JPH06185456A - Movable magnet type reciprocating fluid machine - Google Patents

Movable magnet type reciprocating fluid machine

Info

Publication number
JPH06185456A
JPH06185456A JP35468692A JP35468692A JPH06185456A JP H06185456 A JPH06185456 A JP H06185456A JP 35468692 A JP35468692 A JP 35468692A JP 35468692 A JP35468692 A JP 35468692A JP H06185456 A JPH06185456 A JP H06185456A
Authority
JP
Japan
Prior art keywords
magnet
reciprocating
magnetic
permanent magnets
movable body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35468692A
Other languages
Japanese (ja)
Other versions
JP3263161B2 (en
Inventor
Yasuyuki Hirabayashi
康之 平林
Takatoshi Oyama
貴俊 大山
Hiroyuki Muneno
尋之 宗野
Shigeo Saito
重男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP35468692A priority Critical patent/JP3263161B2/en
Publication of JPH06185456A publication Critical patent/JPH06185456A/en
Application granted granted Critical
Publication of JP3263161B2 publication Critical patent/JP3263161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

PURPOSE:To provide a movable magnet type reciprocating fluid machine with which a mechanical return mechanism can be dispensed and by which the mechanism can be simplified and large operating force of a reciprocating driving body such as a piston or a diaphragm can be obtained in a small size. CONSTITUTION:A magnetic substance 6 is arranged between at least two permanent magnets 5A and 5B opposed in the same pole to each other, and a magnetic movable body 3 is constituted, and the magnetic movable body 3 is arranged movably freely inside of at least three-throw coils 2A, 2B and 2C whose mutual positional relationship is regulated to be constant. At least the three- throw coils 2A, 2B and 2C are connected to each other as an electric current flows in a mutually different direction with the center between magnetic poles of the respective permanent magnets 5A and 5B as its boundary, and a piston 30 being a reciprocating driving body is arranged in a cylinder chamber 20 arranged in the constant positional relationship to at least the three-throw coils 2A, 2B and 2C, and the piston 30 is connected to the magnetic movable body 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体ポンプ、コンプレ
ッサ等の用途に使用できる可動磁石式往復動流体機械に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a movable magnet type reciprocating fluid machine which can be used in applications such as fluid pumps and compressors.

【0002】[0002]

【従来の技術】従来、シリンダ内に設けられたピストン
を磁性アーマチュアに連結し、該磁性アーマチュアを固
定電磁回路によって電磁吸引して往動させ、かつばね等
の機械的復帰機構で復動させる如き電磁往復動流体機械
が知られている。
2. Description of the Related Art Conventionally, a piston provided in a cylinder is connected to a magnetic armature, and the magnetic armature is electromagnetically attracted by a fixed electromagnetic circuit to move forward and is returned by a mechanical return mechanism such as a spring. Electromagnetic reciprocating fluid machines are known.

【0003】[0003]

【発明が解決しようとする課題】ところで、磁性アーマ
チュアと固定電磁回路を組み合わせた従来の電磁往復動
流体機械は、ばね等の機械的復帰機構が必要不可欠で、
機構の複雑化や形状の大型化を招く問題がある。また、
ピストンの操作力を増大させるためには磁性アーマチュ
ア及び固定電磁回路が大型化してしまう。
By the way, a conventional electromagnetic reciprocating fluid machine in which a magnetic armature and a fixed electromagnetic circuit are combined requires a mechanical return mechanism such as a spring,
There are problems that the mechanism becomes complicated and the shape becomes large. Also,
In order to increase the operation force of the piston, the magnetic armature and the fixed electromagnetic circuit become large.

【0004】本発明は、上記の点に鑑み、機械的復帰機
構が不要で機構の簡略化ができ、小型にしてピストン、
ダイアフラム等の往復駆動体の操作力の大きな可動磁石
式往復動流体機械を提供することを目的とする。
In view of the above points, the present invention does not require a mechanical return mechanism, can simplify the mechanism, and can reduce the size of the piston,
An object of the present invention is to provide a movable magnet type reciprocating fluid machine in which a reciprocating driving body such as a diaphragm has a large operating force.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の可動磁石式往復動流体機械は、同極対向さ
れた少なくとも2個の永久磁石間に磁性体を設けて磁石
可動体を構成し、相互の位置関係が一定に規制された少
なくとも3連のコイルの内側に当該磁石可動体を移動自
在に設け、前記少なくとも3連のコイルを、各永久磁石
の磁極間を境にして相異なる方向に電流が流れる如く結
線し、前記少なくとも3連のコイルに対し一定位置関係
に設けられたケーシング室に対し往復駆動体を設けると
ともに、該往復駆動体を前記磁石可動体に連結した構成
としている。
In order to achieve the above object, a movable magnet type reciprocating fluid machine of the present invention has a magnetic body provided between at least two permanent magnets having the same poles and facing each other. The magnet movable body is movably provided inside at least three continuous coils whose mutual positional relationship is regulated to be constant, and the at least three continuous coils are defined by the magnetic poles of the permanent magnets. A structure in which reciprocating drive bodies are provided in a casing chamber provided in a fixed positional relationship with the at least three coils and the reciprocating drive bodies are connected to the magnet movable body so that currents flow in different directions. I am trying.

【0006】[0006]

【作用】本発明の可動磁石式往復動流体機械において
は、ケーシング室に対し往復動自在なピストン、ダイア
フラム等を駆動する機構として、磁石可動体とコイル間
のフレミングの左手の法則に基づいて与えられる推力に
準ずる操作力を発生する往復動アクチュエータを用いて
いる。このため、交流電圧にて直接電磁往復動させられ
るため、ばね等の機械的復帰機構が不要で機構の簡略化
ができ、磁石可動体の往復運動の方向に垂直な方向の偏
りも発生せず、円滑に磁石可動体を作動させることがで
きる。しかも、前記磁石可動体として同極対向された少
なくとも2個の永久磁石間に磁性体を設けたものを用
い、各永久磁石の磁極間を境にして相異なる方向に電流
が流れる如く結線した少なくとも3連のコイルを用いて
おり、永久磁石の各磁極が発生する磁束を有効に利用し
て大きな操作力を得ることができる。
In the movable magnet type reciprocating fluid machine of the present invention, the mechanism for driving the reciprocating piston, diaphragm, etc. with respect to the casing chamber is given based on the left-hand rule of Fleming between the movable magnet body and the coil. It uses a reciprocating actuator that generates an operating force that is similar to the thrust. For this reason, since the electromagnetic reciprocation is directly performed by the AC voltage, a mechanical return mechanism such as a spring is not required, the mechanism can be simplified, and the deviation in the direction perpendicular to the reciprocating motion of the magnet movable body does not occur. Thus, the movable magnet body can be operated smoothly. In addition, as the movable magnet body, a magnet body is provided between at least two permanent magnets facing each other with the same pole, and the magnetic poles of the permanent magnets are used as boundaries to connect at least currents in different directions. Since three coils are used, a large operating force can be obtained by effectively using the magnetic flux generated by each magnetic pole of the permanent magnet.

【0007】図3は本発明の可動磁石式往復動流体機械
に用いる往復動アクチュエータの動作原理を説明するた
めの概略構成図であり、図4は性能を比較するための往
復動アクチュエータの第1比較例、図5は第2比較例で
ある。
FIG. 3 is a schematic configuration diagram for explaining the operating principle of a reciprocating actuator used in the movable magnet type reciprocating fluid machine of the present invention, and FIG. 4 is a first reciprocating actuator for comparing performances. Comparative Example, FIG. 5 is a second comparative example.

【0008】図3の本発明で用いる往復動アクチュエー
タにおいて、磁石可動体3は同極対向配置の2個の円柱
状永久磁石5A,5Bと、これらの永久磁石5A,5B
間に固着される円柱状軟磁性体6とを一体化したもので
あり、3連のコイル2A,2B,2Cは、磁石可動体3
の外周側を周回する如く巻回され、磁石可動体3を構成
する永久磁石5Aの左端、永久磁石5A,5Bの同極対
向端、及び永久磁石5Bの右端の磁極からの磁束とそれ
ぞれ鎖交するように配置されている。これらのコイル2
A,2B,2Cは永久磁石5A,5Bの磁極間を境にし
て相異なる方向に電流が流れる如く結線されている(磁
極間の境は磁極と磁極の間であれば必ずしも磁極中間位
置になくともよい。)。なお、図示は省略してあるが、
コイル2A,2B,2Cは通常磁石可動体3を軸方向に
移動自在にガイドするためのガイド筒体に装着される。
コイル2A,2B,2Cと磁石可動体3との位置関係
は、当該磁石可動体3の停止時を含む大部分の可動位置
において、永久磁石磁極間を境にして各コイルに流れる
電流が相互に逆向きとなるように設定しておく。
In the reciprocating actuator used in the present invention shown in FIG. 3, the magnet movable body 3 includes two cylindrical permanent magnets 5A and 5B having the same poles facing each other, and these permanent magnets 5A and 5B.
The columnar soft magnetic body 6 fixed in between is integrated, and the three coils 2A, 2B, 2C are the magnet movable body 3.
And the magnetic fluxes from the magnetic poles at the left end of the permanent magnet 5A, the opposite ends of the permanent magnets 5A and 5B facing each other, and the right end of the permanent magnet 5B. It is arranged to. These coils 2
A, 2B, and 2C are connected so that currents flow in different directions with the magnetic poles of the permanent magnets 5A and 5B as boundaries (the boundaries between the magnetic poles are not necessarily at the magnetic pole intermediate positions as long as they are between the magnetic poles). Good.). Although illustration is omitted,
The coils 2A, 2B, 2C are usually mounted on a guide cylinder for guiding the movable magnet body 3 so as to be movable in the axial direction.
The positional relationship between the coils 2A, 2B and 2C and the magnet movable body 3 is such that, in most movable positions including the time when the magnet movable body 3 is stopped, the currents flowing through the coils are separated from each other with the permanent magnet magnetic poles as boundaries. Set it so that it is in the opposite direction.

【0009】一方、図4の第1比較例において、10は
軸方向に着磁した棒状の永久磁石からなる磁石可動体で
あり、両端面に磁極を有している。コイル11A,11
Bは、磁石可動体10の端部外周側をそれぞれ環状に周
回するように巻回され、隣合う部分に同極が発生するよ
うになっている。なお、図示は省略してあるが、コイル
11A,11Bは通常磁石可動体10を軸方向に移動自
在にガイドするためのガイド筒体に装着される。そし
て、磁石可動体10の各端面からの磁束がそれぞれコイ
ル11A,11Bと鎖交している。
On the other hand, in the first comparative example of FIG. 4, reference numeral 10 denotes a magnet movable body composed of a rod-shaped permanent magnet magnetized in the axial direction and having magnetic poles on both end faces. Coils 11A, 11
B is wound so as to circulate around the outer peripheral side of the end of the magnet movable body 10 in an annular shape, and the same pole is generated in the adjacent portions. Although not shown, the coils 11A and 11B are usually attached to a guide cylinder body for guiding the magnet movable body 10 so as to be movable in the axial direction. The magnetic flux from each end surface of the movable magnet body 10 is linked to the coils 11A and 11B, respectively.

【0010】図5の第2比較例において、磁石可動体1
5は同極対向配置の2個の棒状永久磁石16A,16B
と、これらの永久磁石16A,16B間に固着される棒
状軟磁性体17とを固着一体化したものであり、コイル
18は磁石可動体15の中間部外周側をそれぞれ環状に
周回するように巻回されている。なお、図示は省略して
あるが、コイル18は通常磁石可動体15を軸方向に移
動自在にガイドするためのガイド筒体に装着される。そ
して、磁石可動体15の同極対向した永久磁石端面から
の磁束がコイル18と鎖交している。
In the second comparative example of FIG. 5, the movable magnet body 1 is used.
Reference numeral 5 is two rod-shaped permanent magnets 16A and 16B having the same pole facing each other.
And a rod-shaped soft magnetic body 17 fixed between these permanent magnets 16A, 16B are integrally fixed, and the coil 18 is wound so as to circulate around the outer peripheral side of the intermediate portion of the magnet movable body 15 in an annular shape. It has been turned. Although not shown, the coil 18 is usually attached to a guide cylinder body for guiding the movable magnet body 15 movably in the axial direction. The magnetic fluxes from the end faces of the permanent magnets of the magnet movable body 15 that face each other in the same pole are linked with the coil 18.

【0011】ところで、第1比較例及び第2比較例にお
いて、磁石可動体10,15に発生する推力は、基本的
にはフレミングの左手の法則に基づいて与えられる推力
に準ずるものである(フレミングの左手の法則はコイル
に対して適用されるが、ここではコイルが固定のため、
磁石可動体にコイルに作用する力の反力としての推力が
発生する。)。したがって、推力に寄与するのは、磁石
可動体が有する永久磁石の磁束の垂直成分(永久磁石の
軸方向に直交する成分)である。
By the way, in the first comparative example and the second comparative example, the thrust generated in the magnet movable bodies 10 and 15 is basically similar to the thrust given based on Fleming's left-hand rule (Fleming. The left-hand rule of is applied to the coil, but since the coil is fixed here,
Thrust as a reaction force of the force acting on the coil is generated in the movable magnet body. ). Therefore, it is the vertical component of the magnetic flux of the permanent magnet of the magnet movable body (the component orthogonal to the axial direction of the permanent magnet) that contributes to the thrust.

【0012】そこで、1個の永久磁石の場合、あるいは
2個の同極対向配置の永久磁石の場合について、磁束の
垂直成分がどのようになるのかそれぞれ解析してみた。
[0012] Therefore, we analyzed the vertical component of the magnetic flux in the case of one permanent magnet or two permanent magnets of the same pole facing each other.

【0013】図6は、単独の永久磁石の長手側面に沿っ
て表面磁束密度の垂直成分を磁場解析した結果を示す。
但し、永久磁石は希土類永久磁石であって、直径2.5m
m、長さ6mmで、永久磁石表面から0.25〜0.45mm
離れた位置を計測した。
FIG. 6 shows the results of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surface of a single permanent magnet.
However, the permanent magnet is a rare earth permanent magnet and has a diameter of 2.5 m.
m, length 6mm, 0.25 ~ 0.45mm from the surface of the permanent magnet
The distant positions were measured.

【0014】図7は、2個の永久磁石を同極対向配置と
し、かつ直接接合した場合において、2個の永久磁石の
長手側面に沿って表面磁束密度の垂直成分を磁場解析し
た結果を示す。但し、各永久磁石は希土類永久磁石であ
って、直径2.5mm、長さ3mm(2個で6mm)で、永久
磁石表面から0.25〜0.45mm離れた位置を計測し
た。
FIG. 7 shows the result of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets are arranged in the same pole and facing each other and are directly bonded. . However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm (two pieces were 6 mm), and measured a position apart from the surface of the permanent magnet by 0.25 to 0.45 mm.

【0015】図8は、2個の永久磁石を同極対向配置と
し、かつ対向間隔を1mmとした場合において、2個の永
久磁石の長手側面に沿って表面磁束密度の垂直成分を磁
場解析した結果を示す。但し、各永久磁石は希土類永久
磁石であって、直径2.5mm、長さ3mmで、永久磁石表
面から0.25〜0.45mm離れた位置を計測した。
FIG. 8 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets have the same poles facing each other and the facing distance is 1 mm. The results are shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0016】図9は、2個の永久磁石を同極対向配置と
し、かつ対向間隔を2mmとした場合において、2個の永
久磁石の長手側面に沿って表面磁束密度の垂直成分を磁
場解析した結果を示す。但し、各永久磁石は希土類永久
磁石であって、直径2.5mm、長さ3mmで、永久磁石表
面から0.25〜0.45mm離れた位置を計測した。
FIG. 9 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets have the same poles facing each other and the facing distance is 2 mm. The results are shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0017】図10は、2個の永久磁石を同極対向配置
とし、かつ対向間隔を3mmとした場合において、2個の
永久磁石の長手側面に沿って表面磁束密度の垂直成分を
磁場解析した結果を示す。但し、各永久磁石は希土類永
久磁石であって、直径2.5mm、長さ3mmで、永久磁石
表面から0.25〜0.45mm離れた位置を計測した。
FIG. 10 shows a magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side faces of the two permanent magnets when the two permanent magnets have the same pole facing each other and the facing distance is 3 mm. The results are shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0018】図11は、2個の永久磁石を同極対向配置
とし、両永久磁石間に長さ1mmの軟磁性体を配置した場
合において、2個の永久磁石の長手側面に沿って表面磁
束密度の垂直成分を磁場解析した結果を示す。但し、各
永久磁石は希土類永久磁石であって、直径2.5mm、長
さ3mmで、永久磁石表面から0.25〜0.45mm離れた
位置を計測した。
FIG. 11 shows a case where two permanent magnets are arranged so as to face each other with the same pole and a soft magnetic material having a length of 1 mm is arranged between the two permanent magnets. The result of magnetic field analysis of the vertical component of the density is shown. However, each permanent magnet was a rare earth permanent magnet, had a diameter of 2.5 mm and a length of 3 mm, and measured the position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0019】図12は、2個の永久磁石を同極対向配置
とし、両永久磁石間に長さ1mmの軟磁性体を配置し、さ
らに2個の永久磁石の外周に対向させて軟磁性体ヨーク
を配設した場合において、2個の永久磁石の長手側面に
沿って表面磁束密度の垂直成分を磁場解析した結果を示
す。但し、各永久磁石は希土類永久磁石であって、直径
2.5mm、長さ3mmで、ヨークは永久磁石を取り囲む円
筒形状で厚み0.5mm、長さ10mmで永久磁石外周から
1.25mm離間した位置となっており、表面磁束密度の
垂直成分は永久磁石表面から0.25〜0.45mm離れた
位置を計測した。
In FIG. 12, two permanent magnets are arranged with the same poles facing each other, a soft magnetic material having a length of 1 mm is arranged between the permanent magnets, and the soft magnetic material is further opposed to the outer circumferences of the two permanent magnets. The results of magnetic field analysis of the vertical component of the surface magnetic flux density along the longitudinal side surfaces of the two permanent magnets when the yoke is arranged are shown. However, each permanent magnet is a rare earth permanent magnet and has a diameter of 2.5 mm and a length of 3 mm, and the yoke has a cylindrical shape surrounding the permanent magnet and has a thickness of 0.5 mm and a length of 10 mm, and is separated from the outer circumference of the permanent magnet by 1.25 mm. The vertical component of the surface magnetic flux density was measured at a position 0.25 to 0.45 mm away from the surface of the permanent magnet.

【0020】上述したように、磁石可動体に発生する推
力は、基本的にはフレミングの左手の法則に基づいて与
えられる推力に準ずるものであり、コイルと鎖交する永
久磁石の磁束の垂直成分(永久磁石の軸方向に直交する
成分)が多いことが望まれるが、図4の第1比較例で
は、表面磁束密度の垂直成分は図6のようになり、図7
乃至図12の2個の永久磁石を同極対向配置とした場合
に比較して垂直成分が少ないことが判明した。このため
図4の第1比較例の構成では、推力の向上に限界があ
る。例えば、磁石可動体10を直径2.5mm、長さ6mm
の希土類永久磁石で構成し、2個のコイル11A,11
Bの隣合う部分に同極が発生するように各コイル11
A,11Bに40mAの電流を流したときに発生する推
力F1は4.7(gf)であった。
As described above, the thrust generated in the magnet movable body is basically similar to the thrust given based on Fleming's left-hand rule, and the vertical component of the magnetic flux of the permanent magnet interlinking with the coil. Although it is desired that there are many (components orthogonal to the axial direction of the permanent magnet), in the first comparative example of FIG. 4, the vertical component of the surface magnetic flux density is as shown in FIG.
It was found that the vertical component was smaller than that in the case where the two permanent magnets in FIG. Therefore, the structure of the first comparative example in FIG. 4 has a limit in improving the thrust. For example, the magnet movable body 10 has a diameter of 2.5 mm and a length of 6 mm.
2 coils 11A, 11
Each coil 11 so that the same pole is generated in the adjacent portion of B
The thrust F1 generated when a current of 40 mA was applied to A and 11B was 4.7 (gf).

【0021】また、図5の第2比較例では、2個の同極
対向の永久磁石間に軟磁性体を配した磁石可動体15を
用いており、磁束密度の垂直成分は図11に示す如くな
り、同極対向の永久磁石16A,16Bの磁極から出る
磁束は1個の永久磁石の場合(図6参照)や2個の永久
磁石のみの場合(図7乃至図10参照)よりも多くなる
が、コイルが磁石可動体15の中間部を囲む1個のみで
あり、磁石可動体15の両端面の磁極による磁束は有効
に利用していない嫌いがある。このため、図5の第2比
較例の場合も推力の向上が難しかった。例えば、図5の
第2比較例において磁石可動体15として直径2.5m
m、長さ3mmの希土類永久磁石を2個用い(希土類永久
磁石の性能は第1比較例と同じとする)、かつ両者間に
長さ1mmの軟磁性体を配置したものを用い、図4の第1
比較例と同じ消費電力となるように作成したコイル18
に40mAの電流を流し、第1比較例と同じ消費電力と
したときに発生する推力F2は5.6(gf)であった。
Further, in the second comparative example of FIG. 5, a magnet movable body 15 in which a soft magnetic material is arranged between two permanent magnets of the same pole facing each other is used, and the vertical component of the magnetic flux density is shown in FIG. Thus, the magnetic flux generated from the magnetic poles of the permanent magnets 16A and 16B having the same poles facing each other is larger than in the case of one permanent magnet (see FIG. 6) or the case of only two permanent magnets (see FIGS. 7 to 10). However, there is only one coil that surrounds the intermediate portion of the magnet movable body 15, and there is a dislike that the magnetic flux generated by the magnetic poles on both end surfaces of the magnet movable body 15 is not effectively used. For this reason, it was difficult to improve the thrust force also in the case of the second comparative example in FIG. For example, in the second comparative example of FIG. 5, the magnet movable body 15 has a diameter of 2.5 m.
As shown in FIG. 4, two rare earth permanent magnets with a length of 3 mm and a length of 3 mm are used (the performance of the rare earth permanent magnet is the same as that of the first comparative example), and a soft magnetic material with a length of 1 mm is arranged between them. First of
Coil 18 created to have the same power consumption as the comparative example
A thrust F2 generated when a current of 40 mA was applied to the same and the same power consumption as in the first comparative example was 5.6 (gf).

【0022】一方、図3の本発明で用いる往復動アクチ
ュエータにおける磁石可動体3の構造は、図11のよう
に2個の永久磁石を同極対向させかつ永久磁石間に軟磁
性体を配置したものである。この図11のときは軟磁性
体位置に相当する領域Qの表面磁束密度の垂直成分は、
軟磁性体の無い図7乃至図10よりも優れている(磁束
密度0.3T以上のピークの幅が広くかつピークが高
い。)。
On the other hand, in the structure of the movable magnet body 3 in the reciprocating actuator used in the present invention of FIG. 3, as shown in FIG. 11, two permanent magnets have the same poles facing each other and a soft magnetic body is arranged between the permanent magnets. It is a thing. In the case of FIG. 11, the vertical component of the surface magnetic flux density in the region Q corresponding to the soft magnetic material position is
It is superior to FIGS. 7 to 10 without the soft magnetic material (the peak width of the magnetic flux density of 0.3 T or more is wide and the peak is high).

【0023】このように、2個の永久磁石5A,5Bを
同極対向させかつ永久磁石間に軟磁性体6を設けた磁石
可動体3は、フレミングの左手の法則に基づく推力に寄
与できる磁石可動体3の長手方向に垂直な磁束成分を大
きくでき、かつ3連のコイル2A,2B,2Cは永久磁
石の全磁極の磁束と有効に鎖交するので、3連のコイル
2A,2B,2Cに交互に逆極性の磁界を発生する向き
に電流を通電することにより、比較例1,2では到達し
得ない大きな推力を発生することができる。各コイルの
電流を反転させれば磁石可動体3の推力の向きも反転す
る。交流電流を流した場合には、一定周期で振動を繰り
返す往復動アクチュエータとして働く。
As described above, the magnet movable body 3 in which the two permanent magnets 5A and 5B are opposed to each other with the same pole and the soft magnetic body 6 is provided between the permanent magnets can contribute to the thrust based on Fleming's left-hand rule. The magnetic flux component perpendicular to the longitudinal direction of the movable body 3 can be increased, and the triple coils 2A, 2B, 2C effectively interlink with the magnetic fluxes of all the magnetic poles of the permanent magnet, so that the triple coils 2A, 2B, 2C. By alternately passing a current in the direction in which a magnetic field of opposite polarity is generated, a large thrust that cannot be reached in Comparative Examples 1 and 2 can be generated. If the current of each coil is reversed, the direction of the thrust of the movable magnet body 3 is also reversed. When an alternating current is applied, it works as a reciprocating actuator that repeats vibration at a constant cycle.

【0024】本発明で用いる往復動アクチュエータに係
る図3の場合、例えば、磁石可動体3として直径2.5m
m、長さ3mmの希土類永久磁石を2個用い(希土類永久
磁石の性能は第1比較例と同じとする)、かつ両者間に
長さ1mmの軟磁性体を配置したものを用い、図4、図5
の第1、第2比較例と同じ消費電力となるように作成し
た3連のコイル2A,2B,2Cに40mAの電流を流
し、同じ消費電力としたときに発生する推力F3は6.
7(gf)であった。これは、同一消費電力の第1比較例
の場合の約1.42倍の推力であり、また第2比較例の
約1.2倍の推力であり、第1及び第2比較例に比較し
て格段に優れていることが判る。
In the case of FIG. 3 relating to the reciprocating actuator used in the present invention, for example, the magnet movable body 3 has a diameter of 2.5 m.
As shown in FIG. 4, two rare earth permanent magnets with a length of 3 mm and a length of 3 mm are used (the performance of the rare earth permanent magnet is the same as that of the first comparative example), and a soft magnetic material with a length of 1 mm is arranged between them. , Fig. 5
The thrust F3 generated when a current of 40 mA is applied to the triple coils 2A, 2B, and 2C that are made to have the same power consumption as those of the first and second comparative examples, and the power consumption is the same is 6.
It was 7 (gf). This is about 1.42 times the thrust of the first comparative example with the same power consumption, and about 1.2 times the thrust of the second comparative example, which is in comparison with the first and second comparative examples. It turns out that it is remarkably excellent.

【0025】図13の曲線(イ)は図3(ヨーク無し)
の場合の磁石可動体3の軸方向変位量と推力(gf)との
関係を示す。但し、永久磁石の寸法、特性は図11に示
したものとするとともに、磁石可動体3の中間点が中央
のコイル2Bの中間点に位置するときを変位量零とし、
各コイルの電流は40mAとした。
The curve (a) in FIG. 13 is shown in FIG. 3 (without yoke).
The relationship between the axial displacement amount of the magnet movable body 3 and the thrust force (gf) in the case of is shown. However, the dimensions and characteristics of the permanent magnet are as shown in FIG. 11, and the displacement amount is zero when the midpoint of the magnet movable body 3 is located at the midpoint of the central coil 2B.
The current of each coil was 40 mA.

【0026】このように、本発明で用いる往復動アクチ
ュエータは、同極対向の永久磁石間に軟磁性体を挟んだ
構造体で磁石可動体を構成しており、永久磁石の着磁方
向(軸方向)に垂直な磁束密度成分を充分大きくできか
つ永久磁石の全ての磁極の発生する磁束を有効利用でき
るので、磁石可動体を取り巻くように周回した少なくと
も3連のコイルに流れる電流との間のフレミングの左手
の法則に基づく推力を充分大きくでき、小型、小電流で
大きな推力を得ることができることがわかる。さらに、
各コイルに交流電流を流すことで磁石可動体の往復運動
が可能であり、磁石可動体をピストンに連結することに
より、ばね等の機械的復帰機構が無くとも円滑な往復運
動が可能で、機構の簡略化も可能である。
As described above, in the reciprocating actuator used in the present invention, the magnet movable body is constituted by the structure in which the soft magnetic material is sandwiched between the permanent magnets having the same poles facing each other. Direction) and the magnetic flux generated by all the magnetic poles of the permanent magnet can be effectively used. Therefore, between the current flowing in at least three coils surrounding the magnet movable body, It can be seen that the thrust based on Fleming's left-hand rule can be made sufficiently large, and a large thrust can be obtained with a small size and a small current. further,
A reciprocating motion of the magnet movable body is possible by applying an alternating current to each coil, and a smooth reciprocating motion is possible by connecting the magnet movable body to the piston without a mechanical return mechanism such as a spring. Can be simplified.

【0027】[0027]

【実施例】以下、本発明に係る可動磁石式往復動流体機
械の実施例を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a movable magnet type reciprocating fluid machine according to the present invention will be described below with reference to the drawings.

【0028】図1及び図2は本発明の第1実施例を示
す。これらのにおいて、10は往復動アクチュエータ、
20はケーシング室としてのシリンダ室、30は該シリ
ンダ室に摺動自在に設けられた往復駆動体としてのピス
トンであり、往復動アクチュエータ10にて駆動される
ものである。
1 and 2 show a first embodiment of the present invention. Of these, 10 is a reciprocating actuator,
Reference numeral 20 is a cylinder chamber as a casing chamber, and 30 is a piston as a reciprocating drive member slidably provided in the cylinder chamber, which is driven by the reciprocating actuator 10.

【0029】往復動アクチュエータ10は、軟磁性体の
円筒状ヨーク1と、該円筒状ヨーク1の内側に配置され
た3連のコイル2A,2B,2Cと、磁石可動体3とを
有し、3連のコイル2A,2B,2Cは磁石可動体3を
摺動自在に案内するためのガイド筒体4を構成する絶縁
樹脂等の絶縁部材(非磁性材)で円筒状ヨーク1に固着
されている。磁石可動体3は、同極対向配置の2個の円
柱状希土類永久磁石5A,5Bと、これらの永久磁石5
A,5B間に配置される円柱状軟磁性体6と、各永久磁
石5A,5Bの外側端面にそれぞれ配置される軸部品8
A,8Bと、非磁性筒状ホルダ7とからなり、それらの
永久磁石5A,5B、軟磁性体6及び軸部品8A,8B
の円板状部9A,9Bは筒状ホルダ7内に収納され接着
剤、あるいはホルダ端部のかしめ等で固定されている。
前記3連のコイル2A,2B,2Cは永久磁石5A,5
Bの磁極間を境にして相異なる方向に電流が流れる如く
結線されている。すなわち、中央のコイル2Bは軟磁性
体6及び永久磁石5A,5BのN極を含む端部を囲み、
両側のコイル2A,2Cは、永久磁石5A,5BのS極
を含む端部をそれぞれ囲むことができるようになってお
り、かつ中央のコイル2Bに流れる電流の向きと、両側
のコイル2A,2Cの電流の向きとは逆向きである(図
1の各コイルに付したN,Sを参照)。
The reciprocating actuator 10 has a cylindrical yoke 1 made of a soft magnetic material, three coils 2A, 2B, 2C arranged inside the cylindrical yoke 1, and a magnet movable body 3. The three coils 2A, 2B and 2C are fixed to the cylindrical yoke 1 by an insulating member (non-magnetic material) such as an insulating resin forming a guide cylinder 4 for slidably guiding the magnet movable body 3. There is. The magnet movable body 3 includes two columnar rare earth permanent magnets 5A and 5B arranged in the same pole and facing each other, and these permanent magnets 5
A cylindrical soft magnetic body 6 arranged between A and 5B, and a shaft component 8 arranged on the outer end surface of each permanent magnet 5A, 5B.
A, 8B and a non-magnetic cylindrical holder 7, and their permanent magnets 5A, 5B, soft magnetic body 6 and shaft parts 8A, 8B.
The disk-shaped portions 9A and 9B are housed in the cylindrical holder 7 and fixed by an adhesive agent or caulking of the holder end portion.
The three continuous coils 2A, 2B, 2C are permanent magnets 5A, 5
The magnetic poles of B are connected so that currents flow in different directions. That is, the central coil 2B surrounds the ends of the soft magnetic material 6 and the permanent magnets 5A and 5B including the N pole,
The coils 2A and 2C on both sides can surround the ends including the S poles of the permanent magnets 5A and 5B, respectively, and the direction of the current flowing through the central coil 2B and the coils 2A and 2C on both sides. Is opposite to the direction of the current (see N and S attached to each coil in FIG. 1).

【0030】前記磁石可動体3を摺動自在に案内するた
めのガイド筒体4の左側に前記シリンダ室20が形成さ
れており、右側に前記軸部品8Bの軸11Bが摺動自在
に嵌合する軸受穴21が形成されている。そして、前記
軸部品8Aの軸11Aの先端面に前記ピストン30がボ
ルト31で固定されている。ピストン30の端面には吸
入穴32が形成されており、該吸入穴32を閉塞するゴ
ム等の可撓性板材の吸入弁33が前記ボルト31でピス
トン30の端面に重なるように取り付けられている。前
記シリンダ室20の右寄り位置に連通するように前記円
筒状ヨーク1及びガイド筒体4を貫通する吸気穴34
が、左寄り位置に連通するように前記円筒状ヨーク1及
びガイド筒体4を貫通する排気穴35が形成されてい
る。なお、シリンダ室20の左側開口を密閉するために
Oリング36を介して蓋体37が前記円筒状ヨーク1に
固着されている。
The cylinder chamber 20 is formed on the left side of the guide cylinder 4 for slidably guiding the magnet movable body 3, and the shaft 11B of the shaft component 8B is slidably fitted on the right side. The bearing hole 21 is formed. The piston 30 is fixed to the tip end surface of the shaft 11A of the shaft component 8A with bolts 31. A suction hole 32 is formed in the end surface of the piston 30, and a suction valve 33 made of a flexible plate such as rubber that closes the suction hole 32 is attached by the bolt 31 so as to overlap the end surface of the piston 30. . Intake hole 34 penetrating the cylindrical yoke 1 and the guide cylinder 4 so as to communicate with the rightward position of the cylinder chamber 20.
However, an exhaust hole 35 penetrating the cylindrical yoke 1 and the guide cylinder 4 is formed so as to communicate with the leftward position. A lid 37 is fixed to the cylindrical yoke 1 via an O-ring 36 to seal the left opening of the cylinder chamber 20.

【0031】この第1実施例では、往復動アクチュエー
タ10の各コイル2A,2B,2Cの外周側に軟磁性体
の円筒状ヨーク1が設けられているため、磁石可動体3
の表面磁束密度の垂直成分は、図12に示す如く、さら
に増大する。このため、フレミングの左手の法則に基づ
く推力に寄与できる磁石可動体3の長手方向に垂直な磁
束成分を大きくでき、磁石可動体3の周囲を環状に巻回
する3連のコイル2A,2B,2Cに交互に逆極性の磁
界を発生する向きに電流を通電することにより、いっそ
う大きな推力を発生することができる。例えば、磁石可
動体3として直径2.5mm、長さ3mmの希土類永久磁石
を2個用い(希土類永久磁石の性能は第1比較例と同じ
とする)、かつ両者間に長さ1mmの軟磁性体を配置した
ものを用い、図4、図5の第1、第2比較例と同じ消費
電力となるように作成した3連のコイル2A,2B,2
Cに40mAの電流を流し、同じ消費電力としたときに
発生する推力F4は8.0(gf)であった。推力F4の
向きは、図1の極性では、磁石可動体3が右方向に移動
する向きであり、各コイルの電流を反転させれば磁石可
動体3の推力の向きも反転する。したがって、各コイル
に交流電流を流すことで、一定周期で往復運動を繰り返
す小型で推力の大きな往復動アクチュエータとして機能
する。
In this first embodiment, since the reciprocating actuator 10 is provided with the soft magnetic cylindrical yoke 1 on the outer peripheral side of each coil 2A, 2B, 2C, the magnet movable body 3 is provided.
The vertical component of the surface magnetic flux density of is further increased as shown in FIG. Therefore, the magnetic flux component perpendicular to the longitudinal direction of the magnet movable body 3 that can contribute to the thrust force based on Fleming's left-hand rule can be increased, and three coils 2A, 2B, which are wound around the magnet movable body 3 in an annular shape, An even greater thrust can be generated by passing a current through 2C in the direction in which a magnetic field of opposite polarity is generated alternately. For example, two rare earth permanent magnets having a diameter of 2.5 mm and a length of 3 mm are used as the magnet movable body 3 (the performance of the rare earth permanent magnet is the same as that of the first comparative example), and a soft magnetic material having a length of 1 mm is provided between the two. Three coils 2A, 2B, 2 made by using the body arranged so as to have the same power consumption as the first and second comparative examples of FIGS. 4 and 5.
The thrust F4 generated when a current of 40 mA was applied to C and the power consumption was the same was 8.0 (gf). In the polarity of FIG. 1, the direction of the thrust F4 is the direction in which the magnet movable body 3 moves to the right, and if the current of each coil is reversed, the direction of the thrust of the magnet movable body 3 is also reversed. Therefore, when an alternating current is passed through each coil, it functions as a small-sized reciprocating actuator having a large thrust that repeats reciprocating motion at a constant cycle.

【0032】図13の曲線(ロ)は第1実施例(但し、
永久磁石及びヨークの寸法、配置及び永久磁石の特性は
図12の通り)の場合の磁石可動体3の軸方向変位量と
推力(gf)との関係であって変位量零の点から離れる方
向に磁石可動体が動作するときを示す。また、曲線
(ハ)は第1実施例(ヨーク有り)の場合の磁石可動体
3の軸方向変位量と推力(gf)との関係であって変位量
零の点に近付く方向に動作するときを示す。但し、磁石
可動体3の中間点が中央のコイル2Bの中間点に位置す
るときを変位量零とし、各コイルの電流は40mAとし
た。このように、磁石可動体3が変位量零の点に近付く
か又は離れるかによって推力が相違するのは、磁石可動
体3の永久磁石の磁極とヨーク1との間に磁石可動体3
を変位量零点に戻す磁気吸引力が働いているからであ
る。
The curve (b) in FIG. 13 is the curve of the first embodiment (however,
The dimensions and arrangement of the permanent magnets and yokes and the characteristics of the permanent magnets are as shown in FIG. 12, and are the relationship between the axial displacement of the magnet movable body 3 and the thrust (gf) in the direction away from the zero displacement amount. Shows when the movable magnet body operates. Further, the curve (c) is the relationship between the axial displacement of the magnet movable body 3 and the thrust (gf) in the case of the first embodiment (with a yoke), and when operating in the direction approaching the point of zero displacement. Indicates. However, the displacement amount was set to zero when the midpoint of the movable magnet body 3 was located at the midpoint of the central coil 2B, and the current of each coil was set to 40 mA. Thus, the thrust differs depending on whether the movable magnet body 3 approaches or moves away from the point where the displacement amount is zero, because the movable magnet body 3 is located between the magnetic pole of the permanent magnet of the movable magnet body 3 and the yoke 1.
This is because the magnetic attraction force that returns the zero to the displacement zero point is working.

【0033】上記したように、第1実施例における往復
動アクチュエータ10は小型で推力の大きなものであ
り、これでシリンダ室20内のピストン30を往復動さ
せることで小型で効率の良いエアーポンプを実現でき
る。すなわち、磁石可動体3が図1の右方向に動くと
き、吸入弁33が開きシリンダ室20の左側に吸気穴3
4及び吸入穴32を介して空気を吸入し、磁石可動体3
の左方向の動きでシリンダ室左側の空気を圧縮して排気
穴35を介し送出することができる。
As described above, the reciprocating actuator 10 in the first embodiment has a small size and a large thrust, so that by reciprocating the piston 30 in the cylinder chamber 20, a small and efficient air pump can be obtained. realizable. That is, when the movable magnet body 3 moves to the right in FIG. 1, the intake valve 33 opens and the intake hole 3 is provided on the left side of the cylinder chamber 20.
4 and the suction hole 32 to suck in air to move the magnet movable body 3
The air on the left side of the cylinder chamber can be compressed by the leftward movement of the above and can be sent out through the exhaust hole 35.

【0034】図14は本発明の第2実施例を示す。この
場合、シリンダ室及びピストン等を往復動アクチュエー
タ10の磁石可動体3の両側に設けて、2個のポンプ部
40A,40Bを構成している。図14において、往復
動アクチュエータ10の構成は前述の第1実施例と実質
的に同じであり、前記磁石可動体3を摺動自在に案内す
るためのガイド筒体4の左側にポンプ部40Aが構成さ
れている。すなわち、ガイド筒体4の左側にシリンダ室
20Aが形成されており、軸部品8Aの軸11Aの先端
面にピストン30Aがボルト31Aで固定されている。
ピストン30Aの端面には吸入穴32Aが形成されてお
り、該吸入穴32Aを閉塞するゴム等の可撓性板材の吸
入弁33Aが前記ボルト31Aでピストン30Aの端面
に重なるように取り付けられている。また、シリンダ室
20Aの左側開口を密閉するためにOリング36を介し
て蓋体37Aが前記円筒状ヨーク1に固着されている。
前記シリンダ室20Aの右寄り位置に連通するように円
筒状ヨーク1及びガイド筒体4を貫通する吸気穴34A
が、シリンダ室20Aの側壁を成す蓋体37Aに排気穴
35Aがそれぞれ形成されている。
FIG. 14 shows a second embodiment of the present invention. In this case, a cylinder chamber, a piston and the like are provided on both sides of the magnet movable body 3 of the reciprocating actuator 10 to form two pump parts 40A and 40B. In FIG. 14, the structure of the reciprocating actuator 10 is substantially the same as that of the first embodiment described above, and the pump portion 40A is provided on the left side of the guide cylinder body 4 for slidably guiding the magnet movable body 3. It is configured. That is, the cylinder chamber 20A is formed on the left side of the guide cylinder 4, and the piston 30A is fixed to the tip end surface of the shaft 11A of the shaft component 8A with the bolt 31A.
A suction hole 32A is formed in the end surface of the piston 30A, and a suction valve 33A made of a flexible plate such as rubber that closes the suction hole 32A is attached to the end surface of the piston 30A by the bolt 31A. . A lid 37A is fixed to the cylindrical yoke 1 via an O-ring 36 to seal the left opening of the cylinder chamber 20A.
Intake hole 34A penetrating the cylindrical yoke 1 and the guide cylinder 4 so as to communicate with the rightward position of the cylinder chamber 20A.
However, an exhaust hole 35A is formed in each of the lids 37A forming the side wall of the cylinder chamber 20A.

【0035】同様に、前記磁石可動体3を摺動自在に案
内するためのガイド筒体4の右側にポンプ部40Bが構
成されている。すなわち、ガイド筒体4の右側にシリン
ダ室20Bが形成されており、軸部品8Bの軸11Bの
先端面にピストン30Bがボルト31Bで固定されてい
る。ピストン30Bの端面には吸入穴32Bが形成され
ており、該吸入穴32Bを閉塞するゴム等の可撓性板材
の吸入弁33Bが前記ボルト31Bでピストン30Bの
端面に重なるように取り付けられている。また、シリン
ダ室20Bの左側開口を密閉するためにOリング36を
介して蓋体37Bが前記円筒状ヨーク1に固着されてい
る。前記シリンダ室20Bの左寄り位置に連通するよう
に前記円筒状ヨーク1及びガイド筒体4を貫通する吸気
穴34Bが、シリンダ室20Bの側壁を成す蓋体37B
に排気穴35Bが形成されている。
Similarly, a pump portion 40B is formed on the right side of the guide cylinder 4 for slidably guiding the movable magnet body 3. That is, the cylinder chamber 20B is formed on the right side of the guide cylinder 4, and the piston 30B is fixed to the tip end surface of the shaft 11B of the shaft component 8B with the bolt 31B. A suction hole 32B is formed in the end surface of the piston 30B, and a suction valve 33B made of a flexible plate such as rubber that closes the suction hole 32B is attached by the bolt 31B so as to overlap the end surface of the piston 30B. . A lid 37B is fixed to the cylindrical yoke 1 via an O-ring 36 to seal the left opening of the cylinder chamber 20B. An intake hole 34B penetrating the cylindrical yoke 1 and the guide cylinder 4 so as to communicate with the left side position of the cylinder chamber 20B has a lid body 37B forming a side wall of the cylinder chamber 20B.
An exhaust hole 35B is formed in the.

【0036】この第2実施例によれば、往復動アクチュ
エータ10で2個のポンプ部40A,40Bを効率的に
駆動することができる。
According to the second embodiment, the reciprocating actuator 10 can efficiently drive the two pump units 40A and 40B.

【0037】図15は本発明の第3実施例を示す。この
場合、ピストン側には弁を設けずに、流体吸入口及び流
体吐出口にそれぞれ逆止弁を設けている。図15におい
て、往復動アクチュエータ10の構成は前述の第1実施
例と同じであり、磁石可動体3を摺動自在に案内するた
めのガイド筒体4の左側にシリンダ室20が形成されて
おり、右側に軸部品8Bの軸11Bが摺動自在に嵌合す
る軸受穴21が形成されている。そして、軸部品8Aの
軸11Aの先端面にピストン30がボルト31で固定さ
れている。また、シリンダ室20の左側開口を密閉する
如くOリング36を介して連結ブロック41が前記円筒
状ヨーク1に固着されている。該連結ブロック41は流
体吸入側から吐出側に貫通した流体通路42を有すると
ともに、該流体通路42とシリンダ室20とを連通させ
る連通路43を有している。流体通路42の一方に連通
する流体吸入口44を有する吸入口部品45が前記連結
ブロック41に螺着され、流体通路42の他方に連通す
る流体吐出口46を有する吐出口部品47が前記連結ブ
ロック41に螺着されている。そして、吸入口部品45
の内部にはシール材が設けられた弁座部50が形成さ
れ、さらに弁体としての鋼球51、鋼球51に当接する
ばね受け52、圧縮ばね53、ばね押え54、吸入口部
品45の内面に固定される止め輪55が配設されてい
る。弁体としての鋼球51は圧縮ばね53で弁座部50
に圧接するように付勢されており、逆流防止のための逆
止弁を構成している。同様に、吐出口部品47の内部に
は、シール材が設けられた弁座部60が形成され、さら
に弁体としての鋼球61、鋼球61に当接するばね受け
62、圧縮ばね63、ばね押え64、吐出口部品47の
内面に固定される止め輪65が配設されている。弁体と
しての鋼球61は圧縮ばね63で弁座部60に圧接する
ように付勢されており、逆流防止のための逆止弁を構成
している。
FIG. 15 shows a third embodiment of the present invention. In this case, a valve is not provided on the piston side, but check valves are provided at the fluid intake port and the fluid discharge port, respectively. In FIG. 15, the structure of the reciprocating actuator 10 is the same as that of the first embodiment described above, and the cylinder chamber 20 is formed on the left side of the guide cylinder 4 for slidably guiding the magnet movable body 3. A bearing hole 21 into which the shaft 11B of the shaft component 8B is slidably fitted is formed on the right side. The piston 30 is fixed to the tip surface of the shaft 11A of the shaft component 8A with bolts 31. A connecting block 41 is fixed to the cylindrical yoke 1 via an O-ring 36 so as to seal the left side opening of the cylinder chamber 20. The connection block 41 has a fluid passage 42 penetrating from the fluid suction side to the discharge side, and also has a communication passage 43 that connects the fluid passage 42 and the cylinder chamber 20. A suction port component 45 having a fluid suction port 44 communicating with one side of the fluid passage 42 is screwed to the coupling block 41, and a discharge port component 47 having a fluid discharge port 46 communicating with the other side of the fluid channel 42 is the coupling block. It is screwed to 41. Then, the inlet part 45
A valve seat portion 50 provided with a sealing material is formed in the inside thereof, and a steel ball 51 as a valve body, a spring receiver 52 that abuts on the steel ball 51, a compression spring 53, a spring retainer 54, and an intake port component 45. A retaining ring 55 fixed to the inner surface is provided. The steel ball 51 serving as the valve body is provided with the compression spring 53 and the valve seat portion 50.
It is urged to come into pressure contact with and constitutes a check valve for preventing backflow. Similarly, a valve seat portion 60 provided with a sealing material is formed inside the discharge port component 47, and further a steel ball 61 as a valve body, a spring receiver 62 abutting on the steel ball 61, a compression spring 63, a spring. A retainer 64 and a retaining ring 65 fixed to the inner surface of the discharge port component 47 are provided. A steel ball 61 as a valve element is biased by a compression spring 63 so as to come into pressure contact with the valve seat portion 60, and constitutes a check valve for preventing backflow.

【0038】この第3実施例においても、ピストン30
を往復動させ、ピストン30で隔離されたシリンダ室2
0の左側の流体導入室70の体積を増減することで、流
体の吸入口44からの流体の吸入、吐出口46からの流
体の吐出を交互に繰り返し実行することができる。
Also in this third embodiment, the piston 30
Reciprocating the cylinder chamber 2 separated by the piston 30
By increasing or decreasing the volume of the fluid introduction chamber 70 on the left side of 0, the suction of the fluid from the suction port 44 of the fluid and the discharge of the fluid from the discharge port 46 can be alternately repeated.

【0039】図16は本発明の第4実施例を示す。この
場合は、ピストンに代えて往復動するダイアフラムを使
用している。すなわち、往復動アクチュエータ10の構
成は前述の第1実施例と同じであり、磁石可動体3を摺
動自在に案内するためのガイド筒体4の左側にケーシン
グ室80の右部分が形成されており、ケーシング室80
の左部分を構成する有蓋筒体81の端面と前記ガイド筒
体4の端面間に可撓性(弾性)を持つ薄板状のダイアフ
ラム82の周縁部が挟持、固定されている。有蓋筒体8
1は前記円筒状ヨーク1のフランジ部に固着されてお
り、吸気穴83及び排気穴84を有している。そして、
吸気穴83の内側、及び排気穴84の外側にそれぞれ逆
流防止用の弁85,86が設けられている。例えば弁8
5,86はゴム等の可撓性板材であり、一端にて有蓋筒
体81に固定されている。ダイアフラム82の中央部は
磁石可動体3に一体の軸部80Aの軸11Aに連結され
ている。
FIG. 16 shows a fourth embodiment of the present invention. In this case, a reciprocating diaphragm is used instead of the piston. That is, the structure of the reciprocating actuator 10 is the same as that of the first embodiment described above, and the right portion of the casing chamber 80 is formed on the left side of the guide cylinder 4 for slidably guiding the magnet movable body 3. Cage, casing chamber 80
A peripheral edge portion of a flexible (elastic) thin plate-shaped diaphragm 82 is sandwiched and fixed between the end surface of the covered cylindrical body 81 and the end surface of the guide cylindrical body 4 which form the left part of the. Covered cylinder 8
1 is fixed to the flange portion of the cylindrical yoke 1 and has an intake hole 83 and an exhaust hole 84. And
Valves 85 and 86 for preventing backflow are provided inside the intake hole 83 and outside the exhaust hole 84, respectively. Valve 8 for example
Reference numerals 5 and 86 denote flexible plate materials such as rubber, which are fixed to the covered tubular body 81 at one end. The central portion of the diaphragm 82 is connected to a shaft 11A of a shaft portion 80A that is integral with the magnet movable body 3.

【0040】この第4実施例においても、ダイアフラム
82を往復動させ、ダイアフラム82で隔離されたケー
シング室80の左側の流体導入室90の体積を増減する
ことで、空気等の吸気穴83からの吸入、排気穴84か
らの排出を交互に繰り返し実行することができる。
In the fourth embodiment as well, the diaphragm 82 is reciprocated to increase or decrease the volume of the fluid introduction chamber 90 on the left side of the casing chamber 80 isolated by the diaphragm 82, so that air from the suction hole 83 for air or the like is introduced. The suction and the discharge from the exhaust hole 84 can be alternately repeated.

【0041】[0041]

【発明の効果】以上説明したように、本発明の可動磁石
式往復動流体機械によれば、次のような効果を得ること
ができる。 (1) 往復動アクチュエータでピストンやダイアフラ
ム等の往復駆動体を駆動する構成であり、該往復動アク
チュエータは永久磁石とコイル間に働くフレミングの左
手の法則に準ずる推力を発生するもので、効率が良好で
あり、小型で大きな推力を発生可能である。また、電力
消費を少なくでき、放熱対策も容易である。 (2) 磁性アーマチュアと固定電磁回路を組み合わせ
た従来の電磁往復動流体機械は、磁性アーマチュアが偏
倚しやすく、磁性アーマチュアの円滑な往復動が妨げら
れたり、磁性アーマチュアの摩耗が問題となるが、本発
明で用いる往復動アクチュエータはフレミングの左手の
法則に基づく推力であり、磁石可動体の偏倚は発生しに
くく、摩耗の問題も少なく、長寿命とすることができ
る。 (3) 交流電圧にて直接電磁往復動させられるため、
復帰用ばね等の機械的復帰機構が不要であり、部品点数
の削減、機構の簡略化、更には小型化が可能である。
As described above, according to the movable magnet type reciprocating fluid machine of the present invention, the following effects can be obtained. (1) The reciprocating actuator is configured to drive a reciprocating driving body such as a piston or a diaphragm. The reciprocating actuator generates a thrust force that acts between the permanent magnet and the coil in accordance with Fleming's left-hand rule, and thus the efficiency is high. It is good, small, and capable of generating large thrust. In addition, power consumption can be reduced and heat dissipation can be easily taken. (2) In a conventional electromagnetic reciprocating fluid machine that combines a magnetic armature and a fixed electromagnetic circuit, the magnetic armature is easily biased, which hinders smooth reciprocating motion of the magnetic armature and wear of the magnetic armature poses a problem. The reciprocating actuator used in the present invention is a thrust force based on Fleming's left-hand rule, so that the displacement of the magnet movable body is unlikely to occur, the problem of wear is small, and the life can be extended. (3) Since it can be directly electromagnetically reciprocated by AC voltage,
Since a mechanical return mechanism such as a return spring is not required, the number of parts can be reduced, the mechanism can be simplified, and the size can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る可動磁石式往復動流体機械の第1
実施例を示す正断面図である。
FIG. 1 is a first diagram of a movable magnet type reciprocating fluid machine according to the present invention.
It is a right sectional view showing an example.

【図2】同側面図である。FIG. 2 is a side view of the same.

【図3】本発明で用いる往復動アクチュエータの基本構
成を示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing a basic configuration of a reciprocating actuator used in the present invention.

【図4】往復動アクチュエータの第1比較例を示す概略
構成図である。
FIG. 4 is a schematic configuration diagram showing a first comparative example of a reciprocating actuator.

【図5】往復動アクチュエータの第2比較例を示す概略
構成図である。
FIG. 5 is a schematic configuration diagram showing a second comparative example of a reciprocating actuator.

【図6】単一の永久磁石の長手側面(永久磁石の着磁方
向に平行な面)の表面磁束密度の垂直成分(長手側面に
垂直な成分)を示すグラフである。
FIG. 6 is a graph showing a vertical component (a component perpendicular to the longitudinal side surface) of the surface magnetic flux density on the longitudinal side surface (plane parallel to the magnetizing direction of the permanent magnet) of a single permanent magnet.

【図7】2個の同極対向の永久磁石を直接的に対接状態
とした場合の長手側面の表面磁束密度の垂直成分を示す
グラフである。
FIG. 7 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets of the same pole facing each other are directly brought into contact with each other.

【図8】2個の永久磁石を1mmのエアーギャップを介し
同極対向状態とした場合の長手側面の表面磁束密度の垂
直成分を示すグラフである。
FIG. 8 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with an air gap of 1 mm.

【図9】2個の永久磁石を2mmのエアーギャップを介し
同極対向状態とした場合の長手側面の表面磁束密度の垂
直成分を示すグラフである。
FIG. 9 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with an air gap of 2 mm.

【図10】2個の永久磁石を3mmのエアーギャップを介
し同極対向状態とした場合の長手側面の表面磁束密度の
垂直成分を示すグラフである。
FIG. 10 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with an air gap of 3 mm.

【図11】2個の永久磁石を軟磁性体を介し同極対向状
態とした場合の長手側面の表面磁束密度の垂直成分を示
すグラフである。
FIG. 11 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with a soft magnetic material interposed therebetween.

【図12】2個の永久磁石を軟磁性体を介し同極対向状
態とし、かつ軟磁性体ヨークを配置した場合の長手側面
の表面磁束密度の垂直成分を示すグラフである。
FIG. 12 is a graph showing the vertical component of the surface magnetic flux density on the longitudinal side surface when two permanent magnets are in the same pole facing state with a soft magnetic material interposed and a soft magnetic material yoke is arranged.

【図13】図1及び図3の往復動アクチュエータにおけ
る磁石可動体の変位量と推力との関係を示すグラフであ
る。
FIG. 13 is a graph showing the relationship between the amount of displacement of the movable magnet body and the thrust in the reciprocating actuator of FIGS. 1 and 3.

【図14】本発明の第2実施例を示す正断面図である。FIG. 14 is a front sectional view showing a second embodiment of the present invention.

【図15】本発明の第3実施例を示す正断面図である。FIG. 15 is a front sectional view showing a third embodiment of the present invention.

【図16】本発明の第4実施例を示す正断面図である。FIG. 16 is a front sectional view showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 円筒状ヨーク 2A,2B,2C コイル 3 磁石可動体 4 ガイド筒体 5A,5B 円柱状永久磁石 6 円柱状軟磁性体 7 円筒状ホルダ 8A,8B 軸部品 10 往復動アクチュエータ 20,20A,20B シリンダ室 30,30A,30B ピストン 32,32A,32B 吸入穴 33,33A,33B 吸入弁 34,34A,34B,83 吸気穴 35,35A,35B,84 排気穴 37,37A,37B 蓋体 40A,40B ポンプ部 41 連結ブロック 42 流体通路 43 連通路 45 吸入口部品 47 吐出口部品 80 ケーシング室 81 有蓋筒体 85,86 弁 1 Cylindrical yoke 2A, 2B, 2C Coil 3 Magnet movable body 4 Guide cylinder 5A, 5B Cylindrical permanent magnet 6 Cylindrical soft magnetic body 7 Cylindrical holder 8A, 8B Axial component 10 Reciprocating actuator 20, 20A, 20B Cylinder Chamber 30, 30A, 30B Piston 32, 32A, 32B Suction hole 33, 33A, 33B Suction valve 34, 34A, 34B, 83 Intake hole 35, 35A, 35B, 84 Exhaust hole 37, 37A, 37B Lid 40A, 40B Pump Part 41 Connection block 42 Fluid passage 43 Communication passage 45 Suction port component 47 Discharge port component 80 Casing chamber 81 Covered cylinder 85,86 Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 重男 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Saito 1-13-1, Nihonbashi, Chuo-ku, Tokyo TDK Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 同極対向された少なくとも2個の永久磁
石間に磁性体を設けて磁石可動体を構成し、相互の位置
関係が一定に規制された少なくとも3連のコイルの内側
に当該磁石可動体を移動自在に設け、前記少なくとも3
連のコイルを、各永久磁石の磁極間を境にして相異なる
方向に電流が流れる如く結線し、前記少なくとも3連の
コイルに対し一定位置関係に設けられたケーシング室に
対し往復駆動体を設けるとともに、該往復駆動体を前記
磁石可動体に連結したことを特徴とする可動磁石式往復
動流体機械。
1. A magnet movable body is provided by providing a magnetic body between at least two permanent magnets facing each other of the same pole, and the magnet is provided inside at least three continuous coils whose mutual positional relationship is regulated to a constant value. A movable body is movably provided, and the at least 3
A series of coils is connected so that currents flow in different directions with the magnetic poles of the permanent magnets as boundaries, and a reciprocating driver is provided in a casing chamber provided in a fixed positional relationship with the at least three series of coils. At the same time, the reciprocating driving body is connected to the magnet movable body, and a reciprocating fluid machine of a movable magnet type is characterized.
【請求項2】 前記ケーシング室がシリンダ室を構成
し、該シリンダ室に前記往復駆動体としてのピストンが
摺動自在に設けられている請求項1記載の可動磁石式往
復動流体機械。
2. The movable magnet type reciprocating fluid machine according to claim 1, wherein the casing chamber constitutes a cylinder chamber, and a piston as the reciprocating driving member is slidably provided in the cylinder chamber.
【請求項3】 前記ピストンの端面に吸入穴及び該吸入
穴を閉塞する吸入弁が設けられている請求項2記載の可
動磁石式往復動流体機械。
3. The movable magnet type reciprocating fluid machine according to claim 2, wherein a suction hole and a suction valve for closing the suction hole are provided on an end surface of the piston.
【請求項4】 前記往復駆動体が可撓性を有するダイア
フラムであり、該ダイアフラム周縁部が前記ケーシング
室に固定されている請求項1記載の可動磁石式往復動流
体機械。
4. The movable magnet type reciprocating fluid machine according to claim 1, wherein the reciprocating driving body is a flexible diaphragm, and a peripheral edge portion of the diaphragm is fixed to the casing chamber.
【請求項5】 前記コイル外周側に磁性体ヨークを設け
て、前記永久磁石の着磁方向に垂直な方向の磁束成分を
増加させるための磁気回路を構成した請求項1記載の可
動磁石式往復動流体機械。
5. The reciprocating movable magnet type reciprocating device according to claim 1, wherein a magnetic yoke is provided on the outer peripheral side of the coil to form a magnetic circuit for increasing a magnetic flux component in a direction perpendicular to the magnetizing direction of the permanent magnet. Dynamic fluid machinery.
JP35468692A 1992-12-17 1992-12-17 Moving magnet type reciprocating fluid machine Expired - Fee Related JP3263161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35468692A JP3263161B2 (en) 1992-12-17 1992-12-17 Moving magnet type reciprocating fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35468692A JP3263161B2 (en) 1992-12-17 1992-12-17 Moving magnet type reciprocating fluid machine

Publications (2)

Publication Number Publication Date
JPH06185456A true JPH06185456A (en) 1994-07-05
JP3263161B2 JP3263161B2 (en) 2002-03-04

Family

ID=18439221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35468692A Expired - Fee Related JP3263161B2 (en) 1992-12-17 1992-12-17 Moving magnet type reciprocating fluid machine

Country Status (1)

Country Link
JP (1) JP3263161B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966760B1 (en) 2000-03-17 2005-11-22 Brp Us Inc. Reciprocating fluid pump employing reversing polarity motor
JP2006207472A (en) * 2005-01-28 2006-08-10 Aisin Seiki Co Ltd Linear compressor
US7753657B2 (en) 2005-02-02 2010-07-13 Brp Us Inc. Method of controlling a pumping assembly
CN109360725A (en) * 2018-06-04 2019-02-19 湖北文理学院 A kind of transformer based on magnetic fluid
JP2019533577A (en) * 2016-10-18 2019-11-21 ハミルトン・ボナドゥーツ・アーゲー A piston assembly comprising a permanent magnet for a pipetting device having an outer shell structure for receiving the permanent magnet assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966760B1 (en) 2000-03-17 2005-11-22 Brp Us Inc. Reciprocating fluid pump employing reversing polarity motor
US7410347B2 (en) 2000-03-17 2008-08-12 Brp Us Inc. Reciprocating fluid pump assembly employing reversing polarity motor
JP2006207472A (en) * 2005-01-28 2006-08-10 Aisin Seiki Co Ltd Linear compressor
US7753657B2 (en) 2005-02-02 2010-07-13 Brp Us Inc. Method of controlling a pumping assembly
JP2019533577A (en) * 2016-10-18 2019-11-21 ハミルトン・ボナドゥーツ・アーゲー A piston assembly comprising a permanent magnet for a pipetting device having an outer shell structure for receiving the permanent magnet assembly
US11291987B2 (en) * 2016-10-18 2022-04-05 Hamilton Bonaduz Ag Permanent-magnet piston assembly comprising an exoskeleton which holds permanent-magnet arrangements for a pipetting apparatus
CN109360725A (en) * 2018-06-04 2019-02-19 湖北文理学院 A kind of transformer based on magnetic fluid

Also Published As

Publication number Publication date
JP3263161B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
JP3483959B2 (en) Magnet movable linear actuator and pump
US5472323A (en) Movable magnet type pump
JPH086693B2 (en) Compound membrane pump
JP3927089B2 (en) Linear actuator, pump device and compressor device using the same
US8529225B2 (en) Electromagnetic reciprocating fluid device
JP3508523B2 (en) Iron core movable linear oscillator and linear compressor
US5104299A (en) Electromagnetic reciprocating pump
JPH102281A (en) Improvement of vacuum pump
JP3263161B2 (en) Moving magnet type reciprocating fluid machine
JP3363931B2 (en) Moving magnet pump
KR20040082299A (en) A linear actuator, a pump apparatus using the same, and a compressor apparatus
JP3376024B2 (en) Moving magnet pump
KR20200100275A (en) Linerar motor and linear compressor having the same
US4886429A (en) Electromagnetic pump
US8049375B2 (en) Electromagnetic transducer apparatus
CN111742475B (en) Linear motor and linear compressor provided with same
CN211830532U (en) Linear motor and linear compressor having the same
US7621723B2 (en) Electromagnetic pump
US7932647B2 (en) Electromagnetic reciprocating fluid apparatus
JP4570342B2 (en) Electromagnetic pump stator
KR100498317B1 (en) Structure for protecting dead volum of reciprocating compressor
JP4206248B2 (en) Electromagnetic pump
JP2001251834A (en) Electromagnetic drive and solenoid valve using the same
RU2205294C2 (en) Magnetic pump
KR100528406B1 (en) Linear motor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees