JPH06184663A - Ceramic-reinforced aluminum alloy composite material - Google Patents

Ceramic-reinforced aluminum alloy composite material

Info

Publication number
JPH06184663A
JPH06184663A JP14839592A JP14839592A JPH06184663A JP H06184663 A JPH06184663 A JP H06184663A JP 14839592 A JP14839592 A JP 14839592A JP 14839592 A JP14839592 A JP 14839592A JP H06184663 A JPH06184663 A JP H06184663A
Authority
JP
Japan
Prior art keywords
ceramic
strength
aluminum alloy
composite material
alloy composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14839592A
Other languages
Japanese (ja)
Inventor
Hiroyuki Morimoto
本 啓 之 森
Hiroshi Iwamura
村 宏 岩
Keiji Kino
野 圭 司 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14839592A priority Critical patent/JPH06184663A/en
Publication of JPH06184663A publication Critical patent/JPH06184663A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a heat resistant ceramic-reinforced Al alloy composite material excellent in specific strength, specific modulus of elasticity, fatigue strength, strength and ductility by uniformly dispersing a ceramic in an Al alloy having a specified grain diameter as a matrix. CONSTITUTION:A ceramic is uniformly dispersed in an Al alloy having <=10mum grain diameter as a matrix. The ceramic is preferably dispersed at <=40mum intervals and the proper volume fraction of the ceramic is about 5-40%. High strength ceramic particles of SiC, etc., having about <=30mum particle diameter, short fibers or whiskers are used as the ceramic. The dispersing process can be carried out by powder metallugical processing using starting material having a small particle diameter, a molten metal impregnating method accompanied by proper grain refining heat treatment, a molten metal stirring method or a spray forming method. The objective ceramic-reinforced Al alloy composite material having high specific strength, a high specific modulus of elasticity and high fatigue strength and excellent in heat resistance, strength and ductility is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス強化アルミ
ニウム合金複合材料に関し、さらに詳しくは、強度、延
性および耐熱性の優れたセラミックス強化アルミニウム
合金複合材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic-reinforced aluminum alloy composite material, and more particularly to a ceramic-reinforced aluminum alloy composite material having excellent strength, ductility and heat resistance.

【0002】[0002]

【従来技術】一般に、アルミニウムまたはアルミニウム
合金等の軽量金属に、軽量、高強度および高弾性率てあ
って、さらに、耐熱性にも優れているSiC、Si
、Al(+SiO)等のセラミックスウイス
カ、セラミックス短繊維、セラミックス粒子を分散させ
複合させた複合材料は、高比強度、高比弾性率、高疲労
強度であり、さらに、繊維強化プラスチックに比較し
て、優れた耐熱性を示す。
2. Description of the Related Art Generally, a lightweight metal such as aluminum or an aluminum alloy has a light weight, a high strength and a high elastic modulus, and further has excellent heat resistance such as SiC and Si 3 N.
4 , ceramic whiskers such as Al 2 O 3 (+ SiO 2 ), ceramic short fibers, and composite materials in which ceramic particles are dispersed and combined have high specific strength, high specific elastic modulus, and high fatigue strength. It has excellent heat resistance compared to plastics.

【0003】従って、軽量化および高性能化が強く要望
されている宇宙機器、航空機または自動車等の輸送機器
の産業分野における構造部材、エンジン部品用素材、さ
らに、オフイスオートメーション、精密産業機械等の可
動部品、駆動部品およびスポーツ用品用の素材として注
目されてきている。なお、本出願人は高性能のSiCウ
イスカ強化アルミニウム合金複合材料を特開平02−2
13431号公報、特開平03−159889号公報、
特開平03−159890号公報等で提案している。
Therefore, structural members in the industrial fields of space equipment, transportation equipment such as aircrafts and automobiles, materials for engine parts, and further, automation of office automation, precision industrial machines, etc., for which weight reduction and high performance are strongly demanded. It has been drawing attention as a material for parts, driving parts and sports equipment. The applicant of the present invention discloses a high performance SiC whisker reinforced aluminum alloy composite
13431 gazette, Unexamined-Japanese-Patent No. 03-159889,
It is proposed in Japanese Patent Laid-Open No. 03-159890.

【0004】しかしながら、このような複合材料の用途
のうち、自動車等のエンジン部品では、特に、150〜
200℃の使用温度における耐熱性、即ち、高温引張強
度が要求され、いままでの提案されている複合材料で
は、特に、この高温引張強度において改善の余地があっ
た。
However, among the applications of such composite materials, in engine parts such as automobiles, in particular,
Heat resistance at a use temperature of 200 ° C., that is, high temperature tensile strength is required, and there has been room for improvement particularly in this high temperature tensile strength in the composite materials proposed so far.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記に説明し
たように、従来において提案されている種々の複合材料
では耐熱性が充分でないという問題点に鑑み、本発明者
が鋭意研究を行い、検討を重ねた結果、高比強度、高比
弾性率、高疲労強度を有すると共に、耐熱性であり、さ
らに、強度および延性にも優れているセラミックス強化
アルミニウム合金複合材料を開発したのである。
SUMMARY OF THE INVENTION As described above, the present invention has been conducted by the present inventor, in view of the problem that the heat resistance of various conventionally proposed composite materials is not sufficient. As a result of repeated studies, a ceramic-reinforced aluminum alloy composite material having high specific strength, high specific elastic modulus, high fatigue strength, heat resistance, and excellent strength and ductility was developed.

【0006】[0006]

【課題を解決するための手段】本発明に係るセラミック
ス強化アルミニウム合金複合材料は、マトリックスのア
ルミニウム合金の結晶粒径が10μm以下であり、か
つ、マトリックス中にセラミックスが均一に分散してい
ることを特徴とする耐熱性に優れたセラミックス強化ア
ルミニウム合金複合材料を第1の発明とし、マトリック
ス中に均一に分散しているセラミックスの間隔が 40
μm以下である請求項1記載の耐熱性に優れたセラミッ
クス強化アルミニウム合金複合材料を第2の発明とする
2つの発明よりなるものである。
In the ceramic-reinforced aluminum alloy composite material according to the present invention, the crystal grain size of the aluminum alloy of the matrix is 10 μm or less, and the ceramic is uniformly dispersed in the matrix. The first invention is a ceramic-reinforced aluminum alloy composite material having excellent heat resistance, and the spacing between the ceramics uniformly dispersed in the matrix is 40
The ceramic reinforced aluminum alloy composite material having excellent heat resistance according to claim 1 having a thickness of not more than μm is a second invention.

【0007】本発明に係るセラミックス強化アルミニウ
ム合金複合材料について、以下詳細に説明する。
The ceramic-reinforced aluminum alloy composite material according to the present invention will be described in detail below.

【0008】本発明に係るセラミックス強化アルミニウ
ム合金複合材料は、高強度のセラミックス粒子、セラミ
ックス短繊維、セラミックスウイスカ等をアルミニウム
合金に分散させることにより、高強度とすることがで
き、このことは、マトリックスのアルミニウム合金の結
晶粒径を厳密に調整することにより、複合材料の強度お
よび延性を向上させることができることを見いだした。
The ceramic-reinforced aluminum alloy composite material according to the present invention can be made to have a high strength by dispersing high-strength ceramic particles, ceramic short fibers, ceramic whiskers, etc. in an aluminum alloy. It has been found that the strength and ductility of the composite material can be improved by strictly adjusting the crystal grain size of the aluminum alloy of.

【0009】これは一般に、金属材料においても、結晶
粒径の微細化を行うことにより、強度および延性を向上
させるのには有効であるが、しかし、セラミックス強化
アルミニウム合金複合材料においては、変形しないセラ
ミックスを分散させているので、延性は極めて低く、従
って、変形し得るマトリックスのアルミニウム合金の結
晶粒径を、さらに一層の微細化を行わなければならない
のである。
This is generally effective for improving the strength and ductility of metal materials by refining the crystal grain size, but it is not deformed for ceramics reinforced aluminum alloy composite materials. Since the ceramics are dispersed, the ductility is extremely low, and therefore the crystal grain size of the deformable matrix aluminum alloy must be further refined.

【0010】従って、マトリックスのアルミニウム合金
の結晶粒径は、10μmを越えると強度および延性を低
下させるので、マトリックスのアルミニウム合金の結晶
粒径は10μm以下とする。
Therefore, if the crystal grain size of the matrix aluminum alloy exceeds 10 μm, the strength and ductility deteriorate, so the crystal grain size of the matrix aluminum alloy is set to 10 μm or less.

【0011】また、マトリックスのアルミニウム合金中
に均一に分散させるセラミックスの間隔は小さい程好ま
しいものであり、セラミックスはアルミニウム合金の結
晶粒界の移動を妨げて粒の成長を抑制する効果を有する
ものであると考えられ、セラミックスの間隔は小さい程
アルミニウム結晶粒径は微細化される。
Further, it is preferable that the interval of the ceramics uniformly dispersed in the matrix aluminum alloy is as small as possible, and the ceramics has an effect of inhibiting the movement of the crystal grain boundaries of the aluminum alloy and suppressing the grain growth. It is believed that the smaller the ceramic spacing, the finer the aluminum crystal grain size.

【0012】そして、アルミニウム合金の結晶粒径を微
細化して高性能の複合材料とするためには、マトリック
スのアルミニウム合金中のセラミックスの間隔は40μ
m以下とする必要があり、セラミックスの間隔を小さく
するためには、セラミックスの体積率は大きく、また、
サイズを小さくする程よいが、体積率が大きすぎると加
工時に割れの発生するという問題が生じるので5〜40
%とするのがよく、セラミックス粒子の粒子径を30μ
m以下とするのがよい。
In order to refine the crystal grain size of the aluminum alloy into a high-performance composite material, the interval between the ceramics in the matrix aluminum alloy is 40 μm.
The volume ratio of the ceramics is large, and in order to reduce the spacing between the ceramics,
The smaller the size, the better, but if the volume ratio is too large, the problem of cracking during processing will occur.
%, And the particle size of the ceramic particles is 30μ.
It is preferably m or less.

【0013】本発明に係るセラミックス強化アルミニウ
ム合金複合材料を製造する方法としては、溶湯含浸法、
粉末冶金法、溶湯撹拌混合法、スプレーフォーミング法
等が挙げられる。 ・粉末冶金法は原料のアルミニウム合金粉末の結晶粒径
が微細であるので、複合材料に成形しても微細な結晶粒
を得られ易い。なお、この粉末冶金法においては、ボー
ルミル、アトライター、振動ミル等を使用して混合を行
うと一層微細な結晶粒を得ることができる。 ・スプレーフォーミング法は複合材料成形時の冷却速度
が大きいので微細な結晶粒が得られ易く、これにさらに
押出、圧延、鍛造等の加工を行い、その後適切な条件に
より熱処理を行って、再結晶させることにより一層結晶
粒径を微細とすることができる。 ・溶湯含浸法、溶湯撹拌混合法により製造した複合材料
においては、比較的結晶粒径は大きいけれども、適切な
再結晶処理を行うことにより微細化は可能である。
The method for producing the ceramic-reinforced aluminum alloy composite material according to the present invention includes a molten metal impregnation method,
The powder metallurgy method, the molten metal stirring mixing method, the spray forming method, etc. are mentioned. In the powder metallurgy method, since the grain size of the aluminum alloy powder as the raw material is fine, it is easy to obtain fine crystal grains even if it is formed into a composite material. In this powder metallurgy method, finer crystal grains can be obtained by mixing using a ball mill, an attritor, a vibration mill or the like.・ Since the spray forming method has a high cooling rate during molding of composite materials, it is easy to obtain fine crystal grains, which are then subjected to processing such as extrusion, rolling, and forging, and then heat treatment under appropriate conditions to recrystallize. By doing so, the crystal grain size can be made finer. The composite material produced by the molten metal impregnation method and the molten metal stirring mixing method has a relatively large crystal grain size, but can be made finer by performing an appropriate recrystallization treatment.

【0014】[0014]

【実 施 例】本発明に係るセラミックス強化アルミニ
ウム合金複合材料の実施例を説明する。
EXAMPLES Examples of ceramic-reinforced aluminum alloy composite materials according to the present invention will be described.

【0015】[0015]

【実 施例 1】平均粒径3μmのSiC粒子20vo
l%と6061Al合金粉末80vol%とを均一に混
合してから、アルミニウム缶に充填し、加熱真空脱気し
て密封した後、HIP成形を行った。
[Practical example 1] 20 vo SiC particles having an average particle size of 3 μm
1% and 6061 Al alloy powder 80 vol% were uniformly mixed, and then filled in an aluminum can, deaerated by heating under vacuum, sealed, and then HIP molded.

【0016】HIP成形した材料を押出成形を行い、5
30℃の温度に30分間加熱した後水冷を行い、180
℃の温度で8時間加熱を行った。この処理により、アル
ミニウム合金の平均結晶粒径3μm、SiC粒子間距離
10μmのセラミックス強化アルミニウム合金複合材料
が得られた。
The HIP-molded material is extruded to form 5
After heating to a temperature of 30 ° C for 30 minutes, water cooling is performed, and 180
Heating was carried out at a temperature of ° C for 8 hours. By this treatment, a ceramic-reinforced aluminum alloy composite material having an average grain size of the aluminum alloy of 3 μm and a distance between SiC particles of 10 μm was obtained.

【0017】上記の他に、各種複合材料の製造方法を表
1に示す。また、製造されたセラミックス強化アルミニ
ウム合金複合材料の平均結晶粒径、セラミックス間隔、
強度、伸びを調査し結果を表2に示す。この表2から、
マトリックスのアルミニウム合金の結晶粒径およびセラ
ミックス間隔を小さくすることにより、強度および延性
の優れたセラミックス強化アルミニウム合金複合材料が
得られることがわかる。
In addition to the above, Table 1 shows manufacturing methods of various composite materials. Further, the average crystal grain size of the ceramic-reinforced aluminum alloy composite material produced, the ceramic spacing,
The strength and elongation were investigated and the results are shown in Table 2. From this table 2,
It can be seen that a ceramic-reinforced aluminum alloy composite material having excellent strength and ductility can be obtained by reducing the crystal grain size and ceramic spacing of the matrix aluminum alloy.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【実施 例 2】平均粒径3μmのSiC粒子を202
4Al合金粉末を均一に金剛し、粉末混合→HIP成形
→押出→495℃×2hr→190℃×12hrACの
製造条件より製造した本発明に係るセラミックス強化ア
ルミニウム合金複合材料成形体と、比較例として粒径5
0μmのSiC粒子を同じ条件により混合して製造した
複合材料成形体との常温(195K)と高温(453
K)との性能を比較した。
Example 2 202 particles of SiC having an average particle size of 3 μm were used.
4Al alloy powder was uniformly hardened, and powder mixing → HIP molding → extrusion → 495 ° C. × 2 hr → 190 ° C. × 12 hrAC produced ceramic reinforced aluminum alloy composite material compact according to the present invention, and particles as a comparative example. Diameter 5
A normal temperature (195K) and a high temperature (453K) with a composite material compact manufactured by mixing 0 μm SiC particles under the same conditions.
K) and the performance were compared.

【0021】表3にその結果を示す。この表3から明ら
かなように、粒径が細かい本発明に係るセラミックス強
化アルミニウム合金複合材料成形体は、高温における引
張強度が優れており、耐熱性を充分に保持していること
がわかる。
Table 3 shows the results. As is clear from Table 3, the ceramic-reinforced aluminum alloy composite material compact according to the present invention having a small particle size has excellent tensile strength at high temperature and sufficiently retains heat resistance.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】以上説明したように、本発明に係るセラ
ミックス強化アルミニウム合金複合材料は上記の構成で
あるから、高強度および延性および特に耐熱性に優れて
いるという効果を有するものである。
As described above, since the ceramic-reinforced aluminum alloy composite material according to the present invention has the above-mentioned constitution, it has an effect of being excellent in high strength, ductility and particularly heat resistance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】マトリックスのアルミニウム合金の結晶粒
径が10μm以下であり、かつ、マトリックス中にセラ
ミックスが均一に分散していることを特徴とする耐熱性
セラミックス強化アルミニウム合金複合材料。
1. A heat-resistant ceramic-reinforced aluminum alloy composite material, wherein the crystal grain size of the aluminum alloy of the matrix is 10 μm or less, and the ceramics are uniformly dispersed in the matrix.
【請求項2】マトリックス中に均一に分散しているセラ
ミックスの間隔が40μm以下である請求項1記載の耐
熱性セラミックス強化アルミニウム合金複合材料。
2. The heat-resistant ceramic-reinforced aluminum alloy composite material according to claim 1, wherein the intervals of the ceramics uniformly dispersed in the matrix are 40 μm or less.
JP14839592A 1992-05-15 1992-05-15 Ceramic-reinforced aluminum alloy composite material Withdrawn JPH06184663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14839592A JPH06184663A (en) 1992-05-15 1992-05-15 Ceramic-reinforced aluminum alloy composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14839592A JPH06184663A (en) 1992-05-15 1992-05-15 Ceramic-reinforced aluminum alloy composite material

Publications (1)

Publication Number Publication Date
JPH06184663A true JPH06184663A (en) 1994-07-05

Family

ID=15451824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14839592A Withdrawn JPH06184663A (en) 1992-05-15 1992-05-15 Ceramic-reinforced aluminum alloy composite material

Country Status (1)

Country Link
JP (1) JPH06184663A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150029758A (en) 2012-09-06 2015-03-18 제이에프이 스틸 가부시키가이샤 Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
KR20160088375A (en) 2013-12-12 2016-07-25 제이에프이 스틸 가부시키가이샤 Steel plate and method for manufacturing same
WO2023176469A1 (en) 2022-03-16 2023-09-21 株式会社ダイセル Al-nd composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150029758A (en) 2012-09-06 2015-03-18 제이에프이 스틸 가부시키가이샤 Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
KR20160088375A (en) 2013-12-12 2016-07-25 제이에프이 스틸 가부시키가이샤 Steel plate and method for manufacturing same
WO2023176469A1 (en) 2022-03-16 2023-09-21 株式会社ダイセル Al-nd composite material

Similar Documents

Publication Publication Date Title
DE3883087T2 (en) Aluminum composite alloys.
JP3314783B2 (en) Low density high strength Al-Li alloy
US4923532A (en) Heat treatment for aluminum-lithium based metal matrix composites
US6918970B2 (en) High strength aluminum alloy for high temperature applications
DE69223194T2 (en) Process for the production of composite alloy powder with aluminum matrix
EP0031605A2 (en) Method of manufacturing products from a copper containing aluminium alloy
JPH0742536B2 (en) Aluminum-based alloy product having high strength and high toughness and its manufacturing method
EP0981653B1 (en) Method of improving fracture toughness in aluminum-lithium alloys
JP2017538861A5 (en)
JPS63157831A (en) Heat-resisting aluminum alloy
US6592687B1 (en) Aluminum alloy and article cast therefrom
EP0642598A1 (en) Low density, high strength al-li alloy having high toughness at elevated temperatures
US2841512A (en) Method of working and heat treating aluminum-magnesium alloys and product thereof
JPH02213431A (en) Sic whisker reinforced al alloy composite material
JPH06184663A (en) Ceramic-reinforced aluminum alloy composite material
EP0171798A1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
EP1295955A1 (en) Titanium alloy excellent in ductility, fatigue strength and rigidity and method for producing the same
JPH01177340A (en) Thermo-mechanical treatment of high-strength and wear-resistant al powder alloy
WO1990002824A1 (en) Reinforced composite material
White et al. Metal Matrix Composites Based On Aluminium Lithium And Silicon Carbide
JPH0841565A (en) Titanium alloy casting having high strength and high toughness
JPS63190148A (en) Manufacture of structural al-zn-mg alloy extruded material
JPH06228720A (en) Production of member made of magnesium alloy
JPH06506268A (en) Improvement of toughness of Al-Li-Cu-Mg-Zr alloy manufactured using thermal spray forming method
KR900006699B1 (en) Foumation of internetellic and intermetallic-type precursor alloys for subsequent mechanical alloying applications

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803