change rate P / dt of the compressive fluid is obtained by the following equation by simultaneous equations of energy conservation equation, mass conservation equation and state equation.

【0017】[0017]

【数1】 [Equation 1]

【0018】数1の右辺第1項は、圧縮性流体の出入に
よる影響を表わし、右辺第2項は、熱輸送による影響を
表わす。数1より、圧力変化率は結合部の体積Vに反比
例する。即ち、結合部の体積が大きい第1の配管結合部
では、圧力変化率は小さいと考えられる。したがって、
第1の配管結合部では、数1で求められる圧力変化率を
用いて、圧力を近似的に計算することができる。このよ
うに圧力を求められる第1の配管結合部を体系の境界と
考えることで、全管路網系をいくつかのサブ管路網系に
分割することができる。したがって、サブ管路網系の境
界である第1の配管結合部全てについて、数1を用いる
ことで圧力を与えてやれば、分割して形成されたサブ管
路網系をそれぞれ並列に解くことができる。
The first term on the right side of the equation (1) represents the effect due to the inflow and outflow of the compressive fluid, and the second term on the right side represents the effect due to the heat transport. From Equation 1, the rate of pressure change is inversely proportional to the volume V of the joint. That is, it is considered that the rate of pressure change is small in the first pipe joint where the volume of the joint is large. Therefore,
In the first pipe joint portion, the pressure can be approximately calculated using the pressure change rate obtained by the equation 1. Thus, by considering the first pipe connecting portion for which the pressure is required as the boundary of the system, the entire pipeline network system can be divided into several sub pipeline network systems. Therefore, if pressure is applied to all the first pipe joints, which are the boundaries of the sub pipeline network system, by using Equation 1, the sub pipeline network systems formed by division can be solved in parallel. You can

【0019】図3に解析対象をモデル化した例を示す。
この例では、管路網1a,1b,1cと、第1の配管結
合部2a,2b,2c,2d,2eおよび第2の配管結
合部3a,3b,3cとで、解析対象の全管路網系をモ
デル化する。この例では、第1の配管結合部で囲まれた
サブ管路網系4a,4b,4cが合計三つ形成される。
シミュレータ装置では、各サブ管路網系に対応して演算
装置を設置することにより、各サブ管路網系の流量計算
を同時に処理することができる。したがって、多数の配
管で構成される大規模な管路網系の動特性解析では、解
析時間の短縮を図ることができる。
FIG. 3 shows an example of modeling the analysis target.
In this example, the pipeline networks 1a, 1b, 1c, the first pipe coupling portions 2a, 2b, 2c, 2d, 2e and the second pipe coupling portions 3a, 3b, 3c are used to analyze all pipelines to be analyzed. Model the network system. In this example, a total of three sub-pipe network systems 4a, 4b, 4c surrounded by the first pipe connecting portion are formed.
In the simulator device, by installing an arithmetic device corresponding to each sub pipeline network system, it is possible to simultaneously process the flow rate calculation of each sub pipeline network system. Therefore, in the dynamic characteristic analysis of a large-scale pipeline network system composed of a large number of pipes, the analysis time can be shortened.

【0020】[0020]

【実施例】以下に、本発明の実施例を示す。EXAMPLES Examples of the present invention will be shown below.

【0021】図1は、本発明による管路平均流量の動特
性解析手順を示したものである。まず、ステップにお
いて、管路網系にあるすべての第1の配管結合部(ボリ
ューム)に対し、数1により圧力変化率dPl(n)/dt
を計算し、これを用いてボリューム圧力Pl(n+1)を計算
する。解析対象とする全管路網系は、サブ管路網系に分
割しておく。次に、ステップにおいて、各サブ管路網
系が必要とするボリューム圧力を各々に割り当てて、運
動量保存式および質量保存式を解くことで、サブ管路網
系内の各管路流量Wk(n+1)および分岐圧力PBj(n+1)
計算する。ステップで求まった流量は、次の時刻ステ
ップにおいて、ステップで求める圧力変化率を計算す
るのに用いる。
FIG. 1 shows a procedure for analyzing the dynamic characteristic of the average flow rate of the pipeline according to the present invention. First, in the step, the rate of pressure change dP l (n) / dt is calculated by the equation 1 for all the first pipe joints (volumes) in the pipeline network system.
Is calculated, and the volume pressure P l (n + 1) is calculated using this. The entire pipeline network system to be analyzed is divided into sub pipeline network systems. Next, in a step, by assigning the volume pressure required by each sub pipeline network to each and solving the momentum conservation equation and the mass conservation equation, each pipeline flow rate W k ( n + 1) and the branch pressure P Bj (n + 1) are calculated. The flow rate obtained in the step is used in the next time step to calculate the pressure change rate obtained in the step.

【0022】図4に動特性計算手順を適用したシミュレ
ーション装置の基本構成を示す。動特性コード演算装置
5は、ボリューム圧力を計算する境界圧力演算装置6
と、四つのサブ管路網系の流量および分岐圧力演算装置
7から構成される。境界圧力演算装置6では、サブ管路
網系の流量および分岐圧力演算装置7で計算される流量
およびエンタルピのデータを受け取り、ボリューム圧力
を計算する。計算したボリューム圧力のデータは、それ
ぞれ必要とされるサブ管路網系の流量および分岐圧力演
算装置7に引き渡し、流量および分岐圧力演算装置7
で、流量および分岐圧力を計算する。このようにして、
各サブ管路網系の動特性解析を並列して実行させること
により、解析処理時間を短縮することができる。
FIG. 4 shows the basic configuration of a simulation apparatus to which the dynamic characteristic calculation procedure is applied. The dynamic characteristic code calculating device 5 is a boundary pressure calculating device 6 for calculating a volume pressure.
And a flow rate and branch pressure calculation device 7 of four sub pipeline networks. The boundary pressure calculation device 6 receives the flow rate and enthalpy data calculated by the flow rate and branch pressure calculation device 7 of the sub pipeline network system, and calculates the volume pressure. The calculated volume pressure data is transferred to the required flow rate and branch pressure calculation device 7 of the sub-pipe network, and the flow rate and branch pressure calculation device 7 is supplied.
Calculate the flow rate and branch pressure at. In this way
The analysis processing time can be shortened by executing the dynamic characteristic analysis of each sub pipeline network system in parallel.

【0023】[0023]

【発明の効果】本発明によるシミュレータ装置を用いれ
ば、解析処理時間を短縮することができ、特に圧縮性流
体が流れる、多数の配管で構成された大規模な管路網系
を持つプラントの運転性能を解析するのに有効である。
By using the simulator device according to the present invention, the analysis processing time can be shortened, and particularly, the operation of a plant having a large-scale pipeline network system composed of a large number of pipes in which a compressible fluid flows. It is effective for analyzing the performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の計算手順を示すフローチャート。FIG. 1 is a flowchart showing a calculation procedure of the present invention.

【図2】本発明のシミュレータ装置の解析対象例で、高
性能火力複合発電プラントの水・蒸気管路網系の系統
図。
FIG. 2 is a system diagram of a water / steam pipeline network system of a high-performance combined cycle power plant, which is an example of an analysis target of the simulator device of the present invention.

【図3】本発明の計算方法を適用する時の、解析対象の
モデル化の例を示す説明図。
FIG. 3 is an explanatory diagram showing an example of modeling an analysis target when applying the calculation method of the present invention.

【図4】本発明の実施例で、シミュレータ装置の基本構
成を示す説明図。
FIG. 4 is an explanatory diagram showing a basic configuration of a simulator device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…管路網、2…第1の配管結合部、3…第2の配管結
合部、4…サブ管路網系、5…動特性コード演算装置、
6…境界圧力演算装置、7…流量および分岐圧力演算装
置。
DESCRIPTION OF SYMBOLS 1 ... Pipe network, 2 ... 1st pipe connection part, 3 ... 2nd pipe connection part, 4 ... Sub pipe network system, 5 ... Dynamic characteristic code arithmetic unit,
6 ... Boundary pressure calculation device, 7 ... Flow rate and branch pressure calculation device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮性流体が流れる多数の配管で構成され
た大規模な管路網系内の動特性を解析するシミュレータ
装置において、前記配管どうしの結合部を、前記管路網
系で前記結合部の体積が相対的に大きい第1の配管結合
部と、主配管から別の配管が分岐した結合部のように、
結合部の体積が相対的に小さい第2の配管結合部とを考
えることにより、前記管路網系全体を前記第1の配管結
合部を管路端として囲まれるサブ管路網系に分類すると
いう解析手順を含むことを特徴とする圧縮性流体配管系
シミュレータ装置。
1. A simulator device for analyzing dynamic characteristics in a large-scale pipe network system composed of a large number of pipes through which a compressive fluid flows, wherein a joint portion between the pipes is formed by the pipe network system. Like the first pipe joint where the volume of the joint is relatively large and the joint where another pipe branches from the main pipe,
Considering the second pipe joint portion in which the volume of the joint portion is relatively small, the entire pipe network system is classified into a sub-pipe network system surrounded by the first pipe joint portion as a pipe end. A compressible fluid piping system simulator device including the following analysis procedure.
【請求項2】請求項1において、前記各第1の配管結合
部の圧力変化率を用いることにより、ある時刻の、前記
各第1の配管結合部の圧力を1度にすべて計算する圧縮
性流体配管系シミュレータ装置。
2. The compressibility according to claim 1, wherein the pressure change rate of each of the first pipe joints is used to calculate the pressure of each of the first pipe joints at a certain time all at once. Fluid piping system simulator device.
【請求項3】請求項2において、計算したボリューム圧
力のデータを複数の各サブ管路網系の流量計算用演算装
置に転送し、前記演算装置を同時に実行させる圧縮性流
体配管系シミュレータ装置。
3. A compressible fluid piping system simulator apparatus according to claim 2, wherein the calculated volume pressure data is transferred to a plurality of flow rate calculating arithmetic units for each sub-pipe network system, and the arithmetic units are simultaneously executed.
JP33409792A 1992-12-15 1992-12-15 Compressive fluid piping system simulator device Pending JPH06187321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33409792A JPH06187321A (en) 1992-12-15 1992-12-15 Compressive fluid piping system simulator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33409792A JPH06187321A (en) 1992-12-15 1992-12-15 Compressive fluid piping system simulator device

Publications (1)

Publication Number Publication Date
JPH06187321A true JPH06187321A (en) 1994-07-08

Family

ID=18273498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33409792A Pending JPH06187321A (en) 1992-12-15 1992-12-15 Compressive fluid piping system simulator device

Country Status (1)

Country Link
JP (1) JPH06187321A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096083B2 (en) 2002-07-29 2006-08-22 Hitachi, Ltd. Design support apparatus and method for supporting design of resin mold product
JP2007323510A (en) * 2006-06-02 2007-12-13 Mitsubishi Heavy Ind Ltd Method for calculating flow-path network
KR20190043775A (en) * 2017-10-19 2019-04-29 현대자동차주식회사 Simulation method for flowing implementation of fluid
CN112883662A (en) * 2021-02-01 2021-06-01 清华大学 Method and system for estimating hydraulic state of dynamic operation of steam heating network

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096083B2 (en) 2002-07-29 2006-08-22 Hitachi, Ltd. Design support apparatus and method for supporting design of resin mold product
JP2007323510A (en) * 2006-06-02 2007-12-13 Mitsubishi Heavy Ind Ltd Method for calculating flow-path network
KR20190043775A (en) * 2017-10-19 2019-04-29 현대자동차주식회사 Simulation method for flowing implementation of fluid
CN112883662A (en) * 2021-02-01 2021-06-01 清华大学 Method and system for estimating hydraulic state of dynamic operation of steam heating network
JP2023515756A (en) * 2021-02-01 2023-04-14 清華大学 Method and system for estimating hydraulic conditions in dynamic operation of steam heat supply networks
CN112883662B (en) * 2021-02-01 2024-05-10 清华大学 Dynamic operation hydraulic state estimation method and system for steam heating network

Similar Documents

Publication Publication Date Title
CN111723450B (en) Nuclear power plant safety analysis method and system
CN110288135B (en) Drainage water level energy-saving optimization method for high-pressure heating system
CN115079592B (en) Pipe network simulation method for thermodynamic system of ship nuclear power device
Lu et al. An object-oriented power plant adaptive control system design tool
CN112182905B (en) Heat supply pipe network simulation method and device for comprehensive energy system
JPH06187321A (en) Compressive fluid piping system simulator device
Abdella et al. Parameters calculation of thermal power plant dynamic model using steam cycle data
CN109783882A (en) A kind of gas turbine fuel system modeling and simulating method for combining matlab and flowmaster
Silva et al. Thermodynamic information system for diagnosis and prognosis of power plant operation condition
JP2013161480A (en) Steam turbine performance testing system and method
CN109977598B (en) Load analysis method for valve downstream discharge pipe
CN102967465A (en) Fuel chamber virtual test method and system
Li et al. Operation Data based Modelling and Optimization of Thermal Power Units under Full Working Conditions
JP3556384B2 (en) Waterway simulator
CN112364552A (en) High-pressure cylinder dynamic thermal stress analysis method based on finite element
Greyvenstein et al. Dynamic modelling of heat, mass and momentum transfer in the Pebble Bed Modular Reactor
Huzarek et al. Static model of steam/water cycle for thermal and economic analysis
Kubiak et al. Simulation of the effect of scale deposition on a geothermal turbine
KR100600993B1 (en) Method For Fluid Flow-Characteristics Analysis Of Pipe line
Gluch et al. Application of incomplete measurement data to thermal diagnostics of complex power systems components
Prinsloo et al. Online Performance Monitoring of Discrete Legs in a Convective Heat Exchanger of a Coal Fired Power Plant Boiler
Nakao et al. Development of general-purpose software to analyze the static thermal characteristic of nuclear power plant
Nakao et al. Development of General-Purpose Software to Analyze the Static Thermal Characteristic of Nuclear Power Generation System
Ab Karima et al. Fuzzy Arithmetical Modeling of a Steam Turbine and a Boiler System
Liu et al. DEVELOPMENT OF DISTRIBUTED PERFORMANCE MONITORING AND ANALYSIS SYSTEM FOR NUCLEAR POWER PLANT.