JPH06186466A - Photographing device having temperature compensation function - Google Patents

Photographing device having temperature compensation function

Info

Publication number
JPH06186466A
JPH06186466A JP35462492A JP35462492A JPH06186466A JP H06186466 A JPH06186466 A JP H06186466A JP 35462492 A JP35462492 A JP 35462492A JP 35462492 A JP35462492 A JP 35462492A JP H06186466 A JPH06186466 A JP H06186466A
Authority
JP
Japan
Prior art keywords
lens
air gap
barrel
linear expansion
optical unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35462492A
Other languages
Japanese (ja)
Inventor
Yusuke Furue
祐輔 古江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP35462492A priority Critical patent/JPH06186466A/en
Publication of JPH06186466A publication Critical patent/JPH06186466A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photographing device having a temperature compensation function and capable of reducing the variation of an image forming position due to the temperature change and maintaining the excellent picture quality. CONSTITUTION:In a lens system having at least one convex lenses whose temperature coefficients of refractive index are negative, when the lateral magnification of an optical unit on the object side partitioned by an air gap where the sensitivity in the lens system is negative is defined as betai and the lateral magnification of an optical unit on the image plane side is defined as betak, the condition that (1-betai<2>).betak<2>>0.5 is satified, and the variation of an image forming position due to the temperature change is reduced by using a material in which the coefficient of linear expansion of a main body barrel 22 for holding lens holding barrels 21a, 21b is larger than that of the material of the lens holding barrels 21a, 21b holding the optical unit partitioned by the air gap.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は温度補償機能を有した撮
影装置に関し、例えば写真用カメラ、ビデオ用カメラ、
そしてテレビ用カメラ等に使用される蛍石や異常分散ガ
ラスなどを使用して軸上色収差の2次スペクトルを補正
した固定焦点距離レンズにおいて、レンズ保持鏡筒及び
該レンズ保持鏡筒を保持する本体鏡筒に適切なる線膨張
係数を有する材料を用いることにより、温度変化に伴な
う結像位置(結像性能)の変動を小さく抑えた温度補償
機能を有した撮影装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photographing device having a temperature compensation function, for example, a photographic camera, a video camera,
Then, in a fixed focal length lens in which a secondary spectrum of axial chromatic aberration is corrected by using fluorite or anomalous dispersion glass used for a television camera or the like, a lens holding barrel and a main body holding the lens holding barrel The present invention relates to an image pickup apparatus having a temperature compensation function that suppresses a change in image forming position (image forming performance) due to a temperature change by using a material having an appropriate linear expansion coefficient for a lens barrel.

【0002】[0002]

【従来の技術】従来より写真用カメラ、ビデオ用カメ
ラ、そしてテレビ用カメラ等に用いられる固定焦点距離
レンズには、色収差補正の為に通常の分散の光学ガラス
の他に異常分散ガラスが使用されている。
2. Description of the Related Art In conventional fixed focal length lenses used for photographic cameras, video cameras, television cameras and the like, anomalous dispersion glass is used in addition to ordinary dispersion optical glass for chromatic aberration correction. ing.

【0003】特に長焦点距離の望遠用レンズや3板式ビ
デオカメラ用の固定焦点距離レンズでは軸上色収差を小
さく抑える為に異常分散ガラスや蛍石等を多用して構成
している。
In particular, a telephoto lens having a long focal length and a fixed focal length lens for a three-plate video camera are often constructed by using anomalous dispersion glass and fluorite in order to suppress axial chromatic aberration.

【0004】例えばフランジバックが空気換算(in
air)で48mm程度ある3板式の放送用カメラのレ
ンズ系では軸上色収差がB(青色光)−G(緑色光)=
30μm、R(赤色光)−G(緑色光)=4μm程度と
なるように規格化されている。
For example, the flange back is converted into air (in
In a lens system of a three-plate type broadcasting camera whose air is about 48 mm, the axial chromatic aberration is B (blue light) -G (green light) =
30 μm, R (red light) -G (green light) = about 4 μm.

【0005】このような場合、ズームレンズでは比較的
容易にこの規格に合わせて色収差を補正することができ
る。
In such a case, the zoom lens can relatively easily correct chromatic aberration in accordance with this standard.

【0006】しかしながら固定焦点距離レンズでは、ズ
ームレンズに比べてレンズ系全体をよりコンパクト化し
て構成する必要がある為、軸上色収差のうち2次スペク
トルを通常の分散のガラスのみを用いたのでは良好に補
正することが難しい。この為多くの場合、異常分散ガラ
スや蛍石等を多く用いている。
However, in a fixed focal length lens, it is necessary to make the entire lens system more compact than in a zoom lens, so that it is not possible to use only glass having a normal secondary dispersion of axial chromatic aberration. It is difficult to correct it well. Therefore, in many cases, anomalous dispersion glass, fluorite, etc. are often used.

【0007】[0007]

【発明が解決しようとする課題】一般に通常の分散性を
有する光学ガラスは環境温度が変化したとき材質の温度
が変化し、これにより屈折率に変動が生じエレメントの
焦点距離が変化してくるという光学的性質がある。その
結果、結像面での結像位置等の結像状態が変化してくる
という問題点があった。
Generally, in optical glass having ordinary dispersibility, the temperature of the material changes when the environmental temperature changes, which causes a change in the refractive index and a change in the focal length of the element. It has optical properties. As a result, there is a problem that the image forming state such as the image forming position on the image forming surface changes.

【0008】光学ガラスの屈折率に対する温度係数(温
度変化に対する屈折率変化の比)は一般的に正である。
この為、凸レンズ(正レンズ)と凹レンズ(負レンズ)
とを適切に組み合わせてレンズ系を構成すれば温度変化
による結像位置の変化をある程度打ち消すことができ
る。
The temperature coefficient with respect to the refractive index of optical glass (the ratio of the change in the refractive index to the change in temperature) is generally positive.
Therefore, a convex lens (positive lens) and a concave lens (negative lens)
By appropriately combining and to form the lens system, it is possible to cancel the change in the imaging position due to the temperature change to some extent.

【0009】これに対して前述したように望遠用レンズ
などで用いられる異常分散ガラス(例えば小原光学硝子
株式会社製のカタログにおけるFPL51,FPL5
2,FPL53,PHM52等)や蛍石等は屈折率の温
度係数が負である。この為、凸レンズと凹レンズの光学
的な影響が重なり温度が変化したときの結像位置の変動
が非常に大きくなってくる。
On the other hand, as described above, anomalous dispersion glass used in a telephoto lens or the like (for example, FPL51 and FPL5 in a catalog manufactured by Ohara Optical Glass Co., Ltd.)
(2, FPL53, PHM52, etc.) and fluorite have a negative temperature coefficient of refractive index. Therefore, the optical influences of the convex lens and the concave lens are overlapped with each other, and the change of the image forming position becomes very large when the temperature changes.

【0010】その結果、温度変化による像のボケやピン
ト合わせの際の距離目盛りのズレ等の不都合が生じ光学
性能が大きく低下してくるという問題点があった。
As a result, there is a problem in that the optical performance is greatly deteriorated due to inconveniences such as image blurring due to temperature change and displacement of the distance scale during focusing.

【0011】その為、異常分散ガラスや蛍石等を使用し
たレンズ系のときには何らかの補正手段により温度が変
化したときの結像位置の変動を小さく抑える手段を必要
としている。
Therefore, in the case of a lens system using anomalous dispersion glass, fluorite, or the like, there is a need for a means for suppressing the fluctuation of the image forming position when the temperature changes by some correction means.

【0012】本発明は上述の問題点を解決する為に敏感
度(空気間隔の変化に対する結像位置の変化の割合)が
負(空気間隔が広がったとき、結像位置がレンズ側に変
化する方向)であり、かつ絶対値が比較的大きい空気間
隔を境にしてレンズ系全体を複数の光学ユニットに分割
し、該分割された複数の光学ユニットを保持するレンズ
保持鏡筒の材料及び該レンズ保持鏡筒を保持する本体鏡
筒の材料に適切なる線膨張係数を有する材料を用いるこ
とにより、温度が変化してレンズ系を構成する各レンズ
の材質の屈折率が変動しても結像位置の変動が少なくな
るようにし、常に高い光学性能を維持することができる
ようにした温度補償機能を有した撮影装置の提供を目的
とする。
In order to solve the above-mentioned problems, the present invention has a negative sensitivity (ratio of change in image forming position with respect to change in air gap) (when the air gap is widened, the image forming position changes to the lens side). Direction) and the absolute value of which is relatively large, the entire lens system is divided into a plurality of optical units at the boundary, and the material of the lens holding barrel for holding the plurality of divided optical units and the lens. By using a material having an appropriate linear expansion coefficient as the material of the main body barrel that holds the holding barrel, even if the temperature changes and the refractive index of each lens constituting the lens system fluctuates, the imaging position It is an object of the present invention to provide an image pickup apparatus having a temperature compensation function, which is capable of constantly maintaining high optical performance by reducing the fluctuation of

【0013】[0013]

【課題を解決するための手段】本発明の温度補償機能を
有した撮影装置は、屈折率の温度係数が負である凸レン
ズを少なくとも1つ有するレンズ系において、該レンズ
系中の敏感度が負である空気間隔を境にして物体側の光
学ユニットの横倍率をβ 、それより像面側の光学ユ
ニットの横倍率をβ としたとき (1−β 2)×β 2 > 0.5 ‥‥‥‥(1) なる条件を満足し、該空気間隔を境にして分割した光学
ユニットを保持するレンズ保持鏡筒の材料の線膨張係数
よりも、該レンズ保持鏡筒を保持する本体鏡筒の線膨張
係数が大きい材料を用い温度変化に伴なう結像位置の変
動量を少なくしたことを特徴としている。
A photographing apparatus having a temperature compensation function of the present invention is a lens system having at least one convex lens having a negative temperature coefficient of refractive index, and the sensitivity in the lens system is negative. When the lateral magnification of the optical unit on the object side is β i and the lateral magnification of the optical unit on the image plane side is β k with the air space as the boundary, then (1-β i 2 ) × β k 2 > 0 ........................ (1) Hold the lens holding barrel more than the linear expansion coefficient of the material of the lens holding barrel that holds the optical unit divided by the air gap as the condition (1). It is characterized by using a material having a large linear expansion coefficient of the main body barrel to reduce the amount of fluctuation of the imaging position due to temperature change.

【0014】[0014]

【実施例】図1は本発明の実施例1の後述する数値実施
例のレンズ系を有するレンズ鏡筒本体の要部概略図であ
る。
EXAMPLE 1 FIG. 1 is a schematic view of a main part of a lens barrel main body having a lens system of a numerical example to be described later in Example 1 of the present invention.

【0015】同図において1,3,6,7,9,11,
13,14は各々凸レンズ(正レンズ)であり、異常分
散ガラスより成っており、これらを用いることにより軸
上色収差のうち2次スペクトルを良好に補正している。
そしてレンズ1の材質はFPL03、3はPHM52、
6,9,11,14はFPL01、7,13はFPL0
2であり、いずれも屈折率の温度係数は負である。
In the figure, 1, 3, 6, 7, 9, 11,
Reference numerals 13 and 14 denote convex lenses (positive lenses), which are made of extraordinary dispersion glass. By using these, the secondary spectrum of the axial chromatic aberration is satisfactorily corrected.
The lens 1 is made of FPL03, 3 is PHM52,
6,9,11,14 are FPL01, 7 and 13 are FPL0
The temperature coefficient of the refractive index is negative in both cases.

【0016】2,4,5,8,10,12は各々凹レン
ズ(負レンズ)であり、一般のガラスより分散の大きい
光学ガラスより成っており、先の正レンズとを組み合わ
せて色収差をバランス良く補正している。これらの凹レ
ンズの材質の屈折率の温度係数は正である。
Reference numerals 2, 4, 5, 8, 10, and 12 are concave lenses (negative lenses), which are made of optical glass having a larger dispersion than general glass, and are combined with the positive lens described above to balance chromatic aberration. Correcting. The temperature coefficient of the refractive index of the material of these concave lenses is positive.

【0017】本実施例におけるレンズ系は空気間隔の敏
感度(空気間隔の変化に対する結像位置の変化の割合)
の絶対値が最も大きく、かつ負である凹レンズ5と凸レ
ンズ6との空気間隔D9を境にして前側レンズユニット
Aと後側レンズユニットBとの2つの部分系(光学ユニ
ット)に分割している。
The lens system in this embodiment is sensitive to the air gap (ratio of the change in the image forming position to the change in the air gap).
Is divided into two subsystems (optical unit) of a front lens unit A and a rear lens unit B with an air gap D9 between the concave lens 5 and the convex lens 6 having the largest negative value as a boundary. .

【0018】尚、本実施例において後述する条件式
(1)を満足すればレンズ系を分割する位置(空気間
隔)はこの位置に限定されることはない。
In this embodiment, if the conditional expression (1) described later is satisfied, the position (air interval) at which the lens system is divided is not limited to this position.

【0019】21aは前側レンズユニットAを保持する
レンズ保持鏡筒、21bは後側レンズユニットBを保持
するレンズ保持鏡筒である。
Reference numeral 21a is a lens holding barrel for holding the front lens unit A, and 21b is a lens holding barrel for holding the rear lens unit B.

【0020】該レンズ保持鏡筒21a,21bの材料に
はガラスと同程度の線膨張係数を有することが望まし
い。
It is desirable that the material of the lens holding barrels 21a and 21b has a linear expansion coefficient similar to that of glass.

【0021】本実施例では鉄(線膨張係数=11.8×
10-6:理科年表よりの数値、以下同様)を用いてい
る。
In this embodiment, iron (coefficient of linear expansion = 11.8 ×
10 -6 : Numerical values from the science chronology, the same applies below).

【0022】このガラスと同程度の線膨張係数を持つ鉄
をレンズ保持部材として用いたのはレンズ保持鏡筒21
a,21bが異常分散ガラスや光学ガラス等より成るレ
ンズ1〜14と直接接触している為、該ガラスとの線膨
張係数の差が大きいと例えば大きな温度変化が生じたと
き、該ガラスが割れるのを防止する為である。
The lens holding lens barrel 21 is made of iron having a linear expansion coefficient similar to that of the glass as the lens holding member.
Since a and 21b are in direct contact with the lenses 1 to 14 made of anomalous dispersion glass or optical glass, if the difference in linear expansion coefficient with the glass is large, the glass will break when a large temperature change occurs, for example. This is to prevent this.

【0023】ガラスの線膨張係数は5×10−6〜15
×10-6 程度である。特に、異常分散性のガラスは、
線膨張係数が大きいと共にもろく割れやすい性質である
ため注意が必要である。レンズ保持鏡筒の材質は使用さ
れているレンズ材の線膨張係数に対して±70%以内と
することが好ましい。
The linear expansion coefficient of glass is 5 × 10 −6 to 15
It is about 10 −6 . In particular, glass with anomalous dispersion is
Care must be taken as it has a large linear expansion coefficient and is brittle and easily cracked. The material of the lens holding barrel is preferably within ± 70% of the linear expansion coefficient of the lens material used.

【0024】22は本体鏡筒であり、レンズ保持鏡筒2
1a,21bを保持している。該本体鏡筒22にはレン
ズ保持鏡筒の線膨張係数より大きい、例えば亜鉛(線膨
張係数=30.2×10-6)等の材料を用いている。本
体鏡筒とレンズ保持鏡筒の線膨張係数の比は、1.5倍
程度以上あることが望ましい。
Reference numeral 22 denotes a main body barrel, which is a lens holding barrel 2.
It holds 1a and 21b. The body barrel 22 is made of a material such as zinc (coefficient of linear expansion = 30.2 × 10 −6 ) which is larger than the linear expansion coefficient of the lens holding barrel. It is desirable that the ratio of the linear expansion coefficient between the main body barrel and the lens holding barrel is about 1.5 times or more.

【0025】23は絞り、24は結像面、L1,L2は
各々鏡筒材料のスパンであり、本実施例においてはL1
=87(mm)、L2=100(mm)と設定してい
る。
Reference numeral 23 is a stop, 24 is an image plane, and L1 and L2 are spans of lens barrel materials. In this embodiment, L1 is used.
= 87 (mm) and L2 = 100 (mm).

【0026】本実施例においては、線膨張係数が異なる
2種類の鏡筒材料の膨張率の差を利用して温度変化が生
じたとき、ガラス材のレンズの屈折率が変動して結像位
置が変化しても該鏡筒材料が膨張して負の敏感度の空気
間隔が変化することにより、結像位置の変動量が小さく
なるように抑えている。
In this embodiment, when a temperature change is caused by utilizing the difference in expansion coefficient between two kinds of lens barrel materials having different linear expansion coefficients, the refractive index of the glass lens fluctuates and the image forming position. Even if the change occurs, the lens barrel material expands and the air gap with negative sensitivity changes, so that the amount of fluctuation of the image forming position is suppressed to be small.

【0027】本実施例において物体側から数えて第i番
面の第iレンズ面から第i+1レンズ面の空気間隔が変
化したときの敏感度は以下に示す如く求めている。
In the present embodiment, the sensitivity when the air distance from the i-th lens surface of the i-th surface to the (i + 1) -th lens surface counting from the object side is changed is obtained as follows.

【0028】即ち、第iレンズ面より物体側の部分系
(前側レンズユニットA)の横倍率をβi 、第i+1レ
ンズ面から最終レンズ面までの部分系(後側レンズユニ
ットB)の横倍率をβk としたとき、敏感度Mは M=−(1−βi 2)×βk 2 となる。
That is, the lateral magnification of the partial system (front lens unit A) on the object side of the i-th lens surface is β i , and the lateral magnification of the partial system (rear lens unit B) from the (i + 1) th lens surface to the final lens surface. Is β k , the sensitivity M is M = − (1-β i 2 ) × β k 2 .

【0029】本実施例のように2つの鏡筒材料の線膨張
率の差を利用して結像位置を良好に補正する為には敏感
度Mは大きい方が好ましい。即ち本実施例においては敏
感度Mの値が (1−βi 2)×βk 2 > 0.5 ‥‥‥‥(1) となる条件を満足するような空気間隔でレンズ系を2つ
の部分系に分割している。
In order to satisfactorily correct the image forming position by utilizing the difference in linear expansion coefficient between the two lens barrel materials as in the present embodiment, it is preferable that the sensitivity M is large. That is, in this embodiment, two lens systems are arranged at an air gap that satisfies the condition that the value of the sensitivity M is (1-β i 2 ) × β k 2 > 0.5 (1). It is divided into subsystems.

【0030】ここで条件式(1)はレンズ系を2つの部
分系に分割する際の空気間隔の敏感度の値を規定したも
のである。条件式(1)を外れると温度変化による結像
位置の変動を小さく補正するのが困難となり、良好なる
画質を維持するのが難しくなってくるので良くない。
Conditional expression (1) defines the value of the sensitivity of the air gap when the lens system is divided into two subsystems. If the conditional expression (1) is not satisfied, it becomes difficult to correct the fluctuation of the imaging position due to the temperature change to a small extent, and it becomes difficult to maintain a good image quality, which is not preferable.

【0031】ここで具体的な数値を用いて本実施例の効
果について説明する。本実施例における前側レンズユニ
ットAの横倍率βi はβi =1.053×10-28 、後
側レンズユニットBの横倍率βk =−0.950となる
ので敏感度Mは M=(1−βi 2)×βk =0.902 となる。この値は前述の条件式(1)を満足している。
Here, the effects of this embodiment will be described using specific numerical values. The lateral magnification β i of the front lens unit A in this embodiment is β i = 1.053 × 10 −28 , and the lateral magnification β k of the rear lens unit B is β k = −0.950, so the sensitivity M is M = ( 1−β i 2 ) × β k = 0.902. This value satisfies the conditional expression (1) described above.

【0032】即ち、この空気間隔より物体側の前側レン
ズユニットAが物体側に移動し、空気間隔が例えばΔ広
がった場合、バックフォーカスは−0.902×Δだけ
短くなることが分かる。
That is, when the front lens unit A closer to the object side than the air gap moves toward the object side and the air gap widens by Δ, for example, the back focus becomes shorter by -0.902 × Δ.

【0033】今、数値実施例より凹レンズ5と凸レンズ
6との空気間隔が25であり、このときの空気間隔D9
の敏感度を−0.9、前述の各パラメータの数値を用い
ると、例えば温度が20°Cから40°Cまで変化した
ときの結像位置の補正量Pを求めると P=25×(−0.9)×30.2×10-6×20+8
7×(−0.9)×(30.2−11.8)×10-6×
20+100×(−0.9)×(30.2−11.8)
×10-6×20=−75.5μm となる。
Now, the air gap between the concave lens 5 and the convex lens 6 is 25 according to the numerical example, and the air gap D9 at this time is
When the temperature is changed from 20 ° C. to 40 ° C. and the correction amount P of the image forming position is calculated, P = 25 × (− 0.9) x 30.2 x 10 -6 x 20 + 8
7 x (-0.9) x (30.2-11.8) x 10-6 x
20 + 100 × (−0.9) × (30.2-11.8)
× 10 −6 × 20 = −75.5 μm.

【0034】一方、温度が変化して(20°C〜40°
C)レンズの屈折率が変化することによる結像位置の変
動量は略80μmである。
On the other hand, the temperature changes (20 ° C to 40 ° C).
C) The amount of change in the imaging position due to the change in the refractive index of the lens is approximately 80 μm.

【0035】即ち、本実施例による最終的な結像位置の
変化量は上記より4.5μmとなり、この値は本装置の
許容範囲内であり、実使用上殆んど問題とはならない。
That is, the final amount of change in the image forming position according to the present embodiment is 4.5 μm from the above, and this value is within the allowable range of the present apparatus, and there is almost no problem in actual use.

【0036】このように本実施例においては線膨張係数
の異なる2つの鏡筒部材の膨張率の差を効果的に利用し
て空気間隔を適切に変化させることにより、温度変化に
伴なう結像位置の変動を小さく抑えることができ、これ
により良好なる画質を維持している。
As described above, in the present embodiment, the air gap is appropriately changed by effectively utilizing the difference in the expansion coefficient between the two lens barrel members having different linear expansion coefficients, so that the result due to the temperature change can be obtained. The fluctuation of the image position can be suppressed to a small level, thereby maintaining good image quality.

【0037】尚、本実施例においてはレンズ保持鏡筒2
1a,21bの材料として鉄を用いたが、例えばアルミ
ニウムやパーマロイ等のガラスと同程度の線膨張係数を
持つ材料を用いても良く、又本体鏡筒22の材料として
亜鉛の代わりに黄銅や青銅、合成樹脂等の線膨張係数の
大きい材料を用いても本発明は前述の実施例と同様に適
用することができる。
In this embodiment, the lens holding barrel 2
Although iron is used as the material of 1a and 21b, a material having a linear expansion coefficient similar to that of glass such as aluminum or permalloy may be used, and brass or bronze is used instead of zinc as the material of the main lens barrel 22. The present invention can be applied in the same manner as the above-mentioned embodiment even if a material having a large linear expansion coefficient such as a synthetic resin is used.

【0038】次に図1に示すレンズ系の数値実施例を示
す。数値実施例においてRiは物体側より順に第i番目
のレンズ面の曲率半径、Diは物体側より第i番目のレ
ンズ厚及び空気間隔、Niとνiは各々物体側より順に
第i番目のレンズのガラスの屈折率とアッベ、FNoは
口径比、fは焦点距離、ωが半画角、fbはバックフォ
ーカスである。
Next, numerical examples of the lens system shown in FIG. 1 will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air gap from the object side, and Ni and νi are respectively from the object side of the i-th lens. Refractive index and Abbe of glass, FNo is aperture ratio, f is focal length, ω is half angle of view, and fb is back focus.

【0039】(数値実施例) FNO=1:1.4 f=100 ω= 2.90 fb=22.20 R 1= 175.79 D 1= 10.00 N 1=1.438750 ν 1=94.97 R 2= -131.61 D 2= 0.50 R 3= 65.48 D 3= 3.00 N 2=1.712995 ν 2=53.84 R 4= 56.68 D 4= 13.00 N 3=1.618000 ν 3=63.39 R 5= 2474.82 D 5= 29.29 R 6= -95.33 D 6= 2.00 N 4=1.620410 ν 4=60.28 R 7= 38.94 D 7= 8.55 R 8= -22.45 D 8= 4.80 N 5=1.785896 ν 5=44.19 R 9= 78.35 D 9= 19.00 R10= ∞ D10= 6.00 R11= -251.22 D11= 9.69 N 6=1.496999 ν 6=81.61 R12= -32.09 D12= 0.70 R13= -129.15 D13= 9.21 N 7=1.455999 ν 7=90.31 R14= -36.53 D14= 2.20 N 8=1.691002 ν 8=54.84 R15= -63.40 D15= 0.50 R16= 140.18 D16= 10.15 N 9=1.496999 ν 9=81.61 R17= -58.00 D17= 2.20 N10=1.696797 ν10=55.53 R18= -236.52 D18= 0.50 R19= 75.48 D19= 6.98 N11=1.496999 ν11=81.61 R20= -865.55 D20= 43.00 R21= 89.26 D21= 2.50 N12=1.834807 ν12=42.72 R22= 45.09 D22= 0.86 R23= 52.97 D23= 9.01 N13=1.455999 ν13=90.31 R24= -112.94 D24= 0.50 R25= 44.78 D25= 4.83 N14=1.496999 ν14=81.61 R26= 106.33 D26= 5.00 R27= ∞ D27= 30.00 N15=1.603420 ν15=38.01 R28= ∞ D28= 16.20 N16=1.516330 ν16=64.15(Numerical Example) FNO = 1: 1.4 f = 100 ω = 2.90 fb = 22.20 R 1 = 175.79 D 1 = 10.00 N 1 = 1.438750 ν 1 = 94.97 R 2 = -131.61 D 2 = 0.50 R 3 = 65.48 D 3 = 3.00 N 2 = 1.712995 ν 2 = 53.84 R 4 = 56.68 D 4 = 13.00 N 3 = 1.618000 ν 3 = 63.39 R 5 = 2474.82 D 5 = 29.29 R 6 = -95.33 D 6 = 2.00 N 4 = 1.620410 ν 4 = 60.28 R 7 = 38.94 D 7 = 8.55 R 8 = -22.45 D 8 = 4.80 N 5 = 1.785896 ν 5 = 44.19 R 9 = 78.35 D 9 = 19.00 R10 = ∞ D10 = 6.00 R11 = -251.22 D11 = 9.69 N 6 = 1.496999 ν 6 = 81.61 R12 = -32.09 D12 = 0.70 R13 = -129.15 D13 = 9.21 N 7 = 1.455999 ν 7 = 90.31 R14 = -36.53 D14 = 2.20 N 8 = 1.691002 ν 8 = 54.84 R15 = -63.40 D15 = 0.50 R16 = 140.18 D16 = 10.15 N 9 = 1.496999 ν 9 = 81.61 R17 = -58.00 D17 = 2.20 N10 = 1.696797 ν10 = 55.53 R18 = -236.52 D18 = 0.50 R19 = 75.48 D19 = 6.98 N11 = 1.496999 ν11 = 81.61 R20 = -865.55 D20 = 43.00 R21 = 89.26 D21 = 2.50 N12 = 1.834807 ν12 = 42.72 R22 = 45.09 D22 = 0.86 R23 = 52.97 D23 = 9.01 N13 = 1.455999 ν13 = 90.31 R24 = -112.94 D24 = 0.50 R25 = 44.78 D25 = 4.83 N14 = 1.496999 ν14 = 81.61 R26 = 106.33 D26 = 5.00 R27 = ∞ D27 = 30. 00 N15 = 1.603420 ν15 = 38.01 R28 = ∞ D28 = 16.20 N16 = 1.516330 ν16 = 64.15

【0040】[0040]

【発明の効果】本発明によれば前述の如くレンズ系を敏
感度が負であり、かつ絶対値が比較的大きい空気間隔を
境にして複数の光学ユニットに分割し、該分割された光
学ユニットを保持するレンズ保持鏡筒及び該レンズ保持
鏡筒を保持する本体鏡筒に適切なる線膨張係数を有する
材料を用いることにより、温度変化に伴なう結像位置の
変動を小さく抑えることができ、これにより良好なる画
質を維持することができる温度補償機能を有した撮影装
置を達成することができる。
According to the present invention, as described above, the lens system is divided into a plurality of optical units with an air gap having a negative sensitivity and a relatively large absolute value as a boundary, and the divided optical units. By using a material having an appropriate linear expansion coefficient for the lens-holding barrel that holds the lens and the main-body barrel that holds the lens-holding barrel, it is possible to suppress fluctuations in the imaging position due to temperature changes. As a result, it is possible to achieve an image pickup apparatus having a temperature compensation function capable of maintaining good image quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,3,6,7,9,11,13,14 凸レンズ(正
レンズ) 2,4,5,8,10,12 凹レンズ(負
レンズ) 21a,21b レンズ保持鏡筒 22 本体鏡筒 23 絞り 24 結像面
1,3,6,7,9,11,13,14 Convex lens (positive lens) 2,4,5,8,10,12 Concave lens (negative lens) 21a, 21b Lens holding lens barrel 22 Main lens barrel 23 Aperture 24 Image plane

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 屈折率の温度係数が負である凸レンズを
少なくとも1つ有するレンズ系において、該レンズ系中
の敏感度が負である空気間隔を境にして物体側の光学ユ
ニットの横倍率をβi 、それより像面側の光学ユニット
の横倍率をβk としたとき (1−βi 2)×βk 2 > 0.5 なる条件を満足し、該空気間隔を境にして分割した光学
ユニットを保持するレンズ保持鏡筒の材料の線膨張係数
よりも、該レンズ保持鏡筒を保持する本体鏡筒の線膨張
係数が大きい材料を用い温度変化に伴なう結像位置の変
動量を少なくしたことを特徴とする温度補償機能を有し
た撮影装置。
1. In a lens system having at least one convex lens having a negative temperature coefficient of refractive index, the lateral magnification of an optical unit on the object side is set at the boundary of an air gap having a negative sensitivity in the lens system. β i , where the lateral magnification of the optical unit on the image plane side is β k , the condition of (1-β i 2 ) × β k 2 > 0.5 is satisfied, and the air gap is used as a boundary. A material having a larger linear expansion coefficient than the material of the lens holding barrel that holds the optical unit than the linear expansion coefficient of the main body barrel that holds the lens holding barrel is used. An imaging device having a temperature compensation function characterized by reducing the number of
JP35462492A 1992-12-15 1992-12-15 Photographing device having temperature compensation function Pending JPH06186466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35462492A JPH06186466A (en) 1992-12-15 1992-12-15 Photographing device having temperature compensation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35462492A JPH06186466A (en) 1992-12-15 1992-12-15 Photographing device having temperature compensation function

Publications (1)

Publication Number Publication Date
JPH06186466A true JPH06186466A (en) 1994-07-08

Family

ID=18438818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35462492A Pending JPH06186466A (en) 1992-12-15 1992-12-15 Photographing device having temperature compensation function

Country Status (1)

Country Link
JP (1) JPH06186466A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127433A (en) * 1995-11-06 1997-05-16 Olympus Optical Co Ltd Industrial endoscope
JP2003248171A (en) * 2001-12-17 2003-09-05 Matsushita Electric Ind Co Ltd Variable power imaging device having temperature compensating function, and video camera
US7826156B2 (en) 2005-12-01 2010-11-02 Panasonic Corporation Lens barrel
JP2014174484A (en) * 2013-03-12 2014-09-22 Ricoh Co Ltd Imaging system
JP2015184372A (en) * 2014-03-20 2015-10-22 京セラ株式会社 Optical unit, imaging apparatus, and on-vehicle camera system
WO2016059890A1 (en) * 2014-10-15 2016-04-21 日東光学株式会社 Projection lens barrel and projection display device
JP2016129322A (en) * 2015-01-09 2016-07-14 株式会社リコー Image-reading lens, image reading device, and image forming device
JP2016206579A (en) * 2015-04-28 2016-12-08 日立マクセル株式会社 Lens unit and imaging apparatus
EP3252522A1 (en) * 2016-06-01 2017-12-06 Canon Kabushiki Kaisha Lens apparatus and an image pickup apparatus including same
JP2018013809A (en) * 2017-10-25 2018-01-25 キヤノン株式会社 Lens device and imaging apparatus including the same
CN109709655A (en) * 2017-10-26 2019-05-03 佳能株式会社 Lens devices and photographic device including the lens devices
JP2020060795A (en) * 2020-01-07 2020-04-16 マクセル株式会社 Lens unit and imaging apparatus
CN112630920A (en) * 2020-12-07 2021-04-09 河北汉光重工有限责任公司 Wide-temperature self-adaptive optical window
JP2021060621A (en) * 2021-01-06 2021-04-15 マクセル株式会社 Lens unit and imaging apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127433A (en) * 1995-11-06 1997-05-16 Olympus Optical Co Ltd Industrial endoscope
JP2003248171A (en) * 2001-12-17 2003-09-05 Matsushita Electric Ind Co Ltd Variable power imaging device having temperature compensating function, and video camera
US7826156B2 (en) 2005-12-01 2010-11-02 Panasonic Corporation Lens barrel
JP2014174484A (en) * 2013-03-12 2014-09-22 Ricoh Co Ltd Imaging system
JP2015184372A (en) * 2014-03-20 2015-10-22 京セラ株式会社 Optical unit, imaging apparatus, and on-vehicle camera system
US10222576B2 (en) 2014-10-15 2019-03-05 Nittoh Inc. Projection lens barrel and projection display device
WO2016059890A1 (en) * 2014-10-15 2016-04-21 日東光学株式会社 Projection lens barrel and projection display device
JP2016080823A (en) * 2014-10-15 2016-05-16 日東光学株式会社 Projection lens barrel and projection display device
US10754120B2 (en) 2014-10-15 2020-08-25 Nittoh Inc. Projection lens barrel and projection display device
JP2016129322A (en) * 2015-01-09 2016-07-14 株式会社リコー Image-reading lens, image reading device, and image forming device
JP2016206579A (en) * 2015-04-28 2016-12-08 日立マクセル株式会社 Lens unit and imaging apparatus
JP2017215490A (en) * 2016-06-01 2017-12-07 キヤノン株式会社 Lens device and imaging apparatus including the same
CN107450145A (en) * 2016-06-01 2017-12-08 佳能株式会社 Lens devices and the image pick-up device including lens devices
US10641983B2 (en) 2016-06-01 2020-05-05 Canon Kabushiki Kaisha Lens apparatus and an image pickup apparatus including same
EP3252522A1 (en) * 2016-06-01 2017-12-06 Canon Kabushiki Kaisha Lens apparatus and an image pickup apparatus including same
CN107450145B (en) * 2016-06-01 2021-02-23 佳能株式会社 Lens apparatus and image pickup apparatus including the same
JP2018013809A (en) * 2017-10-25 2018-01-25 キヤノン株式会社 Lens device and imaging apparatus including the same
CN109709655A (en) * 2017-10-26 2019-05-03 佳能株式会社 Lens devices and photographic device including the lens devices
JP2020060795A (en) * 2020-01-07 2020-04-16 マクセル株式会社 Lens unit and imaging apparatus
CN112630920A (en) * 2020-12-07 2021-04-09 河北汉光重工有限责任公司 Wide-temperature self-adaptive optical window
JP2021060621A (en) * 2021-01-06 2021-04-15 マクセル株式会社 Lens unit and imaging apparatus

Similar Documents

Publication Publication Date Title
US7315424B2 (en) Zoom lens and image pickup apparatus having the same
EP2000839B1 (en) Zoom lens and image projection apparatus having the same
US5050972A (en) Zoom lens
US5757554A (en) Zoom lens
US5737128A (en) Zoom lens device with inner focusing method
US5253113A (en) Wide-angle zoom lens having five lens units
JP3352240B2 (en) High zoom ratio zoom lens
JP5043471B2 (en) Zoom lens and optical apparatus having the same
US4988174A (en) Zoom lens
JP5053750B2 (en) Zoom lens and imaging apparatus having the same
JP4695912B2 (en) Zoom lens and imaging apparatus having the same
JP5072447B2 (en) Zoom lens and imaging apparatus having the same
US7715112B2 (en) Zoom lens system and image pickup apparatus including the same
US5257134A (en) Zoom lens
JP2009288619A (en) Zoom lens and imaging apparatus having the same
US5363242A (en) Zoom lens of rear focus type
US4892397A (en) Photographic lens having ghost image prevented from appearing
US6028715A (en) Variable magnification optical system
JPH06186466A (en) Photographing device having temperature compensation function
JPH11305124A (en) Zoom lens and optical instrument using the zoom lens
JP3513264B2 (en) Zoom lens and photographing device
JP6084016B2 (en) Zoom lens and image projection apparatus having the same
US7173766B2 (en) Zoom lens, image magnification projection system and video projector using the zoom lens and rear projector and multi-vision system using the video projector
US5229886A (en) Zoom lens
US9470878B2 (en) Zoom lens and image pickup apparatus using the same