JPH0618523A - Method and device for deciding base sequence of dna using directional orientation of dna - Google Patents

Method and device for deciding base sequence of dna using directional orientation of dna

Info

Publication number
JPH0618523A
JPH0618523A JP19589492A JP19589492A JPH0618523A JP H0618523 A JPH0618523 A JP H0618523A JP 19589492 A JP19589492 A JP 19589492A JP 19589492 A JP19589492 A JP 19589492A JP H0618523 A JPH0618523 A JP H0618523A
Authority
JP
Japan
Prior art keywords
dna
base sequence
determining
substrate
dna base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19589492A
Other languages
Japanese (ja)
Other versions
JP3282679B2 (en
Inventor
Senichi Masuda
閃一 増田
Masao Washizu
正夫 鷲津
Osamu Kurosawa
修 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Co Ltd
Original Assignee
Advance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Co Ltd filed Critical Advance Co Ltd
Priority to JP19589492A priority Critical patent/JP3282679B2/en
Publication of JPH0618523A publication Critical patent/JPH0618523A/en
Application granted granted Critical
Publication of JP3282679B2 publication Critical patent/JP3282679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To decide all base sequences of a plurality of long DNAs by arranging the DNAs, with the DNAs being oriented in a fixed direction from the upstream side to the downstream side (or from the downstream side to the upstream side) of genes, and successively cutting the DNAs into pieces from their ends by using a laser beam, etc., and then, deciding the base sequence of each piece. CONSTITUTION:In order to realize the title directional orientation, a DNA is first elongated by using an electric field and one end of the DNA is fixed to the end of an electrode 2. When the DNA is then cut off at a part near its end by using a restriction enzyme, only such a cut piece that has a fixed directional property can remain on the electrode 2. Therefore, when the DNA having directional orientation thus obtained is successively cut into pieces from its end with a laser beam and the sequence of the cut pieces is decided by a prior art method, the base sequence of the original long DNA can be founds by connecting the sequences of the cut piece. Since the base sequence of the DNA can be successively decided when this method is used, the time and labor of the conventional method required for estimating total sequence from the sequences of randomly cut pieces are not required.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はDNAの塩基配列決定方
法並びに同装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DNA base sequence determination method and apparatus.

【0002】[0002]

【従来の技術】従来のDNAの塩基配列決定装置は、一
時に数百〜千塩基対の分析が可能である。しかしなが
ら、生化学で扱われるDNAは一般にこれよりはるかに
長いので、まず、制限酵素により切断し、しかるのちに
塩基配列決定装置により解析するのが普通である。
2. Description of the Related Art A conventional DNA base sequencer is capable of analyzing several hundred to one thousand base pairs at a time. However, since the DNA handled in biochemistry is generally much longer than this, it is usual to first cut it with a restriction enzyme and then analyze it with a nucleotide sequencer.

【0003】[0003]

【発明が解決しようとする課題】このような技術の問題
点は、制限酵素により断片化したDNAを解析するた
め、得られた配列がもとの長いDNAの中のどの位置に
あったものであるかがわからなくなることにある。現在
の技術においては、何種類もの制限酵素を用いて製作し
たさまざまな断片を解析し、得られた解析結果から全体
の配列を推定しているが、この方法は、1) 何種類もの
制限酵素を用いて行なう解析自体が大変である、2) 断
片的情報から全体の塩基配列を推定することが大変であ
る、などの欠点を有している。特に、解析対象のDNA
が長くなると解析に要する労力は幾何級数的に大きくな
る。本発明の目的は、長いDNAを順次切断していき、
それぞれの断片の塩基配列を決定していくことにより、
もとのDNAの全塩基配列を決定する手段を提供するこ
とにある。
The problem of such a technique is that the obtained sequence was located in the original long DNA in order to analyze the DNA fragmented by the restriction enzyme. I don't know if there is one. In the current technology, various fragments produced using many kinds of restriction enzymes are analyzed, and the entire sequence is deduced from the obtained analysis results. It has drawbacks such as the difficulty of the analysis itself using 2) and the difficulty of estimating the entire nucleotide sequence from fragmentary information. In particular, the DNA to be analyzed
When becomes longer, the labor required for analysis becomes geometrically larger. An object of the present invention is to sequentially cut long DNA,
By determining the base sequence of each fragment,
It is to provide a means for determining the entire base sequence of the original DNA.

【0004】[0004]

【課題を解決するための手段】高周波高電界によりDN
Aを伸長できること、および誘電泳動力により伸長した
DNAの一端を電極エッジに固定することができること
は、公知である。ただし、このような方法ではDNAの
塩基配列を認識することはできないので、遺伝子の上流
側が電極に固定されたものと下流側が固定されたもの
が、各々50%の確立で得られる。従って、このように
伸長・固定されたDNAを一端から逐次レーザーなどで
切断して得られる断片は、2種類の塩基配列の混合物に
なってしまう。これに対し、本発明においては、塩基認
識性の分子を用いてまず配向を一方向に揃える。すなわ
ち、たとえば、電界により配向されたDNAがすべて遺
伝子の下流側を電極エッジに接するような形であるよう
にする。このように配列したDNAを電極に接していな
い方の端より順次切断してゆけば、遺伝子の上流側から
順々に解析することが可能になる。
Means for Solving the Problems DN by a high frequency and high electric field
It is known that A can be extended and that one end of the extended DNA can be fixed to the electrode edge by the dielectrophoretic force. However, since the base sequence of DNA cannot be recognized by such a method, it is possible to obtain a gene in which the upstream side of the gene is fixed to the electrode and a gene in which the downstream side is fixed with a probability of 50% each. Therefore, a fragment obtained by sequentially cutting the thus extended and fixed DNA from one end with a laser or the like becomes a mixture of two kinds of base sequences. On the other hand, in the present invention, a molecule having a base recognizing property is first used to align the orientation in one direction. That is, for example, all of the DNA oriented by the electric field has a shape in which the downstream side of the gene is in contact with the electrode edge. By sequentially cutting the DNA arranged in this manner from the end not in contact with the electrode, it becomes possible to analyze the genes in sequence from the upstream side.

【0005】[0005]

【実施例】図1,図2は、本発明の実施例である。この
実施例では、絶縁性基板1上に設けられた対向する電極
2、2’を用いている。ここにDNA溶液を導入し、電
極間に高周波電圧を印加すると、DNAは伸長・配向さ
れ、かつ誘電泳動の効果により、一端を電極に接するま
で電極に引き寄せられる。この際、DNAの電極に接し
た端は電極に吸着され、電圧を取り去ってもDNAはこ
こから離れることはない。図3は、このようにして電極
2に接して吸着されたDNAを模式的に示したものであ
る。さて、このように配向されたDNAには、遺伝子の
上流側を電極に接しているものと、下流側を電極に接し
ているものとの2種類が50%づつ存在する。図3では
DNAの向きを、遺伝子の上流側から下流側へと向かう
矢印およびアルファベットで表わしてある。このような
DNAを電極に接していない方の端から切断しても、2
種類の断片の混合物が得られるので、一意的な解析はで
きない。ところが、このように電極エッジに一端で固定
されたDNAを、特許請求の範囲の請求項2に記載のよ
うに、DNA上のある塩基配列を認識する制限酵素(こ
こでは領域AとBの間で切断するように書いてある)を
用いて切断すると、Bが電極エッジに接しているもの
は、ほんの一部が切り取られるだけであるのに対し、A
が電極エッジに接しているものはその大部分を切り取ら
れる。従って、このような処理を施した後、DNAを電
極に接していないほうの端より順次レーザービームなど
を用いて切り取っていけば、B→C→D→・・と次々に
断片が得られる。これらの断片を解析してつなぎ合わせ
れば、もとのDNAの全塩基配列を決定することができ
る。なお、ここで用いる制限酵素は、もとのDNAを長
い断片と短い断片に切断するものが望ましく、ちょうど
真ん中から切断するような制限酵素は用いることができ
ない。
1 and 2 show an embodiment of the present invention. In this embodiment, the electrodes 2 and 2'opposed on the insulating substrate 1 are used. When a DNA solution is introduced here and a high frequency voltage is applied between the electrodes, the DNA is elongated and oriented, and due to the effect of dielectrophoresis, one end of the DNA is attracted to the electrodes until it contacts the electrodes. At this time, the end of the DNA that is in contact with the electrode is adsorbed by the electrode, and the DNA does not leave from here even if the voltage is removed. FIG. 3 schematically shows the DNA thus adsorbed in contact with the electrode 2. In the DNA oriented in this way, there are 50% of each of two types, one in which the upstream side of the gene is in contact with the electrode and the other in which the downstream side is in contact with the electrode. In FIG. 3, the direction of DNA is represented by arrows and alphabets from the upstream side to the downstream side of the gene. Even if such DNA is cut from the end not in contact with the electrode, 2
A unique analysis is not possible because a mixture of fragments of the type is obtained. However, as described in claim 2 of the present invention, the DNA fixed at one end to the electrode edge is treated with a restriction enzyme (here, between regions A and B) that recognizes a certain base sequence on the DNA. It is written that it is cut by the above method), but in the case where B is in contact with the electrode edge, only a part is cut off, while A is cut off.
Most of those that touch the electrode edge are cut off. Therefore, after such treatment, if the DNA is sequentially cut off from the end not in contact with the electrode by using a laser beam or the like, fragments are successively obtained in the order of B → C → D → ... By analyzing and connecting these fragments, the entire base sequence of the original DNA can be determined. The restriction enzyme used here is preferably one that cuts the original DNA into a long fragment and a short fragment, and a restriction enzyme that just cuts from the middle cannot be used.

【0006】[0006]

【発明の効果】本法によれば、DNAのランダムな断片
の塩基配列からもとのDNAの配列を推定するという手
間をかけずに、直接、DNAの塩基配列を順々に解析す
ることができる。
EFFECTS OF THE INVENTION According to the present method, it is possible to directly analyze the base sequences of DNA in sequence without the effort of estimating the original DNA sequence from the base sequences of random DNA fragments. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】 図1で示した実施例の側面を示す図。FIG. 2 is a diagram showing a side surface of the embodiment shown in FIG.

【図3】 本発明の一動作例を説明するための図。FIG. 3 is a diagram for explaining an operation example of the present invention.

【符号の説明】[Explanation of symbols]

1:絶縁性基板。 2,2’:電極。 3:DNA分子。 4:DNA分子内での遺伝子の塩基配列の方向をしめす
ための矢印及びアルファベット記号。 5:制限酵素切断部位。
1: Insulating substrate. 2, 2 ': electrodes. 3: DNA molecule. 4: An arrow and an alphabetic symbol for indicating the direction of the base sequence of the gene in the DNA molecule. 5: restriction enzyme cleavage site.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 DNAを一方向に配列して、その一端よ
り順次切り取っていくことにより得られるDNA断片を
解析し、その結果をつなぎ合わせることによりもとのD
NAの全塩基配列を決定することを特長とするDNA塩
基配列決定方法並びに同装置。
1. A DNA fragment obtained by arranging DNA in one direction and sequentially cutting out from one end of the DNA is analyzed, and the results are connected to obtain the original D fragment.
A method and apparatus for determining a DNA base sequence, characterized by determining the entire base sequence of NA.
【請求項2】 請求項1に記載のDNA塩基配列決定方
法並びに同装置において、電界を利用して一端を電極上
に固定したDNAをその長さの中心以外のところの塩基
配列を認識する制限酵素によって切断することにより一
方向に配列したDNAを得ることを特長とするDNA塩
基配列決定方法並びに同装置。
2. The method for determining a DNA base sequence and the apparatus according to claim 1, wherein DNA having one end fixed on an electrode by using an electric field recognizes a base sequence other than at the center of its length. A method and apparatus for determining a DNA base sequence, characterized by obtaining a unidirectionally arranged DNA by cleaving with an enzyme.
【請求項3】 請求項1に記載のDNA塩基配列決定方
法並びに同装置において、DNAのその長さの中心以外
のところの部位を塩基認識性分子を用いて修飾し、この
部位を基板上の特定部位に付着させ、電界を印加してD
NA分子全体を伸長させることにより一方向に配列した
DNAを得ることを特長とするDNA塩基配列決定方法
並びに同装置。
3. The method and apparatus for determining a DNA base sequence according to claim 1, wherein a site other than the center of the length of DNA is modified with a base recognizing molecule, and this site is on the substrate. D is applied to a specific part and an electric field is applied.
A method and apparatus for determining a DNA base sequence, characterized in that a DNA arranged in one direction is obtained by extending the entire NA molecule.
【請求項4】 請求項3に記載のDNA塩基配列決定方
法並びに同装置において、基板上の特定部位が電極エッ
ジであることを特徴とするDNA塩基配列決定方法並び
に同装置。
4. The method and apparatus for determining a DNA base sequence according to claim 3, wherein the specific portion on the substrate is an electrode edge.
【請求項5】 請求項3に記載のDNA塩基配列決定方
法並びに同装置において、基板上の特定部位が基板上に
あらかじめ描かれたパターンであるこを特長とするDN
A塩基配列決定方法並びに同装置。
5. The DNA base sequence determination method and apparatus according to claim 3, wherein the specific portion on the substrate is a pattern drawn in advance on the substrate.
A base sequence determination method and the same apparatus.
【請求項6】 請求項1に記載のDNA塩基配列決定方
法並びに同装置において、電界により伸長したDNAの
両端のみを基板に固定したのち制限酵素により切断し、
電界を再び印加することにより生ずる電気力および流れ
を利用して一方向に配列したDNAを得ることを特長と
するDNA塩基配列決定方法並びに同装置。
6. The method for determining a DNA base sequence and the apparatus according to claim 1, wherein only both ends of the DNA extended by an electric field are immobilized on a substrate and then cleaved with a restriction enzyme,
A method and apparatus for determining a DNA base sequence, characterized by obtaining DNA arranged in one direction by utilizing electric force and flow generated by reapplying an electric field.
【請求項7】 請求項6に記載のDNA塩基配列決定方
法並びに同装置において、DNAを固定する際に、少な
くとも一端を電極エッジ上に固定することを特徴とする
DNA塩基配列決定方法並びに同装置。
7. The method and apparatus for determining a DNA base sequence according to claim 6, wherein at least one end is fixed on an electrode edge when fixing the DNA. .
【請求項8】 請求項6に記載のDNA塩基配列決定方
法並びに同装置において、DNAを固定する際に、少な
くとも一端の固定を分子間の結合を利用して行なわれる
ことを特徴とするDNA塩基配列決定方法並びに同装
置。
8. The DNA base sequence determination method and apparatus according to claim 6, wherein at the time of immobilizing DNA, at least one end is immobilized by utilizing intermolecular bonds. Sequencing method and apparatus.
【請求項9】 請求項6に記載のDNA塩基配列決定方
法並びに同装置において、DNAを固定する際に、少な
くとも一端の固定を基板に描かれたパターン上に行なう
ことを特徴とするDNA塩基配列決定方法並びに同装
置。
9. The DNA base sequence determination method and apparatus according to claim 6, wherein at the time of fixing DNA, at least one end is fixed on a pattern drawn on a substrate. Determination method and device.
【請求項10】 請求項6に記載のDNA塩基配列決定
方法並びに同装置において、光照射によりDNAを固定
することを特徴とするDNA塩基配列決定方法並びに同
装置。
10. The DNA base sequence determination method and the apparatus according to claim 6, wherein the DNA is fixed by light irradiation.
【請求項11】 請求項1、請求項2に記載のDNA塩
基配列決定方法並びに同装置において、DNAの切断を
レーザー光を用いて行なうことを特長とするDNA塩基
配列定方法並びに同装置。
11. The method and apparatus for determining a DNA base sequence according to claim 1 or 2, wherein the DNA is cleaved using a laser beam.
JP19589492A 1992-07-01 1992-07-01 Methods for DNA sequencing Expired - Fee Related JP3282679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19589492A JP3282679B2 (en) 1992-07-01 1992-07-01 Methods for DNA sequencing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19589492A JP3282679B2 (en) 1992-07-01 1992-07-01 Methods for DNA sequencing

Publications (2)

Publication Number Publication Date
JPH0618523A true JPH0618523A (en) 1994-01-25
JP3282679B2 JP3282679B2 (en) 2002-05-20

Family

ID=16348760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19589492A Expired - Fee Related JP3282679B2 (en) 1992-07-01 1992-07-01 Methods for DNA sequencing

Country Status (1)

Country Link
JP (1) JP3282679B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858192A (en) * 1996-10-18 1999-01-12 Board Of Regents, The University Of Texas System Method and apparatus for manipulation using spiral electrodes
US5888370A (en) * 1996-02-23 1999-03-30 Board Of Regents, The University Of Texas System Method and apparatus for fractionation using generalized dielectrophoresis and field flow fractionation
US5993630A (en) * 1996-01-31 1999-11-30 Board Of Regents The University Of Texas System Method and apparatus for fractionation using conventional dielectrophoresis and field flow fractionation
US6790330B2 (en) 2000-06-14 2004-09-14 Board Of Regents, The University Of Texas System Systems and methods for cell subpopulation analysis
US7033473B2 (en) 2000-06-14 2006-04-25 Board Of Regents, University Of Texas Method and apparatus for combined magnetophoretic and dielectrophoretic manipulation of analyte mixtures
JP2014048241A (en) * 2012-09-03 2014-03-17 Osaka Univ Method of immobilizing sample
JP2014068612A (en) * 2012-09-28 2014-04-21 Osaka Univ Polymer stretching method and polymer stretching device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993630A (en) * 1996-01-31 1999-11-30 Board Of Regents The University Of Texas System Method and apparatus for fractionation using conventional dielectrophoresis and field flow fractionation
US5888370A (en) * 1996-02-23 1999-03-30 Board Of Regents, The University Of Texas System Method and apparatus for fractionation using generalized dielectrophoresis and field flow fractionation
US5993632A (en) * 1996-02-23 1999-11-30 Board Of Regents The University Of Texas System Method and apparatus for fractionation using generalized dielectrophoresis and field flow fractionation
US6287832B1 (en) 1996-02-23 2001-09-11 Board Of Regents, The University Of Texas System Method and apparatus for fractionation using generalized dielectrophoresis and field flow fractionation
US5858192A (en) * 1996-10-18 1999-01-12 Board Of Regents, The University Of Texas System Method and apparatus for manipulation using spiral electrodes
US6790330B2 (en) 2000-06-14 2004-09-14 Board Of Regents, The University Of Texas System Systems and methods for cell subpopulation analysis
US7033473B2 (en) 2000-06-14 2006-04-25 Board Of Regents, University Of Texas Method and apparatus for combined magnetophoretic and dielectrophoretic manipulation of analyte mixtures
JP2014048241A (en) * 2012-09-03 2014-03-17 Osaka Univ Method of immobilizing sample
JP2014068612A (en) * 2012-09-28 2014-04-21 Osaka Univ Polymer stretching method and polymer stretching device

Also Published As

Publication number Publication date
JP3282679B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
Murray DNA sequencing by mass spectrometry
KR19990014933A (en) Manufacturing method and analysis method of biopolymer ladder
Ono et al. 2′-Fluoro modified nucleic acids: polymerase-directed synthesis, properties and stability to analysis by matrix-assisted laser desorption/ionization mass spectrometry
Szalay et al. Separation of the complementary strands of DNA fragments on polyacrylamide gels
DE69520917D1 (en) DNA SEQUENCING BY STAGE LIGATION AND CUT
PT1034309E (en) PROCESS FOR THE PREPARATION OF SPECIFIC DNA METHYLACAO COMPLEXES
ATE397092T1 (en) METHOD FOR DIRECT SEQUENCING OF NUCLEIC ACIDS
KR20000075555A (en) Gene sequencer and methods
WO2000028313A1 (en) Electrodynamically focused thermal cycling device
RU2000116895A (en) METHOD FOR PRODUCING COMPACT METHYLATED DNA PRINTER FINGER
GB2336206A (en) Method of enzymatic replication of genetic material in preparation for mass spectrometric analysis
EP0777750A4 (en) High throughput screening method for sequences or genetic alterations in nucleic acids
JP2021521786A (en) In vitro sensitive assay for substrate selectivity and site of substances that bind, modify, and cleave nucleic acids
JPH0618523A (en) Method and device for deciding base sequence of dna using directional orientation of dna
CA2322975A1 (en) Purification and detection processes using reversible affinity electrophoresis
DE60113945D1 (en) Method for the analysis of Recurrent PCR products based on the analysis of DNA melting curves
BR9914262A (en) Method for analyzing polynucleotides
Guilley et al. Sequence of 71 nucleotides at the 3'-end of tobacco mosaic virus RNA.
Sutcliffe et al. The cleavage site of the restriction endonuclease Ava II.
EP0649852A1 (en) Fractionation method for nucleotide fragments
KR100868598B1 (en) Method of extending single-stranded nucleic acid, single-stranded nucleic acid extending apparatus and dna chip
DeFilippes Restriction enzyme digests of rapidly renaturing fragments of vaccinia virus DNA
Wu et al. Recent advances in DNA sequence analysi
WO2003004702A3 (en) Method for determining chromatin structure
Watson et al. A new site‐specific endonuclease from Neisseria cinerea

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090301

LAPS Cancellation because of no payment of annual fees